COX-2基因多态性与炎症性肠病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:炎症性肠病(IBD)包括溃疡性结肠炎(UC)和克罗恩病(CD),是一类病因不明的慢性肠道非特异性炎症性疾病。其发病机制至今尚不十分清楚,大多数学者认为是由肠道细菌和环境因素作用于遗传易感的人群,导致肠道粘膜免疫反应过高所致。遗传因素作为IBD发病过程中的一个重要因素,最早而且最有说服力的证据来自对双生子的研究,发现同卵双生子的同病率明显高于异卵双生子,另外流行病学调查发现IBD患者具有家族聚集现象,并且IBD患者的一级亲属发病率明显高于正常人群。以后发展的全基因组扫描研究及IBD易感基因的研究,均证实IBD发病具有遗传易感性。近年来,在IBD遗传因素这一研究领域取得了一些重要进展,确定了一些易感基因。例如,1996年发现位于16号染色体着丝粒附近的NOD2/CARD15基因,并于2001年证实该基因是CD的第一个易感基因。Stoll等证实位于10号染色体上的DLG5基因上两个位点的SNP与CD有关。加拿大的一个研究组报道了位于5号染色体上的OCTN基因与CD相关。2006年,美国的IBD多中心协作研究显示一种编码促炎症细胞因子白介素-23(IL-23)亚单位的基因,似乎可影响炎症性肠病的易感性,再次发现了IBD的易感基因。由此可见,IBD是一种复杂的多基因遗传易感性疾病。通过对该病遗传机制的研究,可确定或发现IBD易感基因或致病基因,对该病的基因治疗、遗传咨询以及易感人群的合理预防起到重要作用。
     既往研究显示NOD2/CARD15基因、DLG5基因及OCTN基因多态性与欧洲人群IBD发病相关。日本和香港的研究显示NOD2/CARD15基因常见的SNP位点在亚洲IBD人群中没有多态性,我国人群的小样本研究也证实NOD2/CARD15在中国人群无多态性。日本人群遗传学研究显示DLG5、OCTN与日本人群CD无显著相关,我们实验室的研究发现DLG5、OCTN与IBD无相关性,由此可见,遗传存在有很大的异质性,那么也就必然存在一个或者一些基因的突变与我国IBD人群相关。因此,寻找和鉴定与我国IBD人群相关的基因成为目前IBD研究的一个热点。调节炎症过程的关键性分子如环氧合酶(COXs)是针对IBD易感变异的一个重要候选基因。COX-2基因的变异能够改变酶的功能从而影响个体对炎症的反应。环氧合酶-2(COX-2)作为COX的一种重要形式表达于IBD患者的肠道上皮细胞和单核细胞,当受到炎症细胞因子如IL-1诱导后产生。COX-2是产生前列腺素的关键限制酶之一。前列腺素在胃肠道创伤愈合的过程中起着关键作用。非甾体消炎药抑制COX-2的转录和活性,不但加重UC的症状,甚至可以出现疾病活动的增加。因此,多态性可能通过改变炎症细胞前列腺素的释放从而引起IBD的易感性。为了验证这一假说,我们设计了本试验。
     目的:检测我国汉族人群COX-2基因启动子区-1195G/A,-1290A/G和3′非编码区的8473C/T位点的遗传多态性及其与IBD可能的相关性。
     方法:采用PCR-RFLP及DNA序列测定技术,对291例溃疡性结肠炎、66例克罗恩病以及286名健康对照的COX-2基因(-1195G/A,-1290A/G与-8473C/T)的遗传多态性进行分析。数据统计使用SAS软件进行χ2检验和单倍体分析。
     结果:COX-2基因(-1195G/A,-1290A/G与-8473C/T)在我国人群中存在遗传多态性,①-1195G/A位点在UC患者中的AA、AG和GG这三个基因型频率分别为27.2﹪,53.9﹪,18.9﹪,CD患者中这三个基因型频率分别为13.6﹪,65.2﹪,21.2﹪,健康对照者中分别为26.2﹪,51.4﹪,22.4﹪。②-1290A/G位点的AA、AG和GG在UC中分别为82.8﹪,17.2﹪,0﹪,CD中分别为86.4﹪,13.6﹪,0﹪,健康对照组分别为86.4﹪,13.6﹪,0﹪。③-8473T/C位点的TT、TC和CC在UC中分别为58.8﹪,36.7﹪,4.5﹪,CD中分别为64.3﹪,30.3﹪,1.5﹪,健康对照组分别为64.3﹪,33.9﹪,1.8﹪,但这三个位点各自的遗传多态性与IBD的发病无相关性。对-1195G/A和-8473C/T进行单倍体分析,发现这两个位点同时突变与IBD亦没有相关性。
     结论:本研究发现COX-2(-1195G/A,-1290A/G与-8473C/T)这三个位点存在有基因多态性,但是其多态性与IBD之间没有关系,并且-1195G/A和-8473C/T这两个位点同时突变与汉族IBD亦不存在相关性。自从2001年Hugot等发现并证实CD的第一个易感基因CARD15(NOD2)以来,寻找炎症性肠病的遗传易感基因成为了IBD研究领域的一个热点,随后人们又陆续发现了很多其他的易感基因,如DLG15、OCTN、IL-23R、ATG16L1等,并且这些基因在不同的国家、不同的人群中被得到证实,但是这些基因并没有在日本、韩国、和中国等我们亚洲国家得到证实,这些结果提示给我们同一疾病在不同的种群之间存在有很大的异质性。
Background Inflammatory bowel disease (IBD) is a chronic and non-specificity inflammatory disease witch comprise Crohn’s disease(CD) and ulcerative colitis(UC). The pathogenesis of IBD is not clear. It is commonly presumed to be a multifactorial disease caused by the effect of enterobacteria and environmental factors on the hereditary susceptibility cohorts, and presented with excessive immunoreaction in intestinal mucosa. Epidemiological evidence shows a strong hereditary susceptibility contribution to IBD including high incidence of IBD in certain ethnic groups, family-clnster phenomenon and the concordance in identical twins. This was validated by the results of holo-genome scanning and predisposing genes.
