CGRP对正常及模拟缺血缺氧心肌钙通道的作用及心肌细胞数学模型的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CGRP是一种重要的心血管系统调节肽,与许多心血管疾病密切相关。近年来研究发现,CGRP具有明显的抗心律失常作用,但国内外文献报道较少,且其抗心律失常作用的电生理机制和离子机制尚不清楚。缺血性和缺血再灌注性心律失常在临床上十分常见且后果严重,但目前治疗效果欠佳,故寻求一种有效的治疗方法是目前研究的热点。本课题运用膜片钳和激光扫描共聚焦技术来探讨CGRP对正常及模拟缺血、缺氧心肌细胞钙通道的作用及其电生理机制,为其广泛应用于临床提供理论和实验依据。同时,本课题利用计算机重建技术,在心室肌细胞模型及自身实验的基础上,对钠、钾、钙通道动力学过程及电流进行重建,以弥补动物实验的不足,尝试通过定量化的研究,为解释动物实验结果提供理论依据的有效途径。
     主要研究内容包括:
     1.掌握心肌细胞培养技术,研究CGRP对培养心肌细胞的直接作用。
     2.掌握激光扫描共聚焦技术,讨论CGRP对急性分离心肌细胞在模拟缺血、缺氧状态下胞内钙的影响。
     3.掌握急性分离心室肌细胞全细胞膜片钳实验技术,掌握计算机记录、分析系统的使用。
     4.在电压钳状态下记录心肌细胞L型钙电流,讨论CGRP对正常及模拟缺血缺氧心肌钙电流的作用。
     5.建立能模拟心肌细胞钠、钾、钙通道的动力学过程及电流的数学模型,并进行仿真研究。
     通过以上研究,得到如下主要结果和结论:
     1.1×10~(-9)mol·L~(-1)和1×10~(-8)mol·L~(-1)浓度的CGRP对心肌细胞无毒性作用,且能使心肌细胞的搏动频率加快,呈现正性变时性和正性变力性效
Calcium Gene-Related Peptide (CGRP) is an important cardiovascular regulating peptide and has close connection with many cardiovascular diseases. In recent studies, CGRP showed its notable protective effects on arrhythmias. But there is still few reports on the effect. Especially the electrophysiological and ionic machenisms of this effect are unclear. Ischemia and reperfusion arrhythmias are very common with serious consequences on clinical manifestation and therapies for them are not satisfied. Therefore there comes urgency for finding an effective method to cure them. By using the patch clamp technique and laser scanning confocal technique, this study discussed the effects of CGRP on cardiac calcium channel on normal condition as well as on imitating ischemia and hypoxia conditions. And this study tried to discuss the electrophysiolodical ionic mechanisms of these effects so as to provide some theoretical and experimental proofs for wider clinical application. Meanwhile this study tried to reconstruct sodium, potassium and calcium channel dynamic courses and currents based on ventricular myocytes mathematical models and my personal experiments by using computer construction technique. The study could remedy the defect of animal experiments and open an effective way for providing theoretical proof for explaining the data from animal experiments by quantity study.
    The experimental designs were as follows:
    1. To grasp the culture technique of cardiomyocytes and study the direct
引文
1 Rosenfeld MG, Mermod JJ, Amara SG, et al. Production of a novel neuropeptide encoded by the calcitonin gone via tissue specific RNA processing. Natrue, 1983, 304: 129
    2 Subate MI, Stolarsky LS, Polak JM, et al. Regulation of neuroendocrine gone expression by alternative RNA processing. J Bio Chem, 1985, 260(5): 2589-2592
    3 Morris HR, Panico M, Etienne T, et al. Isolation and characterisation of human CGRP. Natruae, 1984; 308: 746
    4 Franco-Cereceda A, Gennari C, Nami R, et al. Cardiovascular effects of CGRP Ⅰ and Ⅱ in man. Circ Res, 1987; 60: 393-397
    5 Tschopp FA, Henke H, Petermann JB, et al. CGRP and its binding sites in the human central nervous system and pituitary. Proc Natl Acad Sci USA, 1985; 82: 248-252
    6 Wharton J, Gulbenkian S, Mulderry PK, et al. Capsaicin induces a depletion of CGRP immunoreactive nerves in the cardiovascular system of the guinea pig and rat. J Auton Nerr Syst, 1986; 16: 289-309
    7 Wharton J, Gulbenkian S. Peptides in the mammalian cardiovascular system. Experimentia, 1987; 43: 821-832
    8 Sigrist S, Franco-Cereceda A, Muff R, et al. Specific receptor and cardiovascular effects of CGRP. Endocrinology, 1986; 119-381-389
