抗体催化的臭氧生成及其在动脉粥样硬化发病中的潜在作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近的研究发现了抗体一种新的特性,表明抗体在免疫系统中具有一种前所未知的效应功能,即所有的免疫球蛋白,不论其来源或其抗原特异性,都能催化单线态氧(~1O_2)和水反应生成过氧化氢(H_2O_2)和臭氧(O_3),从而对外来抗原产生直接的杀伤作用。该项功能的发现无疑极大地丰富了对抗体杀灭病原微生物能力的认识,但同时也提示了该催化效应潜在的病理生理学意义。因为O_3是一种高度反应性的气体分子,H_2O_2也是一种强氧化剂,它们既可杀灭病原微生物,亦能造成组织的氧化性损伤。
     鉴于动脉粥样硬化症是一种与脂质氧化损伤有关的慢性炎症性疾病,我们推测抗体的这种催化水的氧化作用是否与AS的发病过程产生某种内在的联系。因此本文观察了激活的THP-1单核细胞在抗体的催化下生成的产物,进一步探讨了抗体催化水的氧化过程产生的H_2O_2和O_3对动脉粥样硬化病变产生的潜在作用。
     本研究采用靛蓝胭脂红褪色反应检测激活的THP-1单核细胞产生的O_3;采用荧光分光光度法分别检测细胞内各种胆固醇的含量和细胞产生的过氧化氢H_2O_2;采用硫代巴比妥酸(TBA)法检测细胞内脂质过氧化产物的含量;采用油红O染色法检测泡沫细胞的形成;采用高效液相色谱
The recent discovery of a new property of the antibody molecule suggests a previously unexplored effector function of the immune system. All immunoglobulins, regardless of source or antigenic specificity, can catalyze the reaction between ~1O_2 and water to facilitate the production of a number of water oxidants, including hydrogen peroxide (H_2O_2) and ozone (O_3), thus resulting in direct killing of foreign antigens or pathogens. The discovery of this pathway doubtless enriches greatly our knowledge about the ability of antibody of destructing foreign pathogens. At the same time, however, it also hints that there might be some potential pathophysiologic effects in this antibody- mediated activity. O_3 is a highly chemically reactive gas, and H_2O_2 is also a strong oxidant. Besides the efficient killing of pathogens, they may also lead to oxidative damage on tissues.
    In view of atherosclerosis as a chronic inflammatory disease concerned with the oxidative damage of lipid , we speculate whether the antibody-catalyzed water oxidation has some connection with the pathogenesis
引文
[1] Burton, D.R. Antibody: the flexible adaptor molecule.Trends Biochem Sci. 1990, 15: 64-69
    [2] Wentworth AD, Jones LH, Wentworth PJr, Janda KD, and Lerner RA. Antibodies have the intrinsic capacity to destroy antigens. Proc Natl Acad Sci USA. 2000, 97: 10930-10935
    [3] Wentworth PJr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, and Babior BM. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002, 298:2195-2199
    [4] Wentworth PJr, Jones LH, Wentworth AD, Zhu X, Larsen NA, Wilson IA, Xu X, Goddard WA 3rd, Janda KD, Eschenmoser A, and Lerner RA. Antibody catalysis of the oxidation of water. Science. 2001,293: 1806-1811
    [5] Wentworth PJr, Wentworth AD, Zhu X, Wilson IA, Janda KD, Eschenmoser A, and Lerner RA. Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens. Proc Natl Acad Sci USA. 2003, 100: 1490-1493
    [6] Goldschmidt-Clermont PJ, Creager MA, Lorsordo DW, Lam GK, Wassef M, and Dzau VJ. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation. 2005,112:3348-3353
    [7] Hansson GK, Libby P, Schonbeck U, and Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002, 91: 281-291
    [8] Stocker R, and Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004, 84: 1381-1478
    
    [9] Wentworth PJr, Nieva J, Takeuchi C, Galve R, Wentworth AD, Di!!ey RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, and Lerner RA. Evidence for ozone formation in human atherosclerotic arteries. Science. 2003. 302: 1053-1056
    [10] 张林华 刘秉文.一次性密度梯度超速离心分离人血清脂蛋白.生物化学与生物物理学报。1989,21:257-260
    [11] 庞战军 周玫 陈瑗主编.自由基医学研究方法.第一版.北京:人民卫生出版社,2000:24
    [12] Babior BM, Takeuchi C, Ruedi J, Gutierrez A, and Wentworth PJr. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci USA. 2003, 100: 3031-3034
    [13] Liu SX, Zhou M, Chen Y, Wen WY, and Sun MJ. Lipoperoxidative injury to macrophages by oxidatively modified low density lipoprotein may play an important role in foam cell formation. Atherosclerosis. 1996, 121: 55-61
    [14] Wang K, Bermudez E and Pryor WA. The ozonation of cholesterol: separation and identification of 2, 4-dinitrophenylhydrazine derivatization products of 3β-hydroxy-5-oxo-5, 6-secocholestan-6-al. Steroids. 1993, 58: 225-229
    [15] Pryor WA, Wang K, and Bermudez E. Cholesterol ozonation products as biomarkers for ozone exposure in rats. Biochem Biophys Res Commun. 1992, 188: 618-623.