     Recently, some important progresses have got on the predisposing genes of IBD and definited some predisposing genes in IBD. For instance, NOD2/CARD15 gene was identified as the first susceptibility locus for CD adjacent to the centromere on chromosome 16 in 1996. The NOD2/CARD15 gene product is expressed in monocytes, and can activate nuclear transcription factor kappa-B (NF-κB) in inflammatory response together with bacteria lipopolysaccharides and peptidoglycans. Stoll and colleagues confirmed two haplotypes of DLG5 gene on chromosome 10q23 which were associated with IBD. Simultaneously, a Canadian group reported that functional mutations in the OCTN genes on chromosome 5q31 were associated with CD. It is suggested that IBD is a complicated and multigenic hereditary susceptibility disease. The predisposing genes and the virulence genes could be discovered and identified with the cognition for genetic mechanism of IBD, which plays important roles in the genetic treatment, genetic counseling and reasonable preservation of susceptible population.
     Previous investigations showed that the polymorphisms of NOD2/CARD15 gene, DLG5 gene and OCTN gene were associated with IBD of European. Japanese and Hong Kong’s investigators reported that the polymorphism of NOD2/CARD15 gene is inexistence in Oriental. In our country, small sample investigations confirmed the polymorphism of NOD2/CARD15 gene is inexistence in Chinese. Genetics study showed that DLG5 gene and OCTN gene were not associated with CD in Japanese. But there was no report about the relationship between DLG5 gene, OCTN gene and IBD in Oriental. It can be concluded that there exists the mutation of one gene or some genes which are associated with IBD in Chinese inevitably. Therefore, many studies focused on finding the predisposing genes of IBD. Key genes involved in the regulation of the inflammatory processes, such as COXs, are obvious candidates to look for variants predisposing to IBD. One of the two COXs isoforms, COX-2, is expressed in epithelial cells and mononuclear cells in IBD, and it is induced in response to pro-inflammatory cytokines, including interleukin-1. COX-2 is the rate limiting enzyme in the production of prostaglandins. Prostaglandins are thought to be essential in the process of wound healing in the gastrointestinal tract. The use ofnon-steroidal anti-inflammatory drugs (NSAIDs), whichinhibit both the transcription and activity of COX-2, exacerbates the symptoms in UC and may even activate quiescent IBD. Thus, the expression of COX-2 in the inflamed intestine might be a protective response within the wound healing process. Consequently, polymorphisms that change the amount of prostaglandins produced in inflamed cells could cause susceptibility to IBD.
     Objective To detect the genetic polymorphism of COX-2 gene and the relationship with IBD(CD and UC) in a large population of independent Chinese Han.