    9 Hirata Y, Takagi Y, Takata S, et al. CGRP recptor in cultured vascular smooth muscle and endothelial cells. Biochem Biophy Res Commun, 1988; 151: 1113-1121
    10 Spokes RA, Kanse S, Mulderry. PK, et al. Membrane binding and biological activity of rat CGRP_α and CGRP_β: evidence for one class of high affinityreceptor. Regul Pept, 1987; 18: 365
    11 Henke H, Sigrist S, Lang W, et al. Comparison of binding sites for CGRP Ⅰ and Ⅱ in man. Brain Res, 1987; 410: 404-408
    12 汤健.降钙素基因相关肽与心血管疾病.中华心血管病杂志,1989;17(2):122
    13 Lappe RW, Todt JA, Wenat RL. Regional vasodilatory action of CGRP in conscious spontaneously hypertensive rats. Peptide, 1987; 8: 747
    14 Mcewan J, Larkin S, Pavies G, ct al. CGRP: a potent dilator of human epicardial coronary arteries. Circulation, 1986; 74: 1243-1247
    15 Tippens JR, Greenwald SE, Lever MJ, et al. Coronary vasodilation induced by CGRP in the anaesthetised pig. Neuropeptides, 1988; 13: 95-102
    16 Bratveit M, Haugan A, Helle KB. Effects of CGRP on regional haemodynamics and on selected hepato-splanchnic arteries from the rat: a comparison with VIP and atriopeptin Ⅱ. Scand J Clin Lab Invest, 1991; 51: 167-174
    17 Greenberg B, Hoden K, Barnes P. CGRP is a potent non-endotheliun dependent inhiibitor of cororary vasomotor tone. Br J Pharmacol, 1992; 212: 37-42
    18 Shoji T, Ishihara T, Saito A, et al. Vasodilating effects of human and rat CGRP in isolated porcine coronary arteries. Eur J Physiol, 1987; 336: 438-444
    19 Franco-Cereceda A, Rudehill A. Capsaicin-induced vasodilation of human coronary ateries in vitro is mediated by CGRP rather than substance P or neurokinin A. Acta Physiol Scand, 1989; 136: 575-580
    20 Fiscus RR, Hao H, Wang X, et al. Nitroglycerin substitutes for endothelium-derived NO in potentiating vasorelaxations and cyclic AMP elevations induced by CGRP in rat aorta. Neuropeptides, 1994; 26: 133-144
    21 Quebbeman BB, Dulas D, Altman J, et al. Effects of CGRP on welldeveloped canine coronary collateral vasculature. J Cardiovasc Pharmacol, 1993; 21: 774-780
    22 Gardiner SM, Coompton AM, Bennett T. Regional haemodyanmic effects of CGRP. Am J Physiol, 1989; 216: R332
    23 Sugiyama A, Kobayashi M, Tsujimoto G, et al. The first demonstration of CGRP-immunoreactive fibres in canine hearts: coronary vasodilator intropic and chronotropic effects of CGRP in canine isolated blood perfused heart preparations. Jpn J Pharmacol, 1989; 50: 421
    24 Struthers AD, Brown MJ, Morris HR. Human CGRP: a potent endogenous vasodilator in man. Clin Sci, 1986; 70: 389
    25 Holman JJ, Craig RK, Marshall I. Human α-and β-CGRP and rat α-CGRP are coronary vasodilators in rat. Peptides, 1986; 7: 231
    26 Rigel DF, Grapp IL, Balasubranmanian A, et al. Contractile effect of cardial neuropeptides in isolated cannine atrial and ventricular muscle. Nature, 1983; 304: 129
    27 Coodman EC, Icersen LL. Calcitonin gene-related peptide: novel neuropeptides. Life Sci, 1986; 38: 2169-2178
    28 Rubio A, Amerini S, Ledda F, et al. ATP modulates the efferent function of capsaicin-sensitive neurones in guinea-pig isolated atria. Br J Pharmacol, 1992; 105 (3): 516-520
    29 Marshall I, Robert PM, Shepperson NB, et al. Cardiovascular effects of human and rat CGRP compared m rat and other species. Eur J Pharmacol, 1986; 123: 207
    30 Ishikawa T, Okamara N, Saito A, et al. Positive inotropic effect of calcitonin gene-related peptide mediated by cyclic AMP in guinea pig heart. Circ Res, 1988; 63(4): 726