    [16] Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999, 340: 115-126.
    [17] Steinberg D, Parthasarathy S, Carew TE, Khoo JC, and Witztum JL. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989, 320: 915-924.
    [18] Cai H, and Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000, 87: 840-844.
    [19] Wassmann S, Wassmann K, and Nickenig G. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension. 2004, 44: 381-386.
    [20] Harrison D, Griendling KK, Landmesser U, Hornig B, and Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003, 91: 7A-11 A.
    [21] Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997, 272:20963-20966.
    [22] Lusis AJ. Atherosclerosis. Nature. 2000,407: 233-241.
    [23] Quinn MT, Parthasarathy S, and Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA. 1988, 85: 2805-2809.
    [24] Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, and Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990, 344: 254-257.
    [25] Kume N, Cybulsky MI, and Gimbrone MA Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992, 90: 1138-1144.
    [26] Kume N, and Gimbrone MA Jr. Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994, 93:907-911.
    [27] Stiko-Rahm A, Hultgardh-Nilsson A, Regnstrom J, Hamsten A, and Nilsson J. Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler Thromb. 1992, 12: 1099-1109.
    [28] Kugiyama K, Kerns SA, Morrisett JD, Roberts R, and Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990,344: 160-162.
    [29] Aviram M. Modified forms of low density lipoprotein affect platelet aggregation in vitro. Thromb Res. 1989, 53: 561-567.
    [30] Steinbeck MJ, Khan AU, and Karnovsky MJ. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10- diphenylanthracene and perylene in a polystyrene film. J Biol Chem. 1993,268: 15649-15654.
    [31] Krinsky NI. Singlet excited oxygen as a mediator of the antibacterial action of leukocytes. Science. 1974, 186: 363-365.
    [32] Tatsuzawa H, Maruyama T, Hori K, Sano Y, and Nakano M. Singlet oxygen ((1) Delta(g)O(2)) as the principal oxidant in myeloperoxidase-mediated bacterial killing in neutrophil phagosome. Biochem Biophys Res Commun. 1999,262: 647-650.
    [33] Jayaram Y, Buckle AM, and Hogg N. The Fc receptor, FcRI, and other activation molecules on human mononuclear phagocytes after treatment with interferon-gamma. Clin Exp Immunol. 1989, 75:414-420.
    [34] Kuo CH, Zhong L, Zappi ME, and Hong AP. Kinetics and mechanism of the reaction between ozone and hydrogen peroxide in aqueous solutions. Can J Chem Eng. 1999, 77: 473-482.
    [35] Stocker R, and Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004, 84: 1381-1478.
    [36] Kang SW, Baines IC, and Rhee SG. Characterization of a mammalian peroxiredoxinthat contains one conserved cysteine. J Biol Chem. 1998, 273: 6303-6311.
    [37] Gunther MR. Probing the free radicals formed in the metmyoglobin- hydrogen peroxide reaction. Free Radic Biol Med. 2004, 36: 1345-1354.
    [38] Grady JK, Chen Y, Chasteen ND, and Harris DC. Hydroxyl radical production during oxidative deposition of iron in ferritin. J Biol Chem. 1989, 264: 20224-20229.
    [39] Mattsson Hulten LM, Lindmark H, Diczfalusy U, Bjorkhem I, Ottosson M, Liu Y, Bondjers G, and Wiklund O. Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. J Clin Invest. 1996, 97: 461-468.
    [40] Carpenter KL, Taylor SE, van der Veen C, Williamson BK, Ballantine JA, and Mitchinson MJ. Lipids and oxidised lipids in human atherosclerotic lesions at different stages ofdevelopment. Biochim Biophys Acta. 1995,1256: 141-150.
    [41] Chisolm GM, Ma G, Irwin KC, Martin LL, Gunderson KG, Linberg LF, Morel DW, and DiCorleto PE. 7β -Hydroperoxycholest-5-en-3β -ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci USA. 1994, 91: 11452-11456.
    [42] Brown AJ, Leong S, Dean RT, and Jessup W. 7- Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J Lipid Res. 1997,38: 1730-1745.
    [43] Paryzek Z, Martynow J and Swoboda W. The reaction of cholesterol with ozone and alcohols: a revised mechanism and structure of the principal product. J Chem Soc Perkin Trans. 1990, 1: 1222-1223.