     Methods The study population comprised 66 CD patients, 291ulcerative colitis (UC) patients and 286 healthy controls from Chinese Han people., The patients were recruited from 4 medical centers including the Department of Gastroenterology of Xijing Hospital, Xi’an, Department of Gastroenterology of Xi’an Municipal Central Hospital, Xi’an , Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang and Department of Gastroenterology of Zhongshan Medical University, Guangzhou from March 2000 to May 2007. Genotyping for COX-2(-1195G→A, -1290A→G and -8473T→C) were carried out using polymerase chain reaction fragment length polymorphism (PCR-PFLP) and DNA sequencing for single nucleotide polymorphisms (SNP).Data were analyzed byχ2 test and haplotype by SAS statistic software.
     Results Both the -1195G→A -1290A→G and -8473T→C polymorphisms were not associated with increased risk of IBD.For the 1195 G→A polymorphism, the frequencies of the AA,AG and GG genotypes were 27.2﹪,53.9﹪,18.9﹪, respectively, among the cases of UC and 13.6﹪,65.2﹪,21.2﹪respectively among the cases of CD and 26.2﹪,51.4﹪,22.4﹪respectively among the controls. However, these differences were not statistically significant ( P=0.586 in UC and P=0.065 in CD). Similarly, the frequencies of the AA, AG and GG genotypes of the -1290A→G were 82.8﹪,17.2﹪,0﹪respectively, among the cases of UC and 86.4﹪,13.6﹪,0﹪respectively, among the cases of CD and 86.4﹪,13.6﹪,0﹪respectively, among the controls. These differences were not statistically significant in UC(P=0.238) and CD(P=1). For the -8473T→C polymorphism, the frequencies of TT, TC and CC genotypes were 58.8﹪,36.7﹪,4.5﹪,respectively, among the cases of UC and 64.3﹪,30.3﹪,1.5﹪,respectively, among the cases of CD and 64.3﹪,33.9﹪,1.8﹪,respectively, among the controls. These differences were not statistically significant (P=0.107 in UC and P=0.840 in CD).The COX-2 haplotypes with 1-4 variant alleles(-1195G/A和-8473C/T) were not associated with IBD.
     Conclusion:In the present study, we investigated the associations of the three SNPs of COX-2 gene with risk of UC and CD in a Chinese Han population. No significant association with disease risk was identified for these 3 polymorphisms. In 2001, using positional cloning and candidate gene approaches, two groups identified NOD2 (also designated CARD15)as a susceptibility gene to CD. Since then, several additional susceptibility loci have been implicated in inflammatory bowel disease and confirmed by replication: DLG5; SLC22A4 and SLC22A5; IL-23R and ATG16L. Three major polymorphisms in NOD2 gene, R702W, G908R and 1007fs, were confirmed to be associated with susceptibility to Caucasian CD patients by independent groups, but the variants were absence in Japanese, Korean and Chinese populations. The results suggested that these candidate genes were not common variants to IBD among Asia and Caucasian populations. In consideration of the increased prevalence of IBDs in Asian, systematic screening should be carried out as GWA studies among various populations with different ethnical backgrounds and it will lead to elucidate the contribution of susceptibility genes to IBD.
引文
1. Montgomery SM, Ekbom A. Epidemiology of inflammatory bowel disease. Curr Opin Gastroenterol, 2002; 18(4):416-420.
    2. Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis, 2006; 12 Suppl1:S3-S9.
    3. Ekbom A. The epidemiology of IBD: a lot of data but little knowledge. How shall we proceed? Inflamm Bowel Dis, 2004; 10 Suppl 1:S32-S34.
    4. Morita N, Toki S, Minoda T, et al. Incidence and prevalence of inflammatory bowel disease in Japan: nationwide epidemiological survey during the year 1991.J Gastroenterol, 1995; 30:1-4.
    5. Radhakrishnan S, Zubaidi G, Daniel M, et al. Ulcerative colitis in Oman. A prospective study of the incidence and disease pattern from 1987 to 1994. Digestion, 1997; 58: 266-270.
    6. Yang SK, Hong WS, Min HY, Yoo JY, Kim YK, et al. Incidence and prevalence of ulcerative colitis in Songpa-Kangdong District, Seoul, Korea, 1986-1997. J Gastroenterol Hepatol, 2000; 15: 1037-1042.
    7. Leong RW, Lau JY, Sung JJ. The epidemiology and phenotype of Crohn’s disease in the Chinese population. Inflamm Bowel Dis, 2004; 10: 646-651.
    8. AL-Ghandi AS, AL-Mofleh IA, AL-Amri SM, et al. Epidemilogy and outcome of Crohn’s disease in a teaching hospital in Riyadh. World J Gastroenterol, 2004; 10: 1341-1344.