    31 Wang X, Fiscus RR. CGRP increases cyclic AMP, tension, and rate in rat atria. Am J Physiol, 1989; 256: R421-R428
    32 Anand IS, Gurden J, Wander GS, et al. Cardiovascular and hormonal effects of CGRP in congestive heart failure. J Am Coll Cardiol, 1991; 17: 208
    33 Saito A, Kimura S, Goto K. CGRP as a potential neurotransmitter in guinea pig right atrium. Am J Physiol, 1986; 250: H693
    34 Miyuchi T, Sano Y, Hiroshima O, et al. Positive inotropic effects and receptors of CGRP in porcine ventricular muscles. Biochem Biophys Res Comm, 1988; 155: 289
    35 Matsumoto Y, Ueda S, Matsumoto S, et al. CGRP inhibits human platelet aggregation. Jpn Cir J, 1996; 60: 797-804
    36 李红梅,裴建明,朱妙章等.CGRP对犬缺血心肌保护,局部血流变学和冠脉血流动力学研究.中国病理生理学杂志,1996;12:694-696
    37 Zhang JF, Liu J, Liu XZ, et al. Stabilization of cardiac rhythm in subsequently fatal ventricular tachycardia and fibrilliation by calcitonin gone-related peptide. Int J Cardiol, 1992; 34: 101
    38 Zhang JF, Liu J, Liu XZ, et al. The effect of calcitonin gene-related peptide on ischemic reperfusion induced arrhythmias in rats. Int J Cardiol, 1994; 46: 33
    39 李红梅,裴建明,朱妙章等.降钙素基因相关肽的抗室颤作用.心功能杂志,1997;9:5
    40 裴建明,臧益民,朱妙章等.降钙素基因相关肽抗垂体后叶素引起心肌缺血性电生理改变的观察.心脏起搏与电生理杂志,1995;9:91
    41 袁文俊,孙庆文,许金廉.降钙素基因相关肽拮抗内皮素的致心律失常作用.中国应用生理学杂志,1997;13:40
    42 张万江,赵志炜,王蓉等.降钙素基因相关肽对乌头碱,哇巴因诱发大鼠心律失常的治疗作用.首都医科大学学报,1994;15:204
    43 裴建明,臧益民,牛国保等.降钙素基因相关肽的心脏电生理作用.中国应用生理学杂志,1996;12:41
    44 Ohmura T, Nishio M, Kigoshi S, et al. Electrophysiological and medical effects of calcitonin gene related peptide on guinea-pig atria. Br J Pharmacol, 1990; 100: 17
    45 Ono K, Giles WR. Electrophysiological effects of CGRP in bull-frog and guinea-pig atrial myocytes. J Physiol, 1991; 436: 195
    46 Ono K, Delay M, Nakajima T, et al. CGRP regulates calcium current in heart muscle. Nature, 1989; 340: 721
    47 Satoh M, Oku R, Maeda A, et al. Possible mechanisms of positive intropic action of synthetic human CGRP in isolated rat atrium. Peptides, 1986; 7: 631
    48 Nakajjma T, Takikaw AR, Sugimoto T, et al. Effects of CGRP on membrane currents in mammalian cardiac myocytes. Eur J Physiol, 1991; 419: 644
    49 陈新,孙瑞龙,王方正主编.临床心电生理学和心脏起搏.人民卫生出版社,1997
    50 Harrey RD, Hume JR. Autonomic regulation of delayed rectifer K~+ current in mammalian heart involves G proteins. Am J Physiol, 1989, 257: H818
    51 Ishikawa T, Okamura N, Saito A, et al. Effect of calcitonin gene-related peptide and isoproterenol on the contractility and adenylate cyclase activity in the rat heart. J Moll Cell Cardiol, 1987, 19: 723
    52 Ishikawa T, Okamura N, Saito A, et al. Positive inotropec effect of calcitonin gene related peptide mediated by cyclic AMP in guinea-pig heart. Circ Res, 1988; 63: 726
    53 Cole WC, Mcpherson CD, Sontag D. ATP regulated potassium channels protect the myocardium against ischemia reperfusion damage. Circ Res, 1991; 69: 571
    54 Jeffery K, Smallwood IA, Schetm A, et al. Effect of activation of ATP dependent K~+ channel on infarct size in a canine model of ischemia reperfusion injury. J Cardiovasc Pharmacol, 1993; 22: 731
    55 Kitazono T, Heistad DD, Faraol FM. Role of ATP sensitive K~+ channels in CGRP induced dilatation of basilar artery in vivo. Am J Physiol, 1993; 265: H581
    56 Quayle JM, Boney AD, Brayden JE, et al. Calcitonin gene related peptide activated ATP sensitive K~+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol, 1994; 475: 9
