单分子反应理论研究和势能面的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要分为两部分,一部分是应用ab initio/RRKM理论对碰撞解离反应进行了详细研究。另一部分是利用插值的方法构建四原子光解反应的全维势能面。
     应用ab initio/RRKM理论研究的第一个反应体系是O(~1D) + NH_3碰撞反应,该反应主要通过插入机制进行,也就是生成了长寿命的活化中间体NH_2OH*。这个高能量的中间体通过一些关键的构象解离生成各种产物。计算得到的NH_2OH*解离产物的分支比与实验结果符合得很好。该反应还可以通过抽取机制发生在第一激发态上,部分解释了实验中观察到的OH产物的向前散射。
     F + CH_3双自由基碰撞可以无能垒地形成CH_3F中间体,应用RRKM理论计算了在不同的碰撞能和温度下CH_3F解离通道的速率常数和分支比。理论计算预测H + CH_2F是主要反应产物(除低温情况),其次是H_2 + CHF。H抽取机制生成了HF + CH_2,该反应能垒很低,1.4kcal/mol,在高碰撞能和温度下对产物的贡献变大。
     在化学动力学研究中,精确的势能面是动力学计算的基础。不管是化学反应的宏观热速率常数,还是它的微观速率常数,都可以根据势能面来解释。基于势能面的重要性,在QCISD/aug-cc-pVTZ和CCSD(T)/aug-cc-pVQZ水平下构建了COHF光解反应的全维从头算势能面。该势能面是在相关的构象空间对从头算点的能量,一阶导数和二阶导数进行插值得到的。
This dissertation is composed of two parts. The first part is the detailed studies of unimolecular dissociation reactions by ab initio/RRKM theory ; the second part is the construction of six-dimensional PES for four-atom photodissociation reaction by interpolated method.
     The first reaction system studied by ab initio/RRKM is O(~1D) + NH_3 collision reaction, which is shown to occur mainly through the insertion mechanism involving the long-lived chemically activated NH_2OH* intermediate. This energized intermediate quickly dissociates to various products via some critical configurations. The calculated branching ratios of various decomposition products of NH2OH* are in good agreement with recently reported experimental values. This reaction can also proceed through the addition/abstraction mechanism on the first excited-state PES, which partially accounts for the forward scattering of the OH products observed in experiment.
     The CH_3F intermediate can be formed without a barrier by F + CH_3 collision , then dissociate via four product channels, including F + CH_3, HF + CH_2, H_2 + CHF, and H + CH_2F. RRKM theory is applied to compute rate constants and branching ratios of the four product channels at various collision energies and temperatures. H + CH_2F are predicted to be the major reaction products (except at low temperatures) followed by H_2 + CHF. The H abstraction mechanism leading to HF + CH_2 over a low barrier, 1.4kcal/mol, is also important at high collision
引文
1. Bunker, D. L., “Monte Carlo Calculation of Triatomic Dissociation Rates. I. N2O and O3” J. Chem. Phys. 1962, 37, 393-403.
    2. Bunker, D. L. “Monte Carlo Calculations. IV. Further Studies of Unimolecular Dissociation” J. Chem. Phys. 1964, 40, 1946-1957.
    3. Bunker, D. L. Theory of Elementary Gas Reaction Rates. Pergamon Press, New York.
    4. Bunker, D. L. In Schlier, C., Ed., Proceedings of the International School of Physics Enrico Fermi Course XLIV: Molecular Beam and Reaction Kinetics, pp. 315-319. Academic Press, New York , 1970.
    5. Bunker, D. L., and Hase, W. L. “On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular” J. Chem. Phys. 1973, 59, 4621-4632.
    6. Bunker, D. L., and Pattengill, M. “Monte Carlo Calculations. VI. A Re-evaluation of the RRKM Theory of Unimolecular Reaction Rates” J. Chem. Phys. 1968, 48, 772-776.
    7. Butler, J.N., and Kistiakowsky, G. B. “Reactions of Methylene. IV. Propylene and Cyclopropane” J. Am. Chem. Soc. 1960, 82, 759-765.
    8. Harris, H. H., and Bunker, D. L. “Methyl isocyanide is probably a non-RRKM molecule” Chem. Phys. Lett. 1971, 11, 433-436.
    9. Hippler, H. and Troe, J. “Direct observation of collisional deactivation of highly excited toluene” Chem. Phys. Lett. 1981, 84, 257-259.