    [44] Wang G, Umstead TM, Phelps DS, Al-Mondhiry H, and Floras J. The effect of ozone exposure on the ability of human surfactant protein A variants to stimulate cytokine production. Environ Health Perspect. 2002, 110: 79-84.
    [45] Hansson GK, Libby P, Schonbeck U, and Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002,91: 281-91.
    [46] Yla-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, and Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994, 14: 32-40.
    [47] Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G, Kaufmann SH, and Wick G. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb. 1992, 12: 789-799.
    [48] Epstein SE, Zhou YF, and Zhu J. Infection and atherosclerosis: emerging mechanistic paradigms. Circulation. 1999, 100: e20-e28.
    [1] Burton DR, and Woof JM. Human antibody effector function. Adv Immunot. 1992, 51: 1-84. Review.
    [2] Deo YM, Graziano RF, Repp R, and van de Winkel JG. Clinical significance of IgG Fc receptors and Fc gamma R-directed immunotherapies. Immunol Today. 1997, 18(3): 127-35. Review.
    [3] Pauling L. Nature of forces between large molecules of biological interest. Nature. 1948, 161: 707-709.
    [4] Tramontano A, Janda KD, and Lerner RA. Catalytic antibodies. Science. 1986, 234: 1566-1570.
    [5] Pollack S J, Jacobs JW, and Schultz PG. Selective chemical catalysis by an antibody. Science. 1986, 234: 1570-1573.
    [6] Wentworth AD, Jones LH, Wentworth P Jr, Janda KD, Lerner RA.. Antibodies have the intrinsic capacity to destroy antigens. Proc Natl Acad Sci USA. 2000, 97: 10930-10935.
    [7] Wentworth PJr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, and Babior BM. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002, 298: 2195-2199.
    [8] Hofman P, Piche M, Far DF, Le Negrate G, Selva E, Landraud L, Alliana-Schmid A, Boquet P, and Rossi B. Increased Escherichia coli phagocytosis in neutrophils that have transmigrated across a cultured intestinal epithelium. Infect Immun. 2000, 68: 449-455.
    [9] Kuo CH, Zhong L, Zappi ME, and Hong AP. Kinetics and mechanism of the reaction between ozone and hydrogen peroxide in aqueous solutions. Can J Chem Eng. 1999, 77: 473-482.
    [10] Wentworth PJr, Jones LH, Wentworth AD, Zhu X, Larsen NA, Wilson IA, Xu X, Goddard WA 3rd, Janda KD, Eschenmoser A, and Lerner RA. Antibody catalysis of the oxidation of water. Science. 2001, 293: 1806-1811.
    [11] Xu X, Muller RP, and Goddard WA 3rd. The gas phase reaction of singlet dioxygen with water: a water-catalyzed mechanism. Proc Natl Acad Sci USA. 2002, 99: 3376-3381.
    [12] Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, and Wilson IA. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science. 1996, 274: 209-219.
    [13] Datta D, Vaidehi N, Xu X, and Goddard WA 3rd. Mechanism for antibody catalysis of the oxidation of water by singlet dioxygen. Proc Natl Acad Sci USA. 2002, 99: 2636-2641.
    [14] Grossweiner LI. Photochemical inactivation of enzymes. Curr Top Radiat Res Q. 1976, 11: 141-199. Review.
    [15] Zhu XY, Wentworth PJr, Wentworth AD, Eschenmoser A, Lerner RA, and Wilson IA. Probing the antibody-catalyzed water- oxidation pathway at atomic resolution. Proc Natl Acad Sci USA. 2004, 101: 2247-2252.
    [16] Bent DV, and Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J Am Chem Soc. 1975, 97:2612-2619.
    [17] Steinbeck MJ, Khan AU, and Karnovsky MJ. Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film. J Biol Chem. 1993, 268: 15649-15654.
    [18] Krinsky NI. Singlet excited oxygen as a mediator of the antibacterial action of leukocytes. Science. 1974, 186: 363-365.
    [19] Tatsuzawa H, Maruyama T, Hori K, Sano Y, and Nakano M. Singlet oxygen ((1) Delta(g)O(2)) as the principal oxidant in myeloperoxidase-mediated bacterial killing in neutrophil phagosome. Biochem Biophys Res Commun. 1999,262: 647-650.
    [20] Jayaram Y, Buckle AM, and Hogg N. The Fc receptor, FcRI, and other activation molecules on human mononuclear phagocytes after treatment with interferon-gamma. Clin Exp Immunol. 1989, 75: 414-420.
    [21] Babior BM, Takeuchi C, Ruedi J, Gutierrez A, and Wentworth PJr. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci USA. 2003, 100:3031-3034.
    [22] Kohl J, and Gessner JE. On the role of complement and Fc gamma-receptors in the Arthus reaction. Mol Immunol. 1999, 36: 893-903.