    9. Sood A, Midha V, Sood N, et al. Incidence and prevalence of ulcerative colitis in Punjab, North India.Gut, 2003; 52: 1587-1590.
    10. Lee YM, Fock K, See SJ, et al. Ractial difference in the prevalence of ulcerative colitis and Crohn’s disease in Singapore. J Gastroenterol, 2000; 15: 622-625.
    11. Ouyang Q, Tandon R, Goh KI, et al. The emergance of inflammatory bowel disease in the Asian Pacific region. Curr Opin Gastroenterol, 2005; 15: 408-413.
    12. Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J Gastroenterol, 2006; 14; 12(38): 6102-6108.
    13. Okada H, Mizuno M, Yamamoto K, et al. Primary sclerosing cholangitis in Japanese patients: association with inflammatory bowel disease. Acta Med Okayama, 1996; 50(5): 227-235.
    14. Jiang L, Xia B, Li J, et al. Retrospective survey of 452 patients with inflammatory bowel disease in Wuhan city, central China.Inflamm Bowel Dis, 2006; 12(3): 212-217.
    15. Mamula P, Markowitz JE, Baldassano RN. Inflammatory bowel disease in early childhood and adolescence: special considerations. Gastroenterol Clin North Am, 2003; 32(3): 967-995.
    16. Loftus EV Jr, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am, 2002; 31(1): 1-20.
    17. Karlinger K, Gyorke T, Mako E, et al. The epidemiology and the pathogenesis of inflammatory bowel disease. Eur J Radiol, 2000; 35(3): 154-167.
    18. Andres PG, Friedman LS. Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol Clin North Am, 1999; 28(2): 255-281.
    19. Birrenbach T, Bocker U. Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis, 2004; 10(6): 848-859.
    20. Mikula C. Measles vaccination a risk factor for inflammatory bowel disease? Gastroenterol Nurs, 2000; 23(4): 168-171.
    21. Green C, Elliott L, Beaudoin C, et al. A population-based ecologic study of inflammatory bowel disease: searching for etiologic clues. Am J Epidemiol, 2006; 164(7): 615-623.
    22. Krishnan A, Korzenik JR. Inflammatory bowel disease and environmental influences. Gastroenterol Clin North Am, 2002; 31(1): 21-39.
    23. Mishkin S. Dairy sensitivity, lactose malabsorption, and elimination diets in inflammatory bowel disease. Am J Clin Nutr, 1997; 65(2): 564-567.
    24. Jantchou P, Monnet E, Carbonnel F. Environmental risk factors in Crohn's disease and ulcerative colitis (excluding tobacco and appendicectomy). Gastroenterol Clin Biol, 2006; 30(6-7): 859-867.
    25. Lakatos L, Lakatos PL. Etiopathogenesis of inflammatory bowel diseases. Orv Hetil, 2003; 144(38): 1853-1860.
    26. Robertson DJ, Sandler RS. Measles virus and Crohn's disease: a critical appraisal of the current literature. Inflamm Bowel Dis, 2001; 7(1): 51-57.
    27. Rook GA, Adams V, Hunt J,et al. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders.Springer Semin Immunopathol, 2004; 25(3-4): 237-255.
    28. Russel MG. Changes in the incidence of inflammatory bowel disease: what does it mean? Eur J Intern Med, 2000; 11(4): 191-196.
    29. Mahid SS, Minor KS, Soto RE, et al. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc, 2006; 81(11): 1462-71.
    30. Zhang L, Mitchell H. The roles of mucus-associated bacteria in inflammatory bowel disease. Drugs Today, 2006; 42(9): 605-616.
    31. Johan Van Limbergen, et al. Genetics of the Innate Immune Response in Inflammatory Bowel Disease. Inflamm Bowel Dis, 2007; 13: 338–355.
    32. Bruce E. Sands. Inflammatory bowel disease: past, present, and future. J Gastroenterol, 2007; 42: 16-25.
    33. Johan Van Limbergen, MD. et al. Genetics of the Innate Immune Response in Inflammatory Bowel Disease. Inflamm Bowel Dis, 2007; 13: 338–35.
    34. Manuela G.Neuman. Immune dysfunction in inflammatory bowel disease. Translational Research, 2007; 149: 173–186.
    35. Stephan R. Targan, et a1. Defects in mucosal immunity leading to ulcerative colitis. Immunological Reviews, 2005; 206:296-305.