    10. Hippler, H. and Troe, J. “Collisional deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene” J.Chem. Phys. 1983, 78, 6709-6717.
    11. Jalenak, W., Weston, R. E. “Energy transfer from highly vibrationally excited azulene and azulene-d8 to carbon dioxide” J. Chem. Phys. 1988, 89, 2015-2022.
    12. Nikitin, E. E. Theory of Elementary Atomic and Molecular Processes in Gases, Clarendon Press, Oxford.
    13. Rabinovitch, B. S., “Unimolecular Decomposition in Nonequilibrium Systems. sec-Butyl and sec-Butyl-d1 Radicals Produced by Chemical Activation at Different Levels of Vibrational Excitation” J. Chem. Phys. 1963, 38,405-417.
    14. Rogers, P.J., Montague, D. C., “Non-RRKM decomposition in a chemical activation system: thermal atomic fluorine plus tetraallyl tin” Chem. Phys. Lett. 1982, 89,9-12.
    15. Rynbrandt, J. D., Rabinovitch, B. S. , “Intramolecular energy relaxation. Novel and direct test of the RRK-RRKM postulate” J. Phys. Chem. 1970, 74, 4175-4176.
    16. Rynbrandt, J. D., Rabinovitch, B. S. , “Intramolecular energy relaxation. Nonrandom decomposition of hexafluorobicyclopropyl” J. Phys. Chem. 1971a, 75, 2164-2171.
    17. Rynbrandt, J. D., Rabinovitch, B. S. , “Direct Demonstration of Nonrandom- ization of Internal Energy in Reacting Molecules. Rate of Intramolecular Energy Relaxation” J. Chem. Phys. 1971b, 54, 2275-2276.
    18. Slater, N. B., Theory of Unimolecular Reactions, Cornell University Press, Ithaca.
    19. Steinfeld, J.I., Francisco, J. S., and Hase, W. L. Chemical Kinetics and Dynamics, Prentice-Hall, Englewood Cliffs, N. J.
    20. Whitten, G. Z., and Rabinovitch, B. S. “Accurate and Facile Approximationfor Vibrational Energy-Level Sums” J. Chem. Phys. 1963, 38, 2466-2473.
    21. Whitten, G. Z., and Rabinovitch, B. S. “Approximation for Rotation-Vibration Energy Level Sums” J. Chem. Phys. 1964, 41, 1883.
    22. Rice, O.K. and Ramsperger, H. C. “Theory of Unimolecular Gas Reactions at Low Pressures” J. Am. Chem. Soc. 1927, 49, 1617-1629.
    23. Rice, O.K. and Ramsperger, H. C. “Theories of Unimolecular Gas Reactions at Low Pressures.II” J. Am. Chem. Soc. 1928, 50, 617-620.
    24. Chambers, T. S. “Kinetics of the Thermal Isomerization of Cyclopropane” J. Am. Chem. Soc. 1934, 56, 399-405.
    25. Schlag, E. W., Rabinovitch, B. S. , “Kinetics of the Thermal Unimolecular Isomerization Reactions of Cyclopropane-d2” J. Am. Chem. Soc. 1960, 82, 5996-6000.
    26. Schneider, F. W., and Rabinovitch, B. S. “The Thermal Unimolecular Isomerization of Methyl Isocyanide. Fall-of Behaviour” J. Am. Chem. Soc. 1962, 84, 4215-4230.
    27. Tsang, W. “Thermal Decomposition of 2,3-Dimethylbutane in a Single-Pulse Shock Tube” J. Chem. Phys. 1965, 43, 352-359.
    28. Tsang, W. “Hydrocarbon decomposition. 6. Thermal decomposition of 3,4-dimethylhexane, 2,2,3-trimethylpentane, tert-butylcyclohexane, and related hydrocarbons” J. Phys. Chem. 1972, 76, 143-156.
    29. Astholz, D. C., Troe, J., “Unimolecular processes in vibrationally highly excited cycloheptatrienes. I. Thermal isomerization in shock waves” J. Chem. Phys. 1979, 70, 5107-5116.
    30. Hassler, J.C. and Setser, D.W. “Reaction of Methylene with Dichloromethane and Nonequilibrium Unimolecular Elimination Reactions of1,1-C2H4Cl2 and 1,1,2-C2H3Cl3 Molecules” J. Chem. Phys. 1966, 45, 3237-3245.