    [23] Cohen MD, Sisco M, Li Y, Zelikoff JT, and Schlesinger RB. Ozone-induced modulation of cell-mediated immune responses in the lungs. Toxicol Appl Pharmacol. 2001, 171:71-84.
    [24] Firey PA, Jones TW, Jori G, and Rodgers MA. Photoexcitation of zinc phthalocyanine in mouse myeloma cells: the observation of triplet states but not of singlet oxygen. Photochem Photobiol. 1988, 48: 357-360.
    [25] Moan, J. On the diffusion length of singlet oxygen in cells and tissues. Photochem Photobiol. B Biol. 1990, 6: 343-347.
    
    [26] Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999, 340: 115-126.
    [27] Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997, 272: 20963- 20966.
    [28] Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002,91: 281-291.
    [29] Wentworth PJr, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, and Lerner RA. Evidence for ozone formation in human atherosclerotic arteries. Science. 2003, 302:1053-1056.
    [30] Paryzek Z, Martynow J, Swoboda W. The reaction of cholesterol with ozone and alcohols: a revised mechanism and structure of the principal product. J Chem Soc. Perkin Trans. 1990; 1: 1222-1223.
    [31] Itabe H. Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol Pharm Bull. 2003, 26: 1-9.
    [32] Lusis AJ. Atherosclerosis. Nature. 2000, 407: 233-241.
    [33] Quinn MT, Parthasarathy S, and Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA. 1988, 85: 2805-2809.
    [34] Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, and Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990, 344: 254-257.
    [35] Kume N, Cybulsky MI, and Gimbrone MA Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992, 90: 1138-1144.
    [36] Kume N, and Gimbrone MA Jr. Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994, 93:907-911.
    [37] Stiko-Rahm A, Hultgardh-Nilsson A, Regnstrom J, Hamsten A, and Nilsson J. Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler Thromb. 1992, 12: 1099-1109.
    [38] Kugiyama K, Kerns SA, Morrisett JD, Roberts R, and Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990, 344: 160-162.
    [39] Aviram M. Modified forms of low density lipoprotein affect platelet aggregation in vitro. Thromb Res. 1989, 53: 561-567.
    [40] Basha MA, Gross KB, Gwizdala CJ, Haidar AH, and Popovich J. Bronchoalveolar lavage neutrophilia in asthmatic and healthy volunteers after controlled exposure to ozone and filtered purified air. Chest. 1994, 106: 1757-1765.
    [41] Seltzer J, Bigby BG, Stulbarg M, Holtzman MJ, Nadel JA, Ueki IF, Leikauf GD, Goetzl EJ, and Boushey HA. 03-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J Appl Physiol. 1986, 60: 1321-1326.
    [42] Koren HS, Devlin RB, Graham DE, Mann R, McGee MP, Horstman DH, Kozumbo WJ, Becker S, House DE, and McDonnell WF. Ozone-induced inflammation in the lower airways of human subjects. Am Rev Respir Dis. 1989, 139:407-415.
    [43] Du Pasquier L. The immune system of invertebrates and vertebrates.Comp Biochem Physiol B Biochem Mol Biol. 2001, 129: 1-15. Review.
    [1] Steinberg D, Parthasarathy S, Carew TE, Khoo JC, and Witztum JL. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989, 320: 915-924.
    [2] Goldstein JL, Ho YK, Basu SK, and Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979, 76: 333-337.
    [3] Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente A J, Berliner JA, Drinkwater DC, Laks H, and Fogelman AM. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. 1991, 88: 2039-2046.
    [4] Quinn MT, Parthasarathy S, Fong LG, and Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA. 1987, 84: 2995-2998.
    [5] Quinn MT, Parthasarathy S, and Steinberg D. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci USA. 1985, 82: 5949-5953.
    [6] Goldstein JL and Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977, 46:897-930.
    [7] Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, and Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem. 1993, 268: 4569-4572.
    [8] Henriksen T, Mahoney EM, and Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA. 1981,78:6499-6503.
    [9] Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol. 1997, 8: 275-280.
    [10] Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, and Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990,343:531-535.
    [11] Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, and Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984, 81: 3883-3887.
    [12] Brooks CJW, Steel G, Gilbert JD, and Harland WA. Lipids in human atheroma. Part 4. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis. 1971, 13: 223-237.
    [13] Carpenter KLH, Taylor SE, Ballantine JA, Fussell B, Halliwell B, and Mitchinson MJ. Lipids and oxidised lipids in human atheroma and normal aorta. Biochim BiophysActa. 1993, 1167: 121-130.
    [14] Glavind J, Hartmann S, Clemmesen J, Jessen KE, and Dam H. Studies on the role of lipoperoxides in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol Microbiol Scand. 1952, 30: 1-6.