    57 Watannabe T, Suzuki N, Shimatoto N, et al. Contribution of endogenous endothelin to the extension of myocardial infarct size in rats. Circ Res, 1991; 69: 370-377
    58 Velasco CE, Jackson EK, Morrow JA, et al. Intravenous adenosine suppresses cardiac release of endothelin after myocardial ischemia and reperfusion. Cardiovasc Res, 1993; 27: 121-128
    59 于严,董林旺,姚兴海等.CGRP对实验性心肌梗塞的影响.中国病理生理学杂志,1993;9:137-139
    60 Mair J, Lechleitner P, Langle T, et al. Plasma CGRP in actue myocardial infarction. Lancet, 1990; 335: 165
    61 Chiba T, Yamaguchi A, Yamatani T, et al. CGRP receptor antagonist human CGRP_(8-37). Am J Physiol, 1989; 256: E331-E335
    62 Peng CF, Li YJ, Deng HW, et al. The protective effects of ischemic and CGRP preconditioning on myocardial injury by endothelin-1 in the isolated perfused rat heart. Life Sci, 1996; 59: 1507-1514
    63 陶则伟,李元建,邓汉武.氧自由基或CGRP预处理减轻氧自由基所致心肌损伤.中国药理学报,1997;18:312-316
    64 Li YJ, Xiao ZS, Deng CF, et al. CGRP-induced preconditioning protects against ischemia-reperfusion injury in isolated rat hearts. Eur J Pharmacol, 1996; 311: 163-167
    65 裴建明.降钙素基因相关肽的心血管生理及病理生理学意义.第四军医大学硕士学位论文,1994
    66 A. L. Hodgkin and A. F. Huxley. A quantitative discription of membrane current and its application to conduction and excitation in nerve. J. Physiol(Lond). 1952; 117: 500-544
    67 J. Cooley, F. Dodge and H. Cohen. Digital computer solution for excitable membrane model. J. Cell and Comp. Physiol. 1965; 66: 99-110
    68 M. S. Spach, J. D. Sloan, and J. M. Kootsy. Reconstruction of propagating depolarization in cardiac muscle based on voltage clamp data. J. Biophy. 1984; 45: 278
    69 D. Noble. A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber action and pace-maker potentials. J. Physiol. 1962; 160: 317-352
    70 McAllisler, R. E., Noble, D. and Tsien, R. W. Reconstruction of the electrical activity of cardiac Purkinje fibers. J. Physiol. 1975; 251: 1-59
    71 Beeler, G. W. AND Reuter. H. Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. 1977; 268: 177
    72 J. P. Drouhard and F. A. Roberge. The simulation of depolarization events of the cardiac Purkinje fiber action potential. IEEE Trans. BME. 1982; 29(7): 481-493
    73 J. P. Drouhard and F. A. Roberge. A simulation study of the ventricular myocardial action potential. IEEE Trans. BME. 1982; 29(7): 494-502
    74 S. Rush and H. Larson. A practical algorithm for solving dynamic membrane equation. IEEE Trans. BME. 1987; 25(4): 389-392
    75 DiFrancesco, D. and D. Noble. A medle of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. Lend. 1985; B307: 353-398
    76 D. W. Hilgemann, and D. Noble. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Prec. R. Soc. Lond. 1987; B230: 163-205
    77 Y. E. Earm and D. Noble. A modle of the single atrial cell: relation between calcium current and calcium release. Proc. R. Soc. Lond. 1990; B240: 83-96
    78 RL. Ramusson, J. M. Clark, W. R. Giles, et al. A mathematical model of electrophysiological activity in a bullfrog atrial cell. Am. J. Physiol. 1990; 259: H390-H39
    79 Lindblad, D. S., C. R. Murphey, J. W. Clark, et al. A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am. J. Physiol. 1996; 271: H1666-1696
    80 Luo CH, Rudy Y. A model of the ventricular cardiac action potential, depolarization, repolarization, and their interaction. Circ. Res. 1991; 65: 1501-1526
    81 Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential: Ⅰ. Simulations of ionic currents and concentration changes. Circ. Res. 1994; 74: 1071-1096