    36. Gena M, Cobrin, Maria T, et a1. Abreu. Defects in mucosal immunity leading to Crohn’s disease. Immunological Reviews, 2005; 206: 277-295.
    37. Daniel R Gaya, et a1 New genes in infl ammatory bowel disease: lessons for complex diseases? Lancet, 2006; 367: 1271–84.
    38. Franco scaldaferri, et a1.Inflammatory bowel disease: progress and current concepts of etiopathogenesis. Journal of Digestive Disease, 2007; 8: 171-178.
    39. Guimbaud R, Bertrand V, Chauvdot—Moachon L, et a1. Network of in flammatory cytokines and correlation with disease activity in ulcerative colitis.Am J G~treenterol, l998; 93(12): 2397-2404.
    40. Watanabe M, Yamazaki M, Kanai T. MucosalT eensas atarget for treatment of IBD. Gastroenterol, 2003; 38(Suppl15): 48-50.
    41. Mackner LM, Sisson DP, Crandall WV. Review: psychosocial issues in pediatric inflammatory bowel disease. J Pediatr Psychol, 2004; 29(4): 243-57.
    42. Sehmidt C, Giese T, Ludweg B, et a1.Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn’s disease but not in ulcerative colitis.Inflamm Bowel Dis, 2005; 11:16-23.
    43. Sartor RB.Pathogenesis and immune mechanisms of chronic inflammatory bowel disease.Am J Gastroenterol, 1997; 92(Sl2): 5-l1.
    44. Rioux JD, Silverberg MS, Daly MJ, et a1. Genome wide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet,2000; 66: 1863—1870.
    45. Brant SR, Panhuysen CI, Bailey-Wilson JE, et a1.Linkage heterogeneity for the inflammatory bowel diseasel locus in Crohn’s disease pedigrees by disease onset and severity.Gastroenterology, 2000; l19: 1483-1490.
    46. Binder V. Epidemiology of IBD during the twentieth century:an integrated view.Best Pract Res Clin Gastroenterol, 2004; 18: 463-479.
    47. Sugimura K, Taylor KD, Lin YC, et a1. A novel NOD2/CARD15 haplotype conferring risk for Crohn disease in Ashkenazi Jews.Am J Hum Genet, 2003; 72: 509-518.
    48. Judge T, Lichtenstein GR.The NOD2 gene and Crohn’s disease: another triumph for molecular genetics. Gastroenterology, 2002; 122: 826-828.
    49. Sendid B, Quinton JF, Charrier G, et a1.Anti-Saccharomyces cerevisiae mannan antibodies in familial Crohn’s disease. Am J Gastroenterol, 1998; 93: 1306-1310.
    50. Subhani J, Montgomery SM, Ounder RE, et a1.Concordance rates of twins and siblings in inflammatory bowel disease. Gut, 1998; 42: 40-42.
    51. Pena AS. Genetics of inflammatory bowel disease–past, present and future. Dig Dis, 2003; 21: 85-90.
    52. Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology, 2003; 124: 521-536.
    53. Ahmad T, Tamboli CP, Jewell D, Colombel JF. Clinical relevance of advances in genetics and pharmacogenetics of IBD. Gastroenterology, 2004; 126(6): 1533-1549.
    54. Hugot JP, Laurent-Puig P, Cower-Rousseau C, et a1.Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature, 1996; 379: 821-823.
    55. Satsangi J, Parkes M, Louis E, et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 7 and 12. Nat Genet, 1996; 14: 199-202.
    56. Cho JH, Nicolae DL, Gold LH, et al.Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes1p, 3q and 4q:evidence for epistasisbetween 1p and IBD1. Proc Natl Acad Sci USA, 1998; 95: 7502-7507.
    57. Hampe J, Schreiber S, Shaw SH, et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet, 1999; 64: 806-816.
    58. Ma Y, Ohmen JD, Li Z, et al. A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis, 1999; 5: 271-278.
    59. Duerr RH, Barmada MM, Zhang L, et al. High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12. Am J Hum Genet, 2000; 66: 1857-1862.
    60. Rioux JD, Silverberg MS, Daly MJ, et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet, 2000; 66: 1863-1870.
    61. Williams CN, Kocher K, Lander ES, et al. Using a genome-wide scan and meta-analysis to identify a novel IBD locus and confirm previously identified IBD loci. Inflamm Bowel Dis, 2002; 8: 375-381.