    31. Simons, J. W., and Taylor, G. W. “Chemically activated cis-1,2-dimethyl- cyclopropane from photolysis of cis-2-butene-diazomethane mixtures in the presence of oxygen” J. Phys. Chem. 1969, 73, 1274-1279.
    32. Forst, W. Theory of Unimolecular Reactions. Academic Press, New York, 1973.
    33. Robinson, P. J. , and Holbrook, K. A. Unimolecular Reactions, Wiley- Interscience, London, 1972.
    34. Gilbert, R. G. , Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Oxford, 1990.
    1. D. W. Lupo and M. Quack, “IR-Laser Photochemistry” ,Chem. Rev. 1987, 87, 181-216.
    2. Ch. Ottinger, “Chemiluminescent reactions of second-row atomic ions. I. Al + H2 → AlH+ (A2∏, B2∑+) + H ” J. Chem. Phys. 1986, 85, 232-242
    3. A. Sinha, M. C. Hsiao, and F. F. Crim , “ Bond-selected bimolecular chemistry: H + HOD(4νOH) → OD + H2 ” J. Chem. Phys. 1990, 92, 6333-6335
    4. H. -L. Dai and R. W. Field, Molecular Dynamics and Spectroscopy by Stimu- lated Emission Pumping, World Scientific Publishing Pte Ltd, Singapore, 1995.
    5. S. E. Stein and B. S. Rabinovitch, “Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors ” J. Chem. Phys. 1973, 58, 2438-2445
    6. G. Z. Whitten and B. S. Rabinovitch, “Approximation for Rotation-Vibration Energy Level Sums ” J. Chem. Phys. 1964, 41, 1883
    7. D. C. Tardy, B. S. Rabinovitch, “Vibration-Rotation Energy-Level Density Calculations” J. Chem. Phys. 1968, 48, 1427-1429
    8. I. E. Farquhar, Ergodic Theory in Statistical Mechanics, John Wiley and Sons, New York, 1964.
    9. D. Chandler , Introduction to Modern Statistical Mechanics, University Press, Oxford, 1987.
    10. D. L. Bunker, “Monte Carlo Calculations. IV. Further Studies of Unimolecular Dissociation” J. Chem. Phys. 1964, 40, 1946-1957
    11. N. B. Slater, Theory of Unimolecular Reactions, Methuen, London, 1959,Chapter 9.
    12. R. A. Marcus, “Unimolecular Dissociations and Free Radical Recombination Reactions” J. Chem. Phys., 1952, 20, 359-364
    13. R. A. Marcus, “Dissociation and Isomerization of Vibrationally Excited Species. III” J. Chem. Phys., 1965, 43, 2658-2661
    14. R. A. Marcus, “Erratum: Dissociation and Isomerization of Vibrationally Excited Species” J. Chem. Phys., 1970, 52, 1018
    15. D. L. Bunker and M. Pattengill, “Monte Carlo Calculations. VI. A Re- evaluation of the RRKM Theory of Unimolecular Reaction Rates” J. Chem. Phys. 1968, 48, 772-776.
    16. D. L. Bunker, in Proceedings of the International School of Physics, Course XLIV, edited by C. Schlier, Academic Press, New York, 1970, p. 315.
    17. F. W. Schneider, “The Thermal Unimolecular Isomerization of Methyl Isocyanide. Fall-of Behaviour” J. Am. Chem. Soc. 1962, 84, 4215-4230.
    18. J. H. Current, “Decomposition of Chemically Activated Ethyl-d3 Radicals. Primary Intramolecular Kinetic Isotope Effect in a Nonequilibrium System” J. Chem. Phys. 1963, 38, 783-795.
    19. W. H. Miller, “Tunneling corrections to unimolecular rate constants, with application to formaldehyde” J. Am. Chem. Soc. 1979, 101, 6810-6814.
    20. P. J. Robinson, Unimolecular Reactions , Wiley Interscience, New York, 1972.
    21. W. Forst, Theory of Unimolecualr Reactions , Academic Press, New York, 1973.
    22. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific Publications, London, 1990.
    23. T. Baer and W. L. Hase, Unimolecular Reaction Dynamics: Theory andExperiment, University Press, Oxford, 1996.
    24. L. Zhu and W. L. Hase, “Comparison of models for calculating the RRKM unimolecular rate constant k(E, J)” Chem. Phys. Letts. 1990, 175, 117-124.