    82 Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential: Ⅱ. Aftordepolarizations, triggered activity, and potentiation. Circ. Res. 1994; 1097-1113
    83 Demir, S. S., J. W. Clark, C. R. Murphey, et al. A mathematical model of a rabbit sinoatrial node cell. Am. J. Physiol. 1994; 266: C832-C852
    84 A. Nygren, C. Fiset, L. Firek, et al. Mathematical model of an adult human atrial cell: the role of K~+ currents in repolarization. Circ. Res. 1995; 82: 63-81
    85 Nordin, Charles. Computer model of membrane current and intracellur Ca~(2+) flux in the isolated guinea-pig ventricular myocyte. Am. J. Physiol. 1993; 265: H2117-H2136
    86 Zeng JL, Kenneth R., Laurita, et al. Two components of the delayed rectifer K~+ current in ventricular myocytes of the guinea-pig type: theoretical formulation and their role in repolarization. Circ. Res. 1995; 77: 140-152
    87 范铮,梁子钧.心室肌慢反应动作电位的模拟研究。中国生物物理学报,1986;2(3):213-220
    88 秦成德.心肌细胞在氟,铬等环境中的电行为及其计算机模拟分析.华中理工大学博士学位论文,1988:21-30
    89 Miletich DJ, Akhtar K, Albrecht RF, et al. Use of heart cell cultures as a tool for the evaluation of halothane arrhythmia. Toxicol Appl Pharmacol. 1983; 70: 181-187
    90 Welder AA, Grant R, Bradlow J, et al. A primary culture system of adult rat heart cells for the study of toxicology agents. In Vitro Cell Biol. 1991; 27A: 921-926
    91 李金玲,臧益民,牛国保et al.降钙素基因相关肽对大鼠离体心脏的作用及机理探讨.起搏与心脏.1993;7(1):41-43
    92 李兆萍,汤健,唐朝枢et al.CGRP对离体大鼠心肌细胞脂质过氧化的影响.北京医科大学学报.1988;20:412-415
    93 Ren YS, Ma TG, Wang HB, et al. Protective effects of CGRP on myocardial cell injury and calcium and magnesium contents following severe hypoxia and simulated reperfusion. Med Sci Res. 1993; 21: 177-178
    94 陶则伟,李元建,邓汉武.氧自由基或CGRP预处理减轻氧自由基所致心肌损伤.中国药理学报.1997;18:312-316
    95 张剑锋,刘金,刘玄重et al.CGRP对缺血再灌注性心律失常的作用.首都医院学报.1995;16:124-127
    96 李红梅,斐建明,朱妙章et al.降钙素基因相关肽对缺血心肌保护作用的实验研究.心电学杂志.1993;12(2):126-127
    97 司徒镇强,吴军正.细胞培养.世界图书出版公司.1996;第一版
    98 Zhang TZ, Wang FX, Wang CL, et al. Cardiotoxicity of ketamine in isolated myocardial cells of neonatal rat. Chin J Anesthesiol, 1998; 18(3) 169-172
    99 Isenberg G, Klokner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pfluegers Arch, 1982; 395: 6-18
    100 White JG, Amos WB. Confocal microscopy comes of age. Nature (Lond), 1987; 328: 183-184
    101 Mclanghlin EA, Ford WC. Effect of cryopreservation on the intracellular calcium concentration of human spermatozoa and its response to progesterone. Mol Reprod Dev, 1994; 37: 241-246
    102 Kao JPY, Harootunian AT, Tsien RY. Photochemically generated cytosolic calcium pulses and their detection by Fluo-3. J Biol Chem. 1989; 264: 8179-8194
    103 Brandes R, Figueredo VM, Camacho SA, et al. Quantitation of cytosolic [Ca~(2+)] _ⅰ in whole perfused rat hearts using indo-1 fluorometry. Biophys J. 1993; 65: 1973-1979
    104 段重高,李伟,修瑞娟等.应用激光共聚焦扫描显微镜测定缺氧对大鼠脑微血管内皮细胞Ca~(2+)含量的影响.微循环学,1996;6(3):8-10
    105 Nakato K, Furuno T, Inagaki K, et al. Cytosolic and intranuclear calcium signals in rat basophilic cell leukemia as revealed by a confocal fluorescence microscope. Eur J Biochem, 1992; 1209(2): 745-749
    106 Burnier M, Centenoo G, Burnner HR. Confocal microscopy to analyze cytosolic and nuclear calcium in cultured vascular cells. Am J Physiol, 1994; 266(4): 1118-1127
    107 Grynkiewicz G, Poenic M, Tsien RY. A new generation of Ca~(2+) indicators with greatly improved fluorescence properties. J Biol Chem, 1985; 260: 3440-3450
    108 Minta A, Kao JPY, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem, 1989; 264: 8271-178