    62. Paavola-Sakki P, Ollikainen V, Helio T, et al. Genome-wide search in Finnish families with inflammatory bowel disease provides evidence for novel susceptibility loci.Eur J Hum Genet, 2003; 11: 112-120.
    63. Vermeire S, Rutgeerts P, Van SK, et al. Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut, 2004; 53: 980-986.
    64. Barmada MM, Brant SR, Nicolae DL,et al.A genome scan in 260 inflammatory bowel disease-affected relative pairs. Inflamm Bowel Dis, 2004; 10: 513-520.
    65. Hugot JP, Chamaillard M, Zouali H, et al.Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 2001; 411: 599-603.
    66. Ogura Y, Bonen DK, Inohara N, et al.A frameshift mutation in NOD2 associated withsusceptibility to Crohn’s disease. Nature, 2001; 411: 603-606.
    67. Yamazaki K,Takazoe M,Tanaka T,et al.Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet, 2002; 47: 469-472.
    68. Leong RW, Armuzzi A, Ahmad T, et al. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population.Aliment Pharmacol Ther, 2003; 17: 1465-1470.
    69. Lala S, Ogura Y, Osborne C, et al. Crohn’s disease and the NOD2 geng:a role for paneth cell. Gastroenterology, 2003; 124: 1001-1009.
    70. Kobayashi KS, Chamaillard M, Ogura Y, et al. NOD2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 2005; 307: 731-734.
    71. Ogura Y, Inohara N, Benito A, et al.NOD2, a NOD1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem, 2001; 276: 4812-4818.
    72. Gutierrez O, Pipaon C, Inohara N, et al.Induction of NOD2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem, 2002; 277: 41701-41705.
    73. Watanabe T, Kitani A, Murray PJ, et al. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol, 2004; 5: 800-808.
    74. Maeda S, Hsu LC, Liu H, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1 beta processing. Science, 2005; 307: 734-738.
    75. Forabosco P, Collins A, Latiano A, et al. Combined segre2gation and linkage analysis of inflammatory bowel diseae in the IBD1 region using severity to characterise Crohn’s dis2ease and ulcerative colitis1 On behalf of the GISC1 Eur JHum Genet, 2000; 8: 846-852.
    76. FerrarisA, Torre B, KnafelzD, et al1 Relationship between CARD15, SLC22A4/5, and DLG5 polymorphisms and early onset inflammatory bowel diseases: an Italianmulticentricstudy. Inflamm Bowel Dis, 2006; 12(5): 3552-3611.
    77. Stoll M, Corneliussen B, Costello CM, et al.Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet, 2004; 36: 476-480.
    78. Daly MJ, Pearce AV, Farwell L, et al.Association of DLG5 R30Q variant with inflammatory bowel disease.Eur J Hum Genet, 2005; 13: 835-839.
    79. Noble CL, Nimmo ER, Drummond H, et al. DLG5 variants do not influence susceptibility to inflammatory bowel disease in the Scottish population. Gut, 2005; 54: 1416-1420.
    80. Torok HP, Glas J, Tonenchi L, et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut, 2005; 54: 1421-1427.
    81. Keiko Yamazaki, Masakazu Takazoe, Torao Tanaka, et al. association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J Hum Genet, 2004; 49: 664-668.
    82. Leung E, Hong J, Fraser AG, et a1. Polymorphisms in the organic cation transporter genes SLC22A4 an d SLC22A5 and Crohn’s disease in a New Zealand Caucasian cohort. Immunol Ceil Biol, 2006; 84(2): 233-236.
    83. Palmieri O, Latiano A, Valvan o R, et a1. Variants of OCTN1-2 cation transporter genes are associated with both Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther, 2006; 23(4): 497-5O6.
    84. Waller S, Tremelling M, Bredin F, et a1. Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut, 2006; 55(6): 809-814.
    85. McGovern DP, Hysi P, Ahmad T,et al.Association between a complex insertion/deletion polymorphism in NOD1(CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet, 2005; 14: 1245-1250.
    86. Zouali H, Lesage S, Merlin F,et al.CARD4/NOD1 is not involved in inflammatory bowel disease. Gut, 2003; 52: 71-74.
    87. Yap LM, Ahmad T, Jewell DP.The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract Res Clin Gastroenterol, 2004; 18: 577-596.
    88. Trachtenberg EA, Yang H, Hayes E, et al. HLA classⅡhaplotype associations with in Jewish(Ashkenazi) and non-Jewish Caucasian population. Hum Immunol, 2000; 61: 326-333.