    25. L. Zhu, W. Chen, “Comparison of models for treating angular momentum in RRKM calculations with vibrator transition states: pressure and temperature dependence of chlorine atom + acetylene association” J. Phys. Chem. 1993, 97, 311-322.
    26. J. Troe, “Predictive possibilities of unimolecular rate theory” J. Phys. Chem. 1979, 83, 114-126.
    27. L. B. Bhuiyan and W. L. Hase, “Sum and density of states for anharmonic polyatomic molecules. Effect of bend–stretch coupling” J. Chem. Phys. 1983, 78, 5052-5058.
    28. H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald, New York, 1966, Chapter 5.
    29. H. E. O’Neal and S. W. Benson, “A Method for Estimating the Arrhenius A Factors for Four- and Six-Center Unimolecular Reactions” J. Phys. Chem. 1967, 71, 2903- 2921.
    30. K. Dees and D. W. Setser, “Kinetic Isotope Effects in the Unimolecular Reactions of Chemically Activated Chloroethane-d0 and -d5 and 1,2-Dichloroe -thane-d0 and -d4 Molecules” J. Chem. Phys. 1968, 49, 1193-1206.
    1. Collins MA, Parsons DF “Implications of rotation–inversion–permutation invariance for analytic molecular potential energy surfaces” J. Chem. Phys. 1993, 99, 6756-6772
    2. Collins MA, Thompson KC(1995) In: Bonchev D, Rouvray DH (eds) Chemical group theory: Techniques and application. Gordon and Breach, Reading, p191
    3. Parr RG, White RJ “Perturbation-Theoretic Approach to Potential-Energy Curves of Diatomic Molecules” J. Chem. Phys. 1968, 49, 1059-1062
    4. Simons G, Parr RG, Finlan JM “New alternative to the Dunham potential for diatomic molecules” J. Chem. Phys. 1973, 59, 3229-3234
    5. Thompson KC, Jordan MJT, Collins MA “Polyatomic molecular potential energy surfaces by interpolation in local internal coordinates” J. Chem. Phys. 1998,108,8302-8316
    6. Wilson EB, Decius JC, Cross PC , Molecular vibrations, New York, Dover
    7. Pulay P, Fogarasi G “Geometry optimization in redundant internal coordinates” J. Chem. Phys. 1992, 96, 2856-2860
    8. Jackels CF, Gu Z, Truhlar DG , “Reaction-path potential and vibrational frequencies in terms of curvilinear internal coordinates” J. Chem. Phys. 1995,102,3188-3201
    9. Nguyen KA, Jackles CF, Truhlar DG, “Reaction-path dynamics in curvilinear internal coordinates including torsions” J. Chem. Phys. 1996, 104,6491-6496
    10. Chuang Y-Y, Truhlar DG, “Reaction-path dynamics with harmonic vibration frequencies in curvilinear internal coordinates: H + trans-N2H2 → N2H + H2”J. Chem. Phys. 1997, 107, 83-89
    11. Ben-Israel A, Greville TN, Generalised inverses: theory and applications. Wiley-Interscience, New York, 1974.
    12. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical recipes in Fortran: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, 1992.
    13. Thompson KC, Jordan MJT, Collins MA, “Molecular potential energy surfaces by interpolation in Cartesian coordinates” J. Chem. Phys. 1998, 108, 564-578
    14. Farwig R, In: Mason JC, Cox MG (eds) Algorithms for approximation. Clarendon, Oxford, p194, 1987.
    15. Ischtwan J, Collins MA, “Molecular potential energy surfaces by Interpol- ation” J. Chem. Phys. 1994, 100, 8080-8088.
    16. Bettens RPA, Collins MA “Learning to interpolate molecular potential energy surfaces with confidence: A Bayesian approach” J. Chem. Phys. 1999, 111,816-826.
