聚乳酸表面的功能化及其与蛋白、细胞、组织的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过物理、化学、生物等各种技术手段改善材料表面性能,可大幅度提高生物材料与生物体的相容性,是促进材料表面与生物体之间的有利相互作用、抑制不利相互作用的关键途径。本研究以聚乳酸材料为基材,对其表面进行功能化设计,研究功能化表面对蛋白分子吸附/解吸附性能和细胞/组织相容性的影响。
     本研究采用碱水解处理和氨等离子体处理的方法、表面截留法和体外生物矿化的原理在聚乳酸材料表面得到3类功能化的表面:小分子活性基团功能化的表面;生物大分子仿生修饰的表面;钙磷涂层修饰的表面。通过各种分析技术对功能化表面的物理化学性能进行了表征。研究结果表明,在小分子活性基团功能化过程中,通过控制表面处理的条件(碱浓度、水解时间,处理功率、处理时间),可以控制材料表面的亲水性、活性基团密度和表面粗糙度。生物大分子仿生修饰研究结果表明,通过表面截留技术成功地得到壳聚糖、羧甲基壳聚糖、亚甲基磷酸化壳聚糖,肝素,透明质酸和硫酸软骨素修饰的聚乳酸表面。在聚乳酸表面钙磷涂层修饰实验中,羧基化的聚乳酸表面够较快的诱导聚乳酸表面钙磷涂层的生成,生成的钙磷涂层由具有纳米尺寸的晶体构成的基质和颗粒组成,钙磷涂层的主要成份是结晶比较松散的羟基磷灰石。
     在生物相容性研究中,研究的主要内容是细胞和组织相容性,而对于其基础——蛋白质的吸附研究的很少,然而从生物学角度来说,细胞在生物材料表面的粘附,增殖以及分化是由蛋白介导的,考察材料的表面对蛋白吸附/解吸附性能的影响对于提高细胞/组织相容性的认识具有重要意义。本研究以功能化的聚乳酸表面为基础,选择与细胞粘附最相关的3种蛋白(纤粘连蛋白Fn,层粘连蛋白Ln,玻粘连蛋白Vn)用于吸附/解吸附性能研究。采用~(125)I同位素标记的方法,研究了3种蛋白在功能化聚乳酸表面上的吸附/解吸附性能。首先,分别考察了3种蛋白在不同功能化表面等温吸附和吸附动力学。其次,研究了不同浓度牛血清白蛋白(BSA)、胎牛血清(FCA)和3种蛋白在功能化聚乳酸表面的竞争吸附性能。最后,对吸附在功能化聚乳酸表面的3种蛋白在BSA溶液中的解吸附性能进行了研究。单一蛋白的等温吸附和吸附动力学研究表明,在本实验的浓度和时间范围内,蛋白浓度和功能化的表面对蛋白平衡吸附量和吸附速率的影响很大;其次,BSA和血清的加入竞争性的减少了功能化表面对蛋白的吸附,且随BSA和血
Interaction between biomaterials and tissues occurs via a layer of proteins adsorbed at the surface of biomaterials, which is the immediate event occurring on its first contact with biological fluids and tissues. The nature and amount of the protein or polysaccharide adsorption layer depends on material surface properties, such as wettability, polar or ionic interactions, chemical structures and topography of the surface. The surface determines essentially the biocompatibility whereas the bulk decides the physical, mechanical properties required of an implant. In this study, the surface of poly(L-lactic acid) (PLLA) was functionalized to improve its biocompatibility. The effects of the functional surfaces on the absorption/desorption property of proteins and on cell/tissue compatibility were investigated.
    Three kinds of functional PLLA surfaces were gained by alkaline hydrolysis and ammonia plasma treatments, entrapment method and biomineralization principle. The active carboxy and amido, six kinds of biomacromolecules (i.e., chitosan, carboxymethyl chitosan, methylene phosphochitosan, herapin, hyaluronic acid and chondroitin sulfate), and calcium-phosphorus coatings were introduced to functionalize PLLA surfaces. Many techniques were used to character the functional surfaces, and the results showed that the hydrophilicity, the density of active groups and the roughness of PLLA functional surfaces could be controlled by adjusting the modification conditions, such as the NaOH concentrations, the hydrolysis times and the plasma treatment powers and times. The x-ray photoelectron spectroscopy (XPS) analysis results showed that it was successful to get the biomacromolecules modified surfaces by means of the entrapment method. The SEM and AFM observation results showed that carboxylated PLLA surface could improve the building rate of the calcium-phosphorus coatings, which included matrix and granule with nano-scale structure. The component of the calcium-phosphorus coatings was apatite with rather loosing crystal by means of X-ray diffraction (XRD) analysis.
    In the research of the effect of functional surfaces on the adsorption/desorption
引文
1 Palsson, B., Bhatia S.N. Tissue Engineering, Pearson Education, Inc. Upper saddle River, NJ 0748,2004,271.
    