    89. Stokkers PC, Reitsma PH, Tytgat GN,Van Deventer SJ: HLA-DR and-DQ phenotypes in inflammatory bowel disease: a meta analysis. Gut, 1999; 45: 395-401.
    90. Futami S, Aoyama H, Honsako Y, et a1. HLA—DRB1*1502 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Dis Sci, 1995; 40: 814-8l8.
    91. Hisamatsu T, Suzuki M, Reinecker HC: CARD15/NOD2 functions as an anti-bacterial factor in human intestina1 epithelial cells.Gastroenterology, 2003; 124: 993-1000.
    92.彭仲生,胡品津,郭云丽,等.我国溃疡性结肠炎人白细胞抗原-DR基因分型的研究.中华消化杂志,2001; 21:290—292.
    93.杜意平,叶红军,王俊萍,等.溃疡性结肠炎患者和人类白细胞抗原-DQA1基因关联的研究.临床内科杂志,2003;20(6):314—316.
    94. Glas J, Martin K, Brunnler G, et a1.MICA, MICB and C l- 4_l polymorphism in Crohn’s disease and ulcerative colitis.Tissue Antigens,2001; 58(4): 243-249.
    95. Ding Y, Xia B,Lll M, et a1. MHC class I chain-related gene A-A5.1 allele is associated with ulcerative colitis in Chinese population. Clin Exp Immunol, 2005; 142(1): 195-198
    96. Lu M, Xia B, Ij J, et a1.MICB microsatellite polymorphism is associated with ulcerative colitis in Chinese population.Clin Immunol, 2006; 120(2): 199-204.
    97. Louis E, Franchimont D, Piron A, et a1. Tumour necrosis factor (TNF) gene polymorphism influences TNF alpha production in lipopolysaccharide (LPS) stimulated whole blood cell culture in healthy humans. Clin Exp Immunol, 1998; 113: 401-406.
    98.宋瑛,吴开春,张沥,等.肿瘤坏死因子基因多态性与炎症性肠病的相关性分析.中华消化杂志,2005;25(4):202-204
    99. Warkins PE, Warren BF, Stephens S, et a1. Treatment of ulcerative colitis in the cottontop tamarin using antibody to tumour necrosis factor-al-pha. Gut, 1997; 40(5):633.
    100. Stack WT, Mann SD, Rog AJ, et a1. Randomised controlled trial of CDP571 antibody to tumour necrosis factor in Crohn’s disease. Lancet, 1997; 349: 521-524.
    101. Chey WY. Infliximab for patients with refractory ulcerative colitis. Inflamm Bowel Dis, 2001; 1: 30-33.
    102. Duerr, R.H. Taylor, Steven R Brant, et al. A genome-wide association study identifies IL-23R as an inflammatory bowel disease gene. Science ,2006; 314: 1461-1463.
    103. Kastelein RA, Hunter CA, Cua DJ, et al. Discovery and Biology of IL-23 and IL-27: Related But Functionally Distinct Regulators of Inflammation. Annu Rev Immunol, 2007; 25: 221-42.
    104. Mark Tremelling, Fraser Cummings, Jack Satsangi, et al. IL-23R Variation Determines Susceptibility But Not Disease Phenotype in Inflammatory Bowel Disease. Gastroenterology, 2007; 132: 1657–1664
    105. Yamazaki K, Yoshihiro Onouchi, Masakazu Takazoe, et al. Association analysis of genetic variants in IL23R, ATG16L1 and 5q13.1 loci with Crohn’s disease in Japanese patients. J Hum Genet, 2007; 52: 575-583.
    106. Stokkers PC, van Aken BE, Basoski N, et al. Five genetic markers in the interleukin 1 family in relation to inflammatory bowel disease, Gut, 1998; 43: 33-39.
    107. Matsuzawa J, Sugimura K, Matsuda Y, et al. Association between K469E allele of intercellular adhesion molecule 1 gene and inflammatory bowel disease in a Japanese population. Gut, 2003; 52: 75—78.
    108. Low JH, Williams FA, Yang XS, et al. Inflammatory bowel disease is linked to 19pl3 and associated with ICAM-1. Inflamm Bowel Dis, 2004; 10: 173-181.
    109. Franchimont D, Vermeire S, E1 Housni H, et al. Deficinet host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR) -4 polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut, 2004; 53 (7) : 987-992.
    110. Schwab M, Schaeffeser E, Marx C, et a1. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative. Gastoenterology, 2003; 124: 26-33
    111. Dresner-Pollak R, Ackerman Z, Eliakim R1, et a1. The Bsm I vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients1 Genet Test, 2004; 8(4): 417-420.