    17. Gonzalez C, Schlegel HB “An improved algorithm for reaction path following” J. Chem. Phys. 1989, 90, 2154-2161
    18. Gonzalez C, Schlegel HB “Improved algorithms for reaction path following: Higher-order implicit algorithms” J. Chem. Phys. 1991, 95, 5853-5860
    19. Ischtwan J, Collins MA “Determination of the intrinsic reaction coordinate: Comparison of gradient and local quadratic approximation methods” J. Chem. Phys. 1988, 89, 2881-2885
    20. Carrett BC, Redmon MJ “Algorithms and accuracy requirements for comput- ing reaction paths by the method of steepest descent” J. Phys. Chem. 1988,92, 1476-1488
    21. Schlegel HB In: Yarkony DR (ed) Modern electronic structure theory. World Scientific, Singapore, p459, 1994
    22. Page M, McIver JW, “On evaluating the reaction path Hamiltonian” J. Chem. Phys. 1988, 88,922-935
    23. Page M, Doubleday C, “Following steepest descent reaction paths. The use of higher energy derivatives with ab initio electronic structure methods” J. Chem. Phys. 1990, 93, 5634-5642
    24. Elber R, Karplus M, “A method for determining reaction paths in large molecules: Application to myoglobin” Chem. Phys. Lett. 1987, 139, 375-380
    25. Melissas VS, Truhlar DG, Garrett BC, “Optimized calculations of reaction paths and reaction-path functions for chemical reactions” J. Chem. Phys. 1992,96, 5758-5772
    26. Sun J-Q, Ruedenberg K “Quadratic steepest descent on potential energy surfaces. I. Basic formalism and quantitative assessment” J. Chem. Phys. 1993,99, 5257-5268
    1. Espinosa-Garcia, J. “Reaction-Path Dynamics Calculations of the NH3 + O(3P) Hydrogen Abstraction Reaction” J. Phys. Chem. A 2000, 104, 7537- 7544.
    2. Luckhaus, D.; Scott, J. L.; Crim, F. F. “An experimental and theoretical study of the vibrationally mediated photodissociation of hydroxylamine” J. Chem. Phys. 1999, 110, 1533-1541.
    3. Shu, J.; Lin, J. J.; Wang, C. C.; Lee, Y. T.; Yang, X. “Crossed molecular beam studies of the O(1D) + NH3 reaction” J. Chem. Phys. 2001, 115, 842-848.
    4. Sumathi, R.; Sengupta, D.; Nguyen, M. T. “Theoretical Study of the H2 + NO and Related Reactions of [H2NO] Isomers” J. Phys. Chem. A 1998, 102, 3175- 3183.
    5. Lin, M. C.; Hsu, C.-C.; Kristyan, S. Proceedings of the 1996 JANNAF Combustion Meeting, CPIA Publication No. 653, Laurel, MD, 1997, Vol. II, pp. 419-426.
    6. Becke, A. D. “Density-functional thermochemistry. III. The role of exact exchange” J. Chem. Phys. 1993, 98, 5648-5652.
    7. Lee, C.; Yang, W.; Parr, R. G. “Development of the Colle-Salvetti correlation -energy formula into a functional of the electron density” Phys. Rev. B 1988, 37, 785-789.
    8. Purvis, G. D.; Bartlett, R. J. “A full coupled-cluster singles and doubles model: The inclusion of disconnected triples” J. Chem. Phys. 1982, 76, 1910-1918.
    9. Bauschlicher, Jr., C. W.; Partridge, H. “A modification of the Gaussian-2 approach using density functional theory” J. Chem. Phys. 1995, 103, 1788-1791.
    10. Mebel, A. M.; Morokuma, K.; Lin, M. C. “Modification of the gaussian–2 theoretical model: The use of coupled-cluster energies, density-functional geometries, and frequencies” J. Chem. Phys. 1995, 103, 7414-7421.
    11. Werner, H.-J.; Knowles, P. J. “A second order multiconfiguration SCF procedure with optimum convergence” J. Chem. Phys. 1985, 82, 5053-5063.
    12. Knowles, P. J.; Werner, H.-J. “An efficient second-order MC SCF method for long configuration expansions” Chem. Phys. Lett. 1985, 115, 259-267.
    13. Werner, H.- J.; Knowles, P. J. “An efficient internally contracted multiconfig- uration–reference configuration interaction method” J. Chem. Phys. 1988, 89, 5803-5814.
    14. Knowles, P. J.; Werner, H.-J. “An efficient method for the evaluation of coupling coefficients in configuration interaction calculations” Chem. Phys. Lett. 1988, 145, 514-522.
    15. Dunning, Jr., T. H. “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen” J. Chem. Phys. 1989, 90, 1007-1023.
    16. MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles with contributions from J. Alml?f, R. D. Amos, M. J. O. Deegan et al.
    17. Dalton, a molecular electronic structure program written by T. Helgaker, H.J.Aa. Jensen, J. Olsen, K. Ruud, et al.
    18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; M. Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2001.
    19. Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics, Wiley: New York, 1980.
    20. Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions, Wiley: New York, 1972.