    2 Jones, C.M., Lyons, K.M., Hogan, B.L. Involvenment of bone morphogenctic protein-4(BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development, 1991,11:531 -542.
    
    3 Ripamonti, U., Reddi, A.H., Periodontal regeneration: potential role of bone morphogenetic proteins. J Periodont Res, 1994,29:225-235.
    
    4 Basbaum, C.B., Werb, Z. Focalized proteolysis: Spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol, 1996,8:731-738.
    
    5 Miyata, T., Uragami, T., Nakamae, K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev, 2002,54:79-98.
    
    6 Ulbrich, K., Zacharieva, E.I., Obereigner, B., et al. Polymers containing enzymatically degradable bonds v. Hydrophilic polymers degradable by papain. Biomaterials, 1980,1:199-204.
    
    7 Halstenberg, S., Panitch, A., Rizzi, S., et al. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell adhesive and plasmin degradable biosynthetic material for tissue repair. Biomacromolecules, 2002,3:710-723.
    
    8 Pratt, A.B., Weber, F.E., Schmoekel, H.G., et al. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng, 2004,86:27-36.
    
    9 Kim, S., Healy, K.E. Synthesis and characterization of injectable poly(n-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules, 2003,4:1214-1223.
    
    10 Lutolf, M.P., Lauer-Fields, J.L., Schmoekel, H.G, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl. Acad. Sci., 2003,100:5413-5418.
    
    11 West, J.L., Hubbell, J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules, 1999,32:241-244.
    
    12 Mann, B.K., Gobin, A.S., Tsai, A.T., et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: Synthetic ECM analogs for tissue engineering. Biomaterials, 2001,22:3045-3051.
    
    13 Giordano, R.A., Wu, B.M., Borlend, S. W., et al. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed. 1996,8:63-75
    
    14 Hench, L. L., Biomaterials. Science, 1980,208:826.
    
    15 Kim, B.S., Mooney, D.J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998,16:224-230.
    
    16 Hubbell, J.A., Biomaterials in tissue engineering. Biotechnology, 1995,13:565-576.
    
    17 Marler, J.J., Upton, J., Langer, R. et al., Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev. 1998,33:165-182.
    
    18 Quirk, R.A., Chan, W.C., Davies, M.C., et al. Poly (L-lysine)-GRGDS as a biomimetic surface modifier for poly (lactic acid). Biomaterials, 2001,22:865-872.
    
    19 Peppas, N.A., Langer, R. New challenges in biomaterials. Science, 1994,263:1715-1720.
    
    20 Hubbell, J.A. Biomaterials in tissue engineering. Biotechnology, 1995,13:565-576.
    
    21 Langer, R., Tirrell, D.A. Designing materials for biology and medicine. Nature, 2004,428:487-492.
    
    22 Yang, C. Hillas, P.J., Baez, J.A., et al. The application of recombinant human collagen in tissue engineering. Bio Drugs, 2004,18:103-119.
    
    23 Aumailley, M., Gayraud, B. Structure and biological activity of extracellular matrix. J Mol Med, 1998,76:253-265.
    
    24 Streuli, C, Extracellular matrix remodeling and cellular differentiation. Curr Opin Cell Biol, 1999,11:634-640.
    
    25 Kleinman, H.K., Philp, D., Hoffman, M.P. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol, 2003,14:526-532.
    
    26 Zhou, S., Liao, X., Li, X., et al. Poly-D,L-lactide-copoly(ethylene glycol) microspheres as potential vaccine delivery systems, J Control Release, 2003,86:195-205.
    