    109 Brakenhoff GJ, Vrsscher K. Imaging models for bilateral confocal scanning microscopy. J Microsc, 1993; 171: 17-26
    110 Furuno T, Hamano T, Nakanishi M. Receptor mediated calcium signal playing a nuclear third messenger in the activation of antigen specific B cells. Biophys J, 1993; 64: 665-669
    111 Chacon E, Reece JM, Nieminen AL, et al. Distribution of electrical potential, pH, free Ca~(2+), and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia; a multiparameter digitized confocal microscopic study. Biophys J, 1994; 66: 942-952
    112 王春梅,黄晓峰,王晓峰.钙荧光探针及其在医学研究中的应用.第四军医大学学报,1997;18(专刊):64-66
    113 Wade MH, Haiigren RC. Fluorescence quantification in living cells. Biomed Tech, 1992; 87: 43
    114 Pawlay JB. Handbook of Biological Confocal Microscopy. Second edition, New York and Lond: Plenum Press, 1995
    115 张均田,郑永芳.细胞内钙和钙通道.韩济生主编,神经科学纲要,北京:北京医科大学,中国协和医科大学联合出版社,1993;163-177
    116 Cornfield DN, Stevens T, Mcmurtry IF, et al. Hypoxia-induced increase in fetal pulmonary artery smooth muscle cell [Ca~(2+)] _ⅰ is mediated by entry of Ca~(2+) through voltage-operated Ca~(2+) channels. (Abstract) Pediatr Res. 1993; 33: 320-321
    117 Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol. 1997; 499(2): 291-306
    118 Lopez-lopez JR, Shacklock PS, Balke CW, et al. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995; 268: 1042-1045
    119. Satoh H, Blatter LA, Bers DM. Effects of [Ca~(2+)] _ⅰ, SR Ca~(2+) load, rest on Ca~(2+) spark frequency in ventricular myocytes. Am J Physiol, 1997; 272: H657-H668
    120 Lahouratate P, Guibert J, Faivve JF. CADP-ribose release Ca~(2+) free cardiac sarcoplasmic reticulum independently of ryanodine receptor. Am J Physiol, 1997; 273: H1082-1089
    121 Tytgat J. How to isolate cardial myocytes. Cardiovasc Res, 1994; 28: 280
    122 商立军,臧益民,王四旺等.各部位心肌细胞的分离技术.心功能杂志,1999;11(3):182-184
    123 商立军,臧益民,王四旺.耐钙心肌细胞的分离及基本电生理特性.第四军医大学学报;2000:21(2):247-249
    124 Piper HM, Volz A, Schwartz P. Adult ventricular rat heart muscle cells. In: Piper HM, editors. Cell culture techeniques in heart and vessel research. Berlin: Springer-Verlag, 1990: 36-60
    125 Schackow TE, Decker RS, Ten Eick RE. Electrophysiology of adult cat cardiac ventricular myocytes: changes during primary culture. Am J Physiol Cell Physiol, 1995; 268: C1002-C1017
    126 臧伟进,于晓江,Gil Wier.应用三大最新生物技术研究心肌细胞的钙信号.心功能杂志,1998;10(4):237-239
    127 臧伟进,于晓江,臧益民.心肌细胞钙信号研究进展.生理科学进展,1999;30(2):141-143
    128 Zang WJ, Parker I, Balke CW, et al. Ca~(2+) sparks triggered by L-type Ca~(2+) currents can involve multiple sites. Biophys J, 1997; 72(2): A342
    129 Parker I, Zang WJ, Wier WG. Ca~(2+) 'sparks' involving multiple Ca~(2+) release sites along Z lines in rat heart cells. J Physiol, 1996; 497(1): 31
    130 Berridge MJ. Elementary and global aspects of calcium signaling. J Physiol, 1997; 499 (2): 291
    131 Zang WJ, Yu XJ, Honjo H, et al. On the role of G protein activation and phosphorylation in desensitization to acetylcholine in guinea-pig atrial cells. J Physiol, 1993; 464: 649
    132 Zang WJ, Yu XJ, Boyett, MR. Barium block of the muscarinic potassium current in guinea-pig atrial cells. Pfluegers Arch, 1995; 430: 348
    133 Shui Z, Boyett MR, Zang WJ. ATP-dependent desensitization of the muscarinic K~+ chanuel in rat atrial cells. J Physiol, 1997; 505(1): 77
    134 Lopez-lopez JR, Shacklock PS, Balke CW, et al. Local stochastic release of Ca~(2+)in voltage-clamped-rat heart cells: visualiation with confocal microscopy. J Physiol, 1994; 3380(1): 211