    21. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics, Prentice-Hall: Englewood Cliffs, NJ, 1999.
    22. Lee, H. Y.; Mebel, A. M.; Lin, S. H. “An ab initio/Rice-Ramsperger-Kassel -Marcus study of photodissociation of carbonyl cyanide” Int. J. Quantum Chem. 2002, 90, 566-574.
    23. Lee, H. Y.; Kislov, V. V.; Lin, S. H.; Mebel, A. M.; Neumark, D. M. “An ab Initio/RRKM Study of Product Branching Ratios in the Photodissociation of Buta-1,2- and -1,3-dienes and But-2-yne at 193 nm” Chem. Eur. J. 2003, 9, 726-740.
    24. Kislov, V. V.; Nguyen, T. L.; Mebel, A. M.; Lin, S. H.; Smith, S. C. “Photodissociation of benzene under collision-free conditions: An ab initio/ Rice–Ramsperger–Kassel–Marcus study” J. Chem. Phys. 2004, 120, 7008-7017.
    25. Davidson, J. A.; Schiff, H. I.; Streit, G. E.; McAfee, J. R.; Schmeltekopf, A. L. Howard, C. J. “Temperature dependence of O(1D) rate constants for reactions withN_2O, H_2, CH_4, HCl, and NH_3” J. Chem. Phys. 1977, 67, 5021-5025.
    26. DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12, JPL Publication 97-4, 1997, pp. 1-266.
    27. NIST Chemistry Webbook, NIST Standard Reference DataBase Number 69, March 2003 Release (http://webbook.nist.gov/chemistry/).
    28. Xia, W. S.; Zhu, R. S.; Lin, M. C.; Mebel, A. M. “Low-energy paths for the unimolecular decomposition of CH3OH: A G2M/statistical theory study” Faraday Discuss. 2002, 119, 191-206.
    29. Nguyen, T. L.; Mebel, A. M.; Lin, S. H. “The role of the ground and excited potential energy surfaces in the O(1D and 3P) + SiH4 reactions: A theoretical study” J. Chem. Phys. 2001, 114, 10816-10834.
    30. Sayós, R.; Hernando, J.; Puyuelo, M. P.; Enríquez, P. A.; González, M. “Influence of collision energy on the dynamics of the reaction O(~1D) + CH_4(X~1 A_1) → OH(X~2 ∏) + CH_3(X~2 A″_2)” Phys. Chem. Chem. Phys. 2002, 4, 288-294.
    31. Yu, H.-G.; Muckerman, J. T. “MRCI Calculations of the Lowest Potential Energy Surface for CH3OH and Direct ab Initio Dynamics Simulations of the O(~1D) + CH_4 Reaction” J. Phys. Chem. 2004, 108, 8615- 8623.
    32. Hernando, J.; Millán, J.; Sayós, R.; González, M. “Ab initio study of the O(~1D) + CH_4(X~1A_1) → OH(X~2∏) + CH3(X~2A″_2) reaction: Ground and excited potential energy surfaces” J. Chem. Phys. 2003, 119, 9504-9512.
    1. A.F. Jalbout, “H-atom product channels in the photodissociation of CH3F and CH3Cl: a density functional theory and high level ab initio study” J. Mol. Struct.: THEOCHEM ,2002,618, 35-40.
    2. J. Espinosa-Garcia, “Theoretical value of the enthalpy of formation of methyl fluoride” Chem. Phys. Lett. 1996, 250, 71-74.
    3. H.-J. Werner, P.J. Knowles, “A second order multiconfiguration SCF procedure with optimum convergence” J. Chem. Phys. 1985, 82, 5053-5063.
    4. P.J. Knowles, H.-J. Werner, “An efficient second-order MC SCF method for long configuration expansions” Chem. Phys. Lett. 1985, 115 , 259-267.
    5. D.E. Woon, T.H. Dunning Jr., “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon” J. Chem. Phys. 1993, 98, 1358-1371.
    6. H.-J. Werner, P. J. Knowles, “An efficient internally contracted multiconfigura tion–reference configuration interaction method” J. Chem. Phys. 1988, 89, 5803 -5814.
    7. P. J. Knowles, H.-J. Werner, “An efficient method for the evaluation of coupling coefficients in configuration interaction calculations” Chem. Phys. Lett. 1988, 145, 514-522.
    8.A.D.Becke, “Density-functional thermochemistry. III. The role of exact exchange” J. Chem. Phys. 1993,98,5648-5652.