    [15] Brooks CJW, Harland WA, Steel G, and Gilbert JD. Lipids of human atheroma: isolation of hydroxyoctadecadienoic acids from advanced aortal lesions. Biochim BiophysActa. 1970,202: 563-566.
    [16] Kuhn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, and Tikhaze AK. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids. 1992 5: 17-22.
    [17] Esterbauer H, Gebicki J, Puhl H, and Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992, 13: 341-390.
    [18] Upston JM, Niu X, Brown AJ, Mashima R, Wang H, Senthilmohan R, Kettle AJ, Dean RT, and Stocker R. Disease stage-dependent accumulation of lipid and protein oxidation products in human atherosclerosis. Am J Pathol. 2002, 160: 701-710.
    [19] Heydeck D, Upston JM, Viita H, Yla-Herttuala S, and Stocker R. Oxidation of low-density lipoprotein by rabbit and human 15-lipoxygenase: prevalence of non-enzymatic reactions. J Lipid Res.2001, 42: 1082-1088.
    [20] Suarna C, Dean RT, Southwell-Keely P, Moore DE, and Stocker R. Separation and characterization of cholesteryl oxoand hydroxy-linoleate in human atheroclerotic plaque. Free Radic Res. 1997, 27: 397-408.
    [21] Gniwotta C, Morrow JD, Roberts LJI, and Ku¨hn H. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1997, 17: 3236-3241.
    [22] Morrow JD and Roberts LJ. Quantification of noncyclooxygenase derived prostanoids as a marker of oxidative stress. Free Radic Biol Med. 1991, 10: 195-200.
    [23] Mallat Z, Nakamura T, Ohan J, Leseche G, Tedgui A, Maclouf J, and Murphy RC. The relationship of hydroxyeicosatetraenoic acids and F2-isoprostanes to plaque instability in human carotid atherosclerosis. J Clin Invest. 1999, 103: 421-427.
    [24] Brown AJ and Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999, 142: 1-28.
    [25] Smith LL and Van Lier JE. Sterol metabolism. 9. 26- Hydroxycholesterol levels in the human aorta. Atherosclerosis. 1970, 12: 1-14.
    [26] Mattsson Hulten LM, Lindmark H, Diczfalusy U, Bjorkhem I, Ottosson M, Liu Y, Bondjers G, and Wiklund O. Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. J Clin Invest. 1996, 97: 461-468.
    [27] Carpenter KL, Taylor SE, van der Veen C, Williamson BK, Ballantine JA, and Mitchinson MJ. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1995, 1256: 141-150.
    [28] Chisolm GM, Ma G, Irwin KC, Martin LL, Gunderson KG, Linberg LF, Morel DW, and DiCorleto PE. 7β -Hydroperoxycholest-5-en-3β -ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci USA. 1994, 91: 11452-11456.
    [29] Brown AJ, Leong S, Dean RT, and Jessup W. 7- Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J Lipid Res. 1997, 38: 1730-1745.
    [30] Fu S, Davies MJ, Stocker R, and Dean RT. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J. 1998, 333: 519-525
    [31] Dean RT, Fu S, Stocker R, and Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J.1997,324: 1-18.
    [32] Hazen SL and Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997, 99: 2075-2081.
    [33] Boyd HC, Gown AM, Wolfbauer G, and Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol. 1989, 135:815-825.
    [34] Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, and Witztum JL. AopE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titres of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb. 1994, 14: 605-616.
    [35] Palinski W, Rosenfeld ME, Yla¨-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, and Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA.1989, 86: 1372-1376.
    [36] Haberland ME, Fong D, and Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe Heritable Hyperlipidemic rabbits. Science.1988, 241: 215-218.
    [37] Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, and Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989, 84:1086-1095.
    [38] Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, and Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997, 272: 3520-3526.
    [39] Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, and Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996, 97: 1535-1544.
    [40] Carr AC, Myzak MC, Stocker R, McCall MR, and Frei B. Myeloperoxidase binds to low-density lipoprotein: potential implications for atherosclerosis. FEBS Lett. 2000, 487:176-180.
    [41] Schwenke DC and Carew TE. Initiation of atherosclerotic lesison in cholesterol-fed rabbits. II. Selective retention of LDL vs selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis. 1989,9: 908-918.
    [42] Frei B, Stocker R, and Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988, 85: 9748-9752
    [43] Sevanian A, Hwang J, Hodis H, Cazzolato G, Avogaro P, and Bittolo-Bon G. Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler Thromb Vasc Biol. 1996, 16: 784-793.
    [44] Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, and Collen D. Malondialdehyde-modified low-density lipoprotein in patients with atherosclerotic disease. J Clin Invest. 1995, 95: 2611-2619.
    [45] Holvoet P, Collen D, and Van de Werf F. Malondialdehyde- modified LDL as a marker of acute coronary syndromes. JAMA. 1999, 281: 1718-1721.