    135 Cheng L, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science, 1993, 262: 740-744
    136 Lipp P, Niggli E. Fundamental calcium release events revealed by twophoton excitation photolysis of caged calcium in guinea-pig cardiac myocytes. J Physiol, 1998, 508: 801-809
    137 Parker I, Wier WG. Variability in frequency and characteristics of Ca~(2+) sparks at different release sites in rat ventricular myocytes. J Physiol, 1997, 505: 337-344
    138 Shorofsky SR, Izu L, Wier WG, et al. Ca~(2+) sparks triggered by patch depolarization in rat heart cells. Circ Res, 1998; 82: 424-429
    139 Bhat MB, Zhao J, Zang WJ, et al. Caffeine-induced release of intracellular Ca~(2+) from chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. Effects on full-longth and carboxylterminal portion of Ca~(2+) release channels. J Gen Physiol, 1997; 110(6): 749Benndorf K, Bollmann G,
    140 Friedrich M, et al. Anoxia induces time independent K~+ current through K_(ATP) channels in isolated heart cells of the guinea-pig. J Physiol. 1992; 454: 339
    141 Cordeiro JM, Howlett SE, Ferrier GR. Simulated ischemia and reperfusion in isolated guinea pig ventricular myocytes. Cardiovasc Res. 1994; 28: 1794
    142 Wahler GM, Sperelakis N. Similar metabolic dependence of stimulated aand unstimulated myocardial slow channels. Can J Physiol Pharmacol. 1984; 62: 569
    143 Boachie-Ansah G, Kane KA, Rankin AC. Effects of a combination of acidosis, lactatc and lysophosphatidylcholine on action potentials and ionic current in guinea-pig ventricular myocytes. J Cardiovasc Pharmacol. 1992; 20: 538
    144 刘华军,杨学义,陈晏珠等.低氧高氧对心肌细胞动作电位作用的离子通道基础研究。中国病理生理杂志.1996;12:687
    145 Nichols CG, Ripollc, Lederer WJ. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res. 1991; 68: 280
    146 Koyano T, Kakei M, Nakashima H. ATP-regulated K~+ channels are modulated by intracellular H~+ in guinea-pig ventricular cells. J Physiol. 1993; 463: 747
    147 刘华军,杨学义,陈晏珠等.低氧复氧对豚鼠心肌细胞钾通道电流及钙通道电流的影响.中华心血管病杂志.1997;25:85
    148 Hass HG, Kern R, Einwachter HM, et al. Kinetics of Na inactivation on frog atria. Pfluegers Arch 1971; 323: 141-157
    149 Shibasaki T. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol(Lond). 1987: 387: 227-250
    150 Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K~+ current: differential sensitivity to block by class Ⅲ antiarrhythmic agents. J Gen Physiol. 1990; 96: 195-215
    151 Chinn K. Two delayed rectifier in guinea-pig ventricular myocytes distinguished by tail current kinetics. J Pharmacol Exp Ther. 1993; 264: 555-560
    152 Liu GR, Feng JL, Yen LX, et al. Evidence for two components of delayed rectifier K~+ current in human ventricular myocytes. Circ Res. 1996; 78: 689-696
    153 Sakmann B, Trube G. Voltage-dependent inactivation of inward-rectifying potassium channels in ventricular cells from guinea-pig heart cell membrane. J Physiol (Lond). 1984; 347: 659-683
    154 Yue DT, Marban E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pfluegers Arch. 1988; 413: 127-133
    155 Hume JR, Vehara A. Ionic basis of the different active potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol (Lond). 1985; 368: 525-544
    156 Kirsh GE, Brown AM. Kinetic properties of single sodium channels in rat heart and rat brain: J Gen Physiol. 1989; 93: 85-99
    157 Brown AM, Lee KS, Powell T. Sodium currents in single rat heart cells. J Physiol (Lend). 1981; 318: 479-500