    27 Bonassar, L.J., Vacanti, C.A. Tissue engineering: the first decade and beyond. J Cell Biochem, 1998,30/31:297-303.
    
    28 James, K., Kohn, J., New biomaterials for tissue engineering, MRS Bull. 1996,22-26.
    
    29 Hutmacher, D.W., Goh, J.C., Teoh, S.H. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med, 2001,30:183-191.
    
    30 Langer, R. Biomaterials and biomedical engineering, Chem Eng Sci, 1995,50:4109-4121.
    
    31 Klee, D., Hoecker, H., Polymers for biomedical applications: improvement of the interface compatibility. Adv Polym Sci, 1999,149:1-57
    
    32 Lucke, A., Tessmar, J., Schnell, E., et al. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Biomaterials, 2000,21:2361-2370.
    
    33 Ratner, B.D., The engineering of biomaterials exhibiting recognition and specificity. J Mol Recogn, 2002,9:617-625.
    
    34 Ratner, B.D., Molecular design strategies for biomaterials that heal, Macromol Symp 1998,130:327-335.
    
    35 Mann, B.K., Schmedlen, R.H., West, J.L. Tethered-TGF-[beta] increases extracellular matrix production of vascular smooth muscle cells. Biomaterials, 2001,22:439-444.
    
    36 Kuhl, P.R., Griffith-Cima, L.G., Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nature Med, 1996,2:1022-1027.
    
    37 Kantlehner, M., Schaffner, P., Finsinger,D., et al.Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chem biochem, 2000,1:107-114.
    
    38 Shin, H., Zygourakis, K., Farach-Carson, M.C., et al. Attachment,proliferation,and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials, 2004,25:895-906.
    
    39 Hadriraju, K.., Hansen, BL.K. Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins. Biomaterials,2000,21:267-272.
    
    40 Mann, B.K., Tsai, A.T., Scott, B.T., et al., Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials, 1999,20:2281-2286.
    
    41 Cima, L.G. Polymer substrates for controlled biological interactions. J Cell Biochem. 1994,56:155-161.
    
    42 Blunk, T., Gopferich, A., Tessmar, J. Special issue biomimetic polymers. Biomaterials, 2003,24:4335-4335.
    
    43 Shin, H., Jo, S., Mikos, A.G, Biomimetic materials for tissueengineering, Biomaterials, 2003,24:4353-4364.
    
    44 Ruoslahti, E., Pierschbacher, M.D., New perspectives in cell adhesion: RGD and integrins. Science, 1987,238:491-497.
    
    45 Hersel, U., Dahmen, C, Kessler, H., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials, 2003,24:4385-4415.
    
    46 LeBaron, R.G., Athanasiou, K.A., Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng, 2000,6:85-103.
    
    47 Shakesheff, K., Cannizzaro, S., Langer, R., Creating biomimetic micro-environments with synthetic polymer-peptide hybrid molecules. J Biomater Sci:Polym Ed, 1998,9:507-518.
    
    48 Rezania, A., Thomas, C.H., Branger, A.B., et al. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. J Biomed Mater Res, 1997,37:9-19.
    
    49 Kouvroukoglou, S., Dee, K.C., Bizios, R., et al. Endothelial cell migration on surfaces modified with immobilized adhesive peptides. Biomaterials, 2000,21:1725-1733.
    
    50 Rezania, A., Healy, K.E. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog, 1999,15:19-32.
    
    51 Schense, J.C., Hubbell, J.A. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem, 2000,275:6813-6818.
    
    52 Palecek, S.P., Loftus, J.C., Ginsberg, M.H., et al. Integrin-ligand binding properties govern cell migration speed through cell-substratrum adhesiveness. Nature, 1997,385:537-540.
    
    53 Massia, S.P., Hubbell, J.A., An RGD spacing of 440nm is sufficient for integrin aVb3-mediated fibroblast spreading and 140nm for focal contact and stress fiber formation. J Cell Biol, 1991,114:1089-1100.
    
    54 Mann,B.K., Schmedlen,R.H., West,J.L., Tethered-TGF-[beta] increases extracellular matrix production of vascular smooth muscle cells. Biomaterials,2001,22:439-444.
    