    9. C. Lee, W. Yang, R. G. Parr, “Development of the Colle-Salvetti correlation- energy formula into a functional of the electron density” Phys. Rev. B 1988,37, 785-789.
    10. G.D. Purvis, R.J. Bartlett, “A full coupled-cluster singles and doubles model: The inclusion of disconnected triples” J. Chem. Phys. 1982, 76, 1910-1918.
    11. J.A. Pople, M. Head-Gordon, K. Raghavachari, “Quadratic configuration interaction. A general technique for determining electron correlation energies” J. Chem. Phys. 1987,87 ,5968-5975.
    12. A.M. Mebel, K. Morokuma, M.C. Lin, “Modification of the gaussian–2 theoretical model: The use of coupled-cluster energies, density-functional geometries, and frequencies” J. Chem. Phys. 1995,103, 7414-7421.
    13. MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles with contributions from J. Alml?f, R. D. Amos, M. J. O. Deegan et al.
    14. Dalton, a molecular electronic structure program written by T. Helgaker, H.J.Aa. Jensen, J. Olsen, K. Ruud et al.
    15. Gaussian 98, Revision A.7, M.J. Frisch et al., Gaussian, Inc., Pittsburgh PA, 1998.
    16. H. Eyring, S.H. Lin, S.M. Lin, Basic Chemical Kinetics,Wiley, New York, 1980.
    17. P.J. Robinson, K.A. Holbrook, Unimolecular Reactions ,Wiley, New York, 1972.
    18. J.I. Steinfeld, J.S. Francisco, W.L. Hase, Chemical Kinetics and Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1999.
    19. NIST Chemistry Webbook, NIST Standard Reference DataBase Number 69- March 2003 Release (http://webbook.nist.gov/chemistry/).
    20. L.A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, “Gaussian-2 theory for molecular energies of first- and second-row compounds” J. Chem. Phys. 1991, 94,7221-7230.
    21. S.H. Lin, K.H. Lau, H. Eyring, “Absolute Reaction Rate Constants and Chemical Reaction Cross Sections of Bimolecular Reactions” J. Chem. Phys. 1971,55, 5657-5663.
    22. K. Morokuma, B.C. Eu, M. Karplus, “Collision Dynamics and the Statistical Theories of Chemical Reactions. I. Average Cross Section from Transition-State Theory” J. Chem. Phys. 1969,51, 5193-5203.
    1. Nizkorodov SA, Harper WW “Energy-dependent cross sections and nonadiabatic reaction dynamics in F(2P3/2,2P1/2) + n–H_2 → HF(v,J) + H” J. Chem. Phys. 1999, 111, 8404-8416
    2. Rutenburg I, Koeppl GW “Application of a general classical variational theory to the F + H_2 → FH + H reaction” J. Chem. Phys. 1999, 110, 3842-3855
    3. Lu SI “Theoretical study of transition state structure and reaction enthalpy of the F+H_2 → HF+H reaction by a diffusion quantum Monte Carlo approach” J. Chem. Phys. 2005, 122, 194323-194329
    4. Roberto-Neto O, Machado FBC “Transition state structure, energetics, and rate constants for the CH_4 + F(~2P) → CH_3 + HF reaction” Chem. Phys. 2005, 315, 27-34
    5. Rangel C, Navarrete M “Potential Energy Surface for the F(~2P_(3/2),~2P_(1/2)) + CH4 Hydrogen Abstraction Reaction. Kinetics and Dynamics Study” J. Phys. Chem. A 2005, 109, 1441-1448
    6. Troya D, Millan J “Ab initio potential energy surface, variational transition state theory, and quasiclassical trajectory studies of the F + CH_4 → HF + CH_3 reaction” J. Chem. Phys. 2004, 120, 5181-5191
    7. Qin Ran, Xueming Yang “Dynamics of the F atom reaction with propene” J. Chem. Phys., 2004, 121, 6302-6308
    8. Becke A. D. “Density-functional thermochemistry. III. The role of exact exchange” J. Chem. Phys. 1993,98, 5648-5652
    9. Lee C., Yang W., Parr R. G. “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density” Phys. Rev. B 1988,37, 785-789