    112. Farrell RJ, Murphy A, Long A, et a1. High multidmgresistance(P-glycoprotein170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology, 2000; 118(2): 279-288.
    113. Chen M, Xia B, Rodriguez-Gueant RM, et a1. Genotypes 677 TT and 677CT+I298AC of methylenetetrahydrofolate reductase are associated with the severity of ulcerative colitis in central China. Gut, 2005; 54(5): 733-734
    114. Stocco G, Martelossi S, Sartor F, et a1. Prevalence of methylenetetrahydrofolate reductase polymorphisms in young patients with inflammatory bowel disease. Dig Dis Sci, 2006; 51(3): 474-479
    115. Venter JC, Adams MD, Myers EW, et al.The sequence of the human genome. Science, 2001; 291: 1304-1351.
    116. Colm T O'Dushlaine, Richard J Edwards, Stephen D Park, et al. Tandem repeat copy-number variation in protein-coding regions of human genes. Genome Biology, 2005; 6: R69.
    117. Roses AD. Pharmacogenetics place in modern medical science and practice. Life Sci, 2002; 70: 1471-1480.
    118. Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, andgenotyping of single-nucleotide polymorphism in the human genome. Science, 1998; 280: 1077-1081.
    119. Lander ES, Linton LM, Birren B et al.Initial sequencing and analysis of the human genome.Nature, 2001; 409:860-921.
    120. Taylor JG, Choi EH, Foster CB et al. Using genetic variation to study human disease. Trends in Molecular Medicine, 2001;7:507-512.
    121. Simmons DL.Variants of cyclooxygenase-1and their roles in medicine.Thromb Res, 2003; 110(5-6): 265-8.
    122. Patterson N, Hattangadi N, Lane B, et al. Methods for high density admixture mapping of disease genes. Am J Hum Genet, 2004; 74: 979 -1000.
    123. Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics, 1987; 117: 331 - 341.
    124. Risch N, Merikangas. The future of genetic studies of complex human diseases. Science 1996; 273:1516 - 1517.
    125. Leah B, Sansbury Robert C, Millikan, et a1.COX-2 Polymorphism, use of nonsteroidal anti-inflammatory drugs, and risk of colon cancer in African Americans(United States), Cancer Causes and Control, 2006; 17: 257-266.
    126. Daniele Campa, Shanbeh Zienolddiny, Valentina Maggini, et a1. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cance. Carcinogenesis, 2004; 25(2): 229-235
    127. Sokbom Kang, Yong Beom Kim, Moon-Hong Kim, et a1. Polymorphism in the nuclear factor Kappa-B binding promoter region of cyclooxygenase-2 is associated with an increased risk of bladder cancer. Cancer Letters, 2005; 217: 11-16
    128. Ramesh C.K, Layron O Long, Weidong Chen, et a1. COX-2 gene promoter haplotypes and prostate cancer risk. 2004; 25(6): 961-966
    129. Z Hu, X Miao, H Ma, et a1. A common polymorphism in the 3_UTR ofcyclooxygenase 2/prostaglandin synthase 2 gene and risk of lung cancer in a Chinese population. Lung Cancer, 2005; 48: 11-17.
    130. Xuemei Zhang, Xiaoping Miao, Dongxin Lin, et a1. Identification of Functional Genetic Variants in Cyclooxygenase-2 and Their Association with risk of Esophageal Cancer. Gastroenterology, 2005; 129: 565-576.
    131. Sun B, Wu YL, Zhang XJ, et al. Effects of Sulindac on growth inhibition and apoptosis induction in human gastric cancer cells. Shijie Huaren Xiaohua Zazhi , 2001; 9: 997-1002.
    132. Keiko Yamazaki, Masakazu Takazoe,Torao Tanaka, et al. Association analysis of SLC22A4, SLC22A5and DLG5 in Japanese patients with Crohn disease. J Hum Genet,2004; 49: 664–668.
    133. RWL.Leong, A Armuzzi, T Ahmad, et al. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment Pharmacol Ther, 2003; 17: 1465–1470.
    134.瞿艳,郭秋莎,夏冰. NOD2基因3020insC移码突变与中国湖北汉族炎症性肠病的相关性.世界华人消化杂志,2004;12(5):1208-1210.
    135. Pui-Yan Kwok. Methods for genotyping single nucleotide polymorphisms. Genomics Hum, 2001; 2: 235–258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700