    55 Kuhl,P.R., Griffith-Cima,L.G., Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nature Med, 1996,2:1022-1027.
    
    56 Mann,B.K., Tsai,A.T., Scott,B.T., et al. Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials, 1999,20:2281-2286.
    
    57 Ziats, N.P., Miller, K.M., Anderson, J.M., In vitro and in vivo interactions of cells with biomaterials. Biomaterials, 1988,9:5-13.
    
    58 Williams, D.F. Tissue-biomaterial interactions. J Mater Sci, 1987,22:3421-3445.
    
    59 Ratner, B.D. New ideas in biomaterials science - a path to engineered biomaterials. J Biomed Mat Res, 1993,27:837-850.
    
    60 Hubbell, J.A., Bioactive biomaterials. Curr Opin Biotechnol, 1999; 10:123-129.
    
    61 Healy, K.E., Molecular engineering of materials for bioreactivity. Curr Opin Solid State Mater Sci, 1999,4:381-387.
    
    62 Sakiyama-Elbert, S.E., Hubbell, J.A., Functional biomaterials:design of novel biomaterials. Annu Rev Mater Res, 2001,31:183-201.
    
    63 Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000,21:667-681.
    
    64 Shin, H., Jo, S., Mikos, A.G. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo(poly(ethylene glycol) fumarate) hydrogels modi.ed with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer. J Biomed Mater Res, 2002,61:169-179.
    
    65 West, J.L., Hubbell, J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules, 1999,32:241-244.
    
    66 Suzuki, Y., Tanihara, M., Suzuki, K., et al. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res, 2000,50:405-409.
    
    67 Humphries, M.J., Akiyama, S.K., Komoriya, A., et al. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type specific adhesion. J Cell Biol, 1986,103:2637-2647.
    
    68 Pierschbacher, M.D., Ruoslahti, E., Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984,309:30-33.
    
    69 Ruoslahti, E., Pierschbacher, M.D., New perspectives in cell adhesion: RGD and integrins. Science, 1987,238:491-417.
    
    70 Shin, H., Jo, S., Mikos, A.G. Biomimetic materials for tissue engineering, Biomaterials, 2003,24:4353-4364.
    
    71 Hubbell, J.A., Massia, S.P., Desai, N.P.,et al. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology, 1991,9:568-572.
    
    72 Ranieri, J.P., Bellamkonda, R., Bekos, E.J., et al. Neuronal cell attachment to fiuorinated ethylene propylene films with covalently immobilized laminin ligopeptides YIGSR and IKVAV. J Biomed Mater Res, 1995,29:779-785.
    
    73 Neff, J.A., Tresco, P.A., Caldwell, K.D. Surface modification for controlled studies of cell-ligand interactions. Biomaterials, 1999,20: 2377-2393.
    
    74 Dee, K.C., Anderson, T.T., Bizios, R. Design and function of novel osteoblast-adhesive peptides for chemical modi.cation of biomaterials. J Biomed Mater Res, 1998,40:371-377.
    
    75 Rezania, A., Johnson, R., Lefkow, A.R., et al. Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir, 1999,15:6931-6939.
    
    76 Xiao, S-J., Textir, M., Spencer, N.D., Covalent attachment of celladhesive (Arg-Gly-Asp)-containing peptides to titanium surface. Langmuir, 1998,14:5507-5516.
    
    77 Massia, S.P., Hubbell, J.A., Covalently attached GRGD on polymer surfaces promotes biospeci.c adhesion of mammalian cells. Ann NY Acad Sci, 1990,589:261-270.
    
    78 Sugawara, T., Matsuda, T. Photochemical surface derivatization of a peptide containing Arg-Gly-Asp (RGD). J Biomed Mater Res, 1995,29:1047-1052.
    79 Palsson, B., Bhatia S.N. Tissue Engineering, Pearson Education, Inc. Upper saddle River, NJ 0748, 2004,254.
    
    80 Spijker, H.T., Bos, R., Busscher, H.J., et al. Platelet adhesion and activation on a shielded plasma gradient prepared on polyethylene. Biomaterials 2002;23:757-766.
    
    81 Chu, P.K., Chen, J.Y., Wang, L.P., Huang, N., Plasma-surface modification of biomaterials. Mater Sci Eng R, 2002,36:143-206.
    