    [46] Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, and Becker AE. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001, 103: 1955-1960.
    [47] Maggi E, Chiesa R, Melissano G, Castellano R, Astore D, Grossi A, Finardi G, and Bellomo G. LDL oxidation in patients with severe carotid atherosclerosis. A study of in vitro and in vivo oxidation markers. Arterioscler Thromb. 1994, 14: 1892-1899.
    [48] Erkkila AT, Narvanen O, Lehto S, Uusitupa MI, and Yla-Herttuala S. Autoantibodies against oxidized low-density lipoprotein and cardiolipin in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 2000, 20: 204-209.
    [49] Bui MN, Sack MN, Moutsatsos G, Lu DY, Katz P, McCown R, Breall JA, and Rackley CE. Autoantibody titers to oxidized low-density lipoprotein in patients with coronary atherosclerosis. Am Heart J. 1996, 131: 663-667.
    [50] Bergmark C, Wu R, de Faire U, Lefvert AK, and Swedenborg J. Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL. Arterioscler Thromb Vasc Biol. 1995, 15: 441-445.
    [51] George J, Harats D, Bakshi E, Adler Y, Levy Y, Gilburd B, and Shoenfeld Y. Anti-oxidized low density lipoprotein antibody determination as a predictor of restenosis following percutaneous transluminal coronary angioplasty. Immunol Lett. 1999, 68: 263-266.
    [52] Pratico D, Tangirala RK, Ho¨rkko¨ S, Witztum JL, Palinski W, and FitzGerald GA. Circulating autoantibodies to oxidized cardiolipin correlate with isoprostane F(2alpha)-VI levels and the extent of atherosclerosis in ApoE-deficient mice: modulation by vitamin E. Blood. 2001, 97: 459-464.
    [53] Palinski W, Tangirala RK, Miller E, Young SG, and Witztum JL. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol. 1995, 15: 1569-1576.
    [54] Horkko S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, and Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid- protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest. 1999, 103:117-128.
    [55] Fredrikson GN, So¨derberg I, Lindholm M, Dimayuga P, Chyu KY, Shah PK, and Nilsson J. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol. 2003, 23: 879-884.
    [56] Khan BV, Parthasarathy SS, Alexander RW, and Medford RM. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995, 95:1262-1270.
    [57] Schissel SL, Jiang X, Tweedie-Hardman J, Jeong T, Camejo EH, Najib J, Rapp JH. Williams KJ, and Tabas I. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Bio! Chem. 1998, 273: 2738-2746.
    [58] Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, and Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990, 344: 254-257.
    [59] Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, and Charo IF. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest. 1999,103: 773-778.
    [60] Boring L, Gosling J, Cleary M, and Charo IF. Decreased lesion formation in CCR2~(-/-) mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998, 394:894-897.
    [61] McMurray HF, Parthasarathy S, and Steinberg D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest. 1993, 92: 1004-1008.
    
    [62] Libby P. Inflammation in atherosclerosis. Nature. 2002, 420: 868-874.
    [63] Kugiyama K, Kerns SA, Morrisett JD, Roberts R, and Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoprotein. Nature. 1990, 344: 160-162.
    [64] Kubes P, Suzuki M, and Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991, 88: 4651-4655.
    [65] Liao F, Andalibi A, deBeer FC, Fogelman AM, and Lusis AJ. Genetic control of inflammatory gene induction and NF- B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest. 1993, 91: 2572-2579.
    [66] Feng J, Han J, Pearce SF, Silverstein RL, Gotto AM Jr, Hajjar DP, and Nicholson AC. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res. 2000, 41: 688-696.
    [67] Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Horiuchi S, Takahashi K, Kruijt JK, van Berkel TJC, Steinbrecher UP, Ishibashi S, Maeda N, Gordon S, and Kodama T. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection, Nature. 1997, 386: 292-296.
    [68] Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, and Silverstein RL. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000, 105: 1049-1056.
    [69] Mashima R, Witting PK, and Stocker R. Oxidants and antioxidants in atherosclerosis. Curr Opin Lipidol. 2001, 12:411-418.
    [70] Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, and Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Nat! Acad Sci USA. 1987, 84: 5928-5931.
    [71] Pryor WA, Cornicelli JA, Devall LJ, Tait B, Trivedi BK, Witiak DT, and Wu M. A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. J Org Chem. 1993, 58: 3521-3532.
    [72] Carew TE, Schwenke DC, and Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA. 1987, 84: 7725-7729.
    [73] Mao SJ, Yates MT, Parker RA, Chi EM, and Jackson RL. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with use of a probucoi analogue (MDL 29,311) that does not lower serum cholesterol. Arterioscler Thromb. 1991, 11: 1266-1275.