    158 Nilins B. Calcium block of guinea-pig heart sodium channels with and without modification by piperazinylindole DPI 201-106. J Physiol (Lond). 1988; 399: 537-558
    159 Pelzer D, Cavalie A, McDonald TF, et al. Calcium channels in single heart cells. In: Piper HM, Isenberg G, eds. Isolated Adult Cardiomyocytes. Boca Raton, Fla: CRC Press Inc; 1989: 2: 29-73
    160 Droogmans G, Nilius B. Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J Physiol(Lond). 1989; 419: L627-650
    161 McDonald TF, Trautwein W. The potassium current underlying delayed rectification in cat ventricular musle. J Physiol(Lond). 1978; 274: 217-246
    162 Matsuura H, Ehara T, Imoto Y. An analysis of the delayed outward current in single ventricular cells of guinea-pig. Pfluegers Arch. 1987; 410: 596-603
    163 Balser JR, Bennett PB, goden DM. Time-dependent outward current in guinea-pig ventricular myoeytes: gating kinetics of the delayed rectifier. J Gen Physiol. 1990; 96: 835-863
    164 Veldkamp MW, Van Giuneken ACG, et al. Single delayed rectifier channels in the membrane of rabbit ventricular myocytes. Circ Res. 1993; 72: 865-878
    165 Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channel in the ventricular cell membrane of guinea pig heart. J Physiol (Lend). 1985; 366: 365-385
    166 Kootsy JM. Special issue on computer simulation in biomedicine. IEEE Trans Biomed Eng. 1985; BME32(10): 729-730
    167 商立军,臧益民,王四旺.心肌细胞数学模型及其在模拟电生理变化中的应用.生物医学工程学杂志.2000;17(3):
    168 方积乾,刘向明,刘士光等.离子通道门控动力学的随机建摸.自然杂志.1994;19(2):86-90
    169 Colquhoun D, Hawkes AG. On the stochastic properties of single ion channel. Proc. Roy. Soc. Lond. 1977;199:231-262
    170 Liebovitch LS, Fischbarg J, Koniarek JP. Ion channel kinetics: a model based on fractal scaling rather than multistate Marker processes. Math. Biosci. 1987; 84: 37-68
    171 Pietrobon D, Hess P. Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature. 1990;346:651-655
    172 Richard S, Charnet P, Nerbonne JM. Interconversion between distinct gating pathways of the high threshold calcium channel in rat ventricular myocytes. Nature. 1993;462:197-228
    173 Tiano F, Piot C, Nargeot J, et al. Regulation of the frequency-dependent facilitation of L-type Ca~(2+) currents in rat ventricular myocytes. J Physiol. 1994;477:237-252
    174 Josephson IR, Sanchez-chapula J, Brown AM. A comparison of calcium currents in rat and guinea-pig single ventricular cells. Circ Res. 1984;54:144-156
    175 Kass RS, Sangainetti MC. Inactivation of calcium channels in the calf cardiac Purkinje fiber: evidence for voltage-and calcium-mediated mechanisms. J Gen Physiol. 1984;84:705-726
    176 Lee KS, Marban E, Tsien RW. Inactivation of calcium channels in mammalian heart cells. J Physiol. 1985;364:395-411
    177 Hess P, Lansman JB, Tisen RW. Calcium channel selectivity for divalent and monovalent cations, voltage and concentration dependent of single channel current in ventricilar heart cells. J Gen Physiol. 1986;89:293-319
    178 Hadley RW, Hune JR. An intrinsic potential-depend inactivation myocytes. J Physiol. 1987;389:205-222
    179 方积乾,刘向明,倪涛洋等.离子通道门控动力学研究.中山医科大学学报.1999;20(1):9-11
    180 刘向明,胡性本,方积乾.离子通道开放状态检测法的计算机研究(1).生物数学学报.1996;11(2):60
    181 刘向明,胡性本,方积乾.离子通道开放状态检测法的计算机研究(2).生物数学学报.1996;11(5):60
    182 Fang JQ, Ni TY, You ZY, et al. Existence of memory in ion channels. Acta Pharmacol Sinica. 1995; 16(3): 213
    183 周文清,李彩霞,方积乾.离子通道镶嵌点过程模型.中山医科大学学报.1999;20(2):88-92
    184 张翼,周兆年.心肌细胞低氧损伤的钠,钾,钙离子机制.心功能杂志.1999;12(4):246-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700