    10. Purvis G. D., Bartlett R. J. “A full coupled-cluster singles and doubles model: The inclusion of disconnected triples” J. Chem. Phys. 1982, 76, 1910-1918
    11. Bauschlicher C. W., Partridge H. “A modification of the Gaussian-2 approach using density functional theory” J. Chem. Phys. ,1995,103, 1788-1791
    12. Mebel A. M., Morokuma K., Lin M. C. “Modification of the gaussian–2 theoretical model: The use of coupled-cluster energies, density-functional geometries, and frequencies” J. Chem. Phys., 1995, 103, 7414-7421
    13. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
    14. Nguyen T. L., Mebel A. M., Lin S. H. “The role of the ground and excited potential energy surfaces in the O(1D and 3P) + SiH4 reactions: A theoretical study” J. Chem. Phys. 2001, 114, 10816-10834
    15. Ling W., Mebel A. M., Xueming Yang “Ab Initio/RRKM Study of the O(~1D) + NH_3 Reaction: Prediction of Product Branching Ratios” J. Phys. Chem. A 2004,
    108, 11644-11650
    16. Sayos R., Hernando J., Puyuelo M. P. “Influence of collision energy on the dynamics of the reaction O(~1D) + CH_4(X~1A_1)→ OH(X~2)+ H_3(X~2A_2)” Phys. Chem. Chem. Phys. 2002, 4, 288-294
    17. Yu H. G., Muckerman J. T. “MRCI Calculations of the Lowest Potential Energy Surface for CH3OH and Direct ab Initio Dynamics Simulations of the O(~1D) + CH_4 Reaction” J. Phys. Chem. 2004,108, 8615-8623
    1 T.J. Wallington, M.D. Hurley, J.C. Ball, and E.W. Kaiser, Environ. Sci. Technol. 26, 1318(1992)
    2 A.R. Ravishankara and A.A. Trunipseed, Science 263, 71 (1994)
    3 T.J. Wallington and W.F. Schneider, Faraday Discuss. Chem. Soc. 100, 55 (1995)
    4 S. Pinnock and K.P. Shine, J. Geophys. Res. 100, 2327 (1995)
    5 Y. S. Choi and C. B. Moore, J. Chem. Phys. 90, 3875 (1989);
    6 Y. S. Choi and C. B. Moore, J. Chem. Phys.94, 5414 (1991);
    7 Y. S. Choi and C. B. Moore, J. Chem. Phys.97, 1010 (1992);
    8 Y. S. Choi and C. B. Moore, J. Chem. Phys. 103, 9981 (1995).
    9 K. Morokuma, S. Kato, and K. Hirao, J. Chem. Phys. 72, 6800 (1980);
    10 K. Morokuma and S. Kato, in Potential Energy Surface and Dynamics Calculations, edited by D.G. Truhlar (Plenum, New York, 1981), p. 243.
    11 J. D. Goddard and H. F. Schaefer III, J. Chem. Phys. 93, 4907 (1990).
    12 W. H. Green, D. Jayatilaka, A. Willetts, R. D. Amos, and N. C. Handy, J. Chem. Phys. 93, 4965 (1990).
    13 K. Kamiya and K. Morokuma, J. Chem. Phys. 94, 7287 (1991).
    14 J. S. Francisco and Y. Zhao, J.Chem. Phys. 96, 7587 (1992).
    15 T-G. Wei and R. E. Wyatt, J. Phys. Chem. 97, 13580 (1993).
    16 T. Yamamoto and S. Kato, J. Chem. Phys. 107, 6114(1997).
    17 A. Viel and C. Leforestier, J. Chem. Phys. 112, 1212(2000).
    18 R. A. Friesner, J. Bently, M. Menou, and C. Leforestier, J. Chem. Phys. 99, 324 (1993).
    19 T. Yamamoto and S. Kato, J.Chem. Phys. 109, 9783 (1998).
    20 T. Yamamoto and S. Kato, J.Chem. Phys. 112, 8006 (2000).
    21 M. J. T. Jordan, K. C. Thompson, and M. A. Collins, J. Chem. Phys. 102, 5647 (1995).
    22 K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108, 8302 (1998).
    23 R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 (1999).
    24 M. A. Collins and D. H. Zhang, J. Chem. Phys. 111, 9924 (1999).
    25 MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles with contributions from J. Alml?f, R. D. Amos, M. J. O. Deegan et al.
    26 K. Saito, H. Kuroda, and T. Kakumoto, Chem. Phys. Lett. 113, 399 (1985).
    27 M. W. Chase, C. A. Davies, J. R. Downey, JANAF Thermochemical Tables (American Institute of Physics, New York, 1986).
    28 G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York,1966)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700