    [74] Sasahara M, Raines EW, Chait A, Carew TE, Steinberg D, Wahl PW, and Ross R. Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucoi. I. Is the extent of atherosclerosis related to resistance of LDL to oxidation? J Clin Invest. 1994, 94: 155-164.
    [75] Shaish A, Daugherty A, O'Sullivan F, Schonfeld G, and Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest. 1995, 96: 2075-2082.
    [76] Parker RA, Sabrah T, Cap M, and Gill BT. Relation of vascular oxidative stress, α -tocopherol, and hypercholesterolemia to early atherosclerosis in hamsters. Arterioscler Thromb Vasc Biol. 1995, 15: 349-358.
    [77] Bird DA, Tangirala RK, Fruebis J, Steinberg D, Witztum JL, and Palinski W. Effect of probucoi on LDL oxidation and atherosclerosis in LDL receptor deficient mice. J Lipid Res. 1998,39: 1079-1090.
    [78] Witting PK, Pettersson K, Letters J, and Stocker R. Sitespecific anti-atherogenic effect of probucoi in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol. 2000, 20: e26-e33.
    [79] Walldius G, U E, Olsson AG, Bergstrand L, Hadell K, Johansson J, Kaijser L, Lassvik C, Molgaard J, and Nilsson S. The effect of probuco! on femoral atherosclerosis: the Probucoi Quantitative Regression Swedish Trial (PQRST). Am J Cardiol. 1994, 74: 875-883.
    [80] Sawayama Y, Shimizu C, Maeda N, Tatsukawa M, Kinukawa N, Koyanagi S, Kashiwagi S, and Hayashi J. Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J Am Coll Cardiol. 2002,39: 610-616.
    [81] Tardif JC, Gregoire J, Schwartz L, Title L, Laramee L, Reeves F, Lesperance J, Bourassa MG, L'Allier PL, Glass M, Lambert J, and Guertin MC. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation. 2003, 107:552-558.
    [82] Sparrow CP, Doebber TW, Olszewski J, Wu MS, Ventre J, Stevens KA, and Chao YS. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N-diphenyl-phenylenediamine. J Clin Invest. 1992, 89: 1885-1891.
    [83] Tangirala RK, Casanada F, Miller E, Witztum JL, Steinberg D, and Palinski W. Effect of the antioxidant N,N-diphenyl 1,4- phenylenediamine (DPPD) on atherosclerosis in apoE-deficient mice. J Lipid Res. 1995, 15: 1625-1630.
    [84] Cynshi O, Kawabe Y, Suzuki T, Takashima Y, Kaise H, Nakamura M, Ohba Y, Kato Y, Tamura K, Hayasaka A, Higashida A, Sakaguchi H, Takeya M, Takahashi K, Inoue K, Noguchi N, Niki E, and Kodama T. Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc Natl Acad Sci USA. 1998, 95: 10123-10128.
    [85] Witting PK, Pettersson K, O" stlund-Lindqvist AM, Westerlund C, Westin Eriksson A, and Stocker R. Inhibition by a co-antioxidant of aortic lipoprotein lipid peroxidation and athero-sclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J. 1999, 13: 667-675.
    [86] Bjorkhem 1, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, and Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb. 1991, 11: 15-22.
    [87] Halliwell B and Gutteridge JMC. Free Radicals in Biology and Medicine. 1999. New York: Oxford Univ. Press.
    [88] Kang SW, Baines IC, and Rhee SG. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem. 1998,273: 6303-6311.
    [89] Gunther MR. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction. Free Radic Biol Med. 2004, 36: 1345-1354.
    [90] Grady JK, Chen Y, Chasteen ND, and Harris DC. Hydroxyl radical production during oxidative deposition of iron in ferritin. J Biol Chem. 1989, 264: 20224-20229.
    [91] Kissner R, Nauser T, Bugnon P, Lye PG, and Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol. 1997, 10: 1285-1292.
    [92] Vissers MC, Stern A, Kuypers F, vandenBerg J, and Winterbourn CC. Membrane changes associated with lysis of red blood cells by hypochlorous acid. Free Radic Biol Med. 1994,16:703-712.
    [93] Pattison DI and Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol. 2001, 14: 1453-1464.
    [94] Yao Y, Yin D, Jas GS, Kuczer K, Williams TD, Scho neich C, and Squier TC. Oxidative modification of a carboxyl-terminal vicinal methionine in calmoduiin byhydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry. 1996, 35: 2767-2787.
    
    [95] Fu X, Kassim SY, Parks WC, and Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001, 276: 41279-41287.
    [96] Huhmer AF, Nishida CR, OrtizdeMontellano PR, and Scho-neich C. Inactivation of the inducible nitric oxide synthase by peroxynitrite. Chem Res Toxicol. 1997, 10: 618-626.
    [97] Griendling KK, Sorescu D, and Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000, 86:494-501.
    [98] McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H, and Harrison DG. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol. 2003, 285: H2290-H2297.
    [99] Heinecke JW. Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall. FASEB J. 1999, 13: 1113-1120.
    [100] Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, and van der Vliet A. Formation of nitric oxidederived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998, 391: 393-397.
    [101] Alderton WK, Cooper CE, and Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001, 357: 593-615.
    [102] Parthasarathy S, Wieland E, and Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low-density lipoprotein. Proc Natl Acad Sci USA. 1989,86: 1046-1050.
    [103] Beckman JS, Beckman TW, Chen J, Marshall PA, and Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelia! injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990, 87: 1620-1624.
    [104] Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, and Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyi radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997, 272: 3520-3526.
    [105] Burton GW and Ingold KU. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res. 1986, 19: 194-201.
    [106] Garner B, Waldeck AR, Witting PK, Rye KA, and Stocker R. Oxidation of high density lipoproteins. II. Evidence for direct reduction of HDL lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem. 1998, 273: 6088-6095.
    [107] Witting PK, Pettersson K, Ostlund-Lindqvist AM, Westerlund C, Wagberg M, andStocker R. Dissociation of atherogenesis from aortic accumulation of lipidhydro(pero)xides in Watanabe heritable hyperlipidemic rabbits. J Clin Invest. 1999, 104:213-220.
    [108] Porter NA, Weber BA, Weenen H, and Khan JA. Autoxidation of polyunsaturated lipids. Factors controlling the stereochemistry of product hydroperoxides. J Am Chem Soc. 1980, 102:5597-5601.
    [109] Upston JM, Neuzil J, and Stocker R. Oxidation of LDL by recombinant human 15-lipoxygenase: evidence for α-tocopherol dependent oxidation of esterified core and surface lipids. J Lipid Res. 1996, 37: 2650-2661.
    [110] Upston JM, Terentis AC, Morris K, Keaney JF Jr, and Stocker R. Oxidized lipid accumulates in the presence of a-tocopherol in atherosclerosis. Biochem J. 2002, 363: 753-760.
    [111] Upston JM, Terentis AC, and Stacker R. Tocopherol-mediated peroxidation (TMP) of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J. 1999,13:977-994.
    [112] Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, and Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999, 103: 1597-1604.
    [113] Bocan TM, Rosebury WS, Mueller SB, Kuchera S, Welch K, Daugherty A, and Cornicelli JA. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis. 1998,136: 203-216.
    [114] Upston JM, Neuzil J, Witting PK, Alleva R, and Stocker R. 15-Lipoxygenase-induced enzymic oxidation of low density lipoprotein associated free fatty acids stimulates nonenzymic, α-tocopherol-mediated peroxidation of cholesteryl esters. J Biol Chem. 1997, 272: 30067-30074.
    [115] Pratico D, Tangirala RK, Rader DJ, Rokach J, and FitzGerald GA. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in apoE-deficient mice. Nature Med. 1998,4: 1189-1192.
    [116] Mallat Z, Nakamura T, Ohan J, Leseche G, Tedgui A, Maclouf J, and Murphy RC. The relationship of hydroxyeicosatetraenoic acids and F2-isoprostanes to plaque instability in human carotid atherosclerosis. J Clin Invest. 1999, 103: 421-427.
    [117] Gow A, Duran D, and Thorn SR, Ischiropoulos H. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch Biochem Biophys. 1996, 333: 42-48.
    [118] Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, and Heinecke JW. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 1997, 272: 1433-1436.
    [119] Behr-Roussel D, Rupin A, Simonet S, Bonhomme E, Coumailleau S, Cordi A, Serkiz B, Fabiani JN, and Verbeuren TJ. Effect of chronic treatment with the inducible nitric oxide synthase inhibitor N-iminoethyl-L-lysine or with Larginine on progression of coronary and aortic atherosclerosis in hypercholesterolemic rabbits. Circulation. 2000, 102: 1033-1038.
    [120] Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, and Maeda N. Enhanced atherosclerosis and kidney dysfunction in eNOS~(-/-)Apoe~(-/-) mice are ameliorated by enalapril treatment. J Clin Invest. 2000. 105: 451-458.
    [121] Winterbourn CC, and Kettle AJ. Biomarkers of myeloperoxidase- derived hypochlorous acid. Free Radic Biol Med. 2000, 29: 403-409.
    [122] Gunther MR, Hsi LC, Curtis JF, Gierse JK, Marnett LJ, Eling TE, and Mason RP. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J Biol Chem. 1997, 272: 17086-17090.
    [123] Wentworth P Jr, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, and Lerner RA. Evidence for ozone formation in human atherosclerotic arteries. Science. 2003, 302: 1053-1056.
    [124] Kettle AJ, Clark BM, and Winterbourn CC. Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone. J Biol Chem. 2004, 279: 18521-18525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700