    82 Kooten, T.G., Spijker, H.T., Busscher, H.J., Plasma-treated polystyrene surfaces: model surfaces for studying cell-biomaterial interactions. Biomaterials, 2004,25: 1735-1747.
    
    83 Wang, C, Hsiue, G., Oxidation of polyethylene surface by glow discharge and subsequent graft copolymerization of acrylic acid. J Polym Sci Polym Chem Ed, 1993,31:1307-1314
    
    84 Gancarz, I., Pozniak, G., Bryjak, M., et al. Modification of polysulfone membranes. 2. plasma grafting and plasma polymerization of acrylic acid. Acta Polym, 1999,50:317-326.
    
    85 Johnsen, K., Kirkhorn, S., Olasen, K., et al. Modification of polyethylene surfaces by plasma-induced grafting. J Appl Polym Sci, 1996,59:1651-1657.
    
    86 Lee, S., Hsiue, G., Wang, C. Characterization of plasma-induced graft polymerization of 2-hydroxyethyl methacrylate onto silicone rubber. J Appl Polym Sci, 1994,54:1279-1287.
    
    87 Mori, M., Uyama, Y., Ikada, Y. Surface modification of polyethylene fiber by graft polymerization. J Polym Sci Polym Chem Ed., 1994;32:1683-1690.
    
    88 Lee, S., Hsiue, G., Chang, P.C., et al. Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials, 1996,17:1599-1608.
    
    89 Kang, I.K., Kwon, O.H., Lee, Y.M., et al. Preparation and surface characterization of functional group grafted and heparinimmobilized polyurethanes prepared by plasma glow discharge. Biomaterials, 1996,17:841-847.
    
    90 Sano, S., Kato, K., Ikada, Y. Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials, 1993,14:817-822.
    
    91 Bae, J., Seo, E., Kang, I., Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials, 1999,20:529-537.
    
    92 Ding, Z., Chen, J., Gao, S., Immobilization of chitosan onto poly-1-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast andliver cells. Biomaterials, 2004,25:1059-1067.
    
    93 Yoko, T., Masataka, O., Satoshi, N., et al. Conformation of self-assembled organic layer on the electrically polarized hydroxyapatite ceramics in nonaqueous solution. Solid State Ionics, 2002,151:159-163.
    
    94 Liu, Q., Ding, J., Mante, F.K., et al. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 2002,23:3103-3111.
    1 Liu, H.C., Lee, I.C., Wang, J.H., et al. Preparation of PLLA membranes with different morphologies for culture of MG-63 Cells. Biomaterials, 2004,25:4047-4056
    
    2 Lu, L., Peter, S.J., Lyman, M.D., et al. In vitro degradation of porous poly(L-lactic acid) foams. Biomaterials, 2000,21:1595-1605
    
    3 Andrea, L., Jorg, T., Edith, S., et al. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Biomaterials, 2000;21:2361-2370
    
    4 Shin, H., Jo, S., Mikos, A.G. Biomimetic materials for tissue engineering. Biomaterials, 2003,24:4353-4364
    
    5 Robin, A.Q., Martyn, C. D., Saul J. B. et al Controlling Biological Interactions with Poly(lactic acid) by Surface Entrapment Modification. Langmuir, 2001,17:2817-2820
    
    6 Hidenori, O., Yukio, N., Kazunori, K. Surface Characterization of Functionalized Polylactide through the Coating with Heterobifunctional Poly(ethylene glycol)/Polylactide Block Copolymers. Biomacromolecules, 2000,1:39-48
    
    7 Yang, J., Bei, J., Wang, S. Improving cell affinity of poly(D,Llactide) Film modified by anhydrous ammonia plasma treatment. Polym Adv Techno, 2002,13:220-226.
    
    8 Chu, P. K., Chen, J.Y., Wang, L.P., et al. Plasma-surface modification of biomaterials. Mater Sci Eng R, 2002,36:143-206.
    
    9 Dinga, Z., Chena, J., Gaoa, S., et al. Immobilization of chitosan onto poly-1-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials, 2004,25:1059-1067
    
    10 Nam, Y.S., Yoon, J.J., Lee, J.G., et al. Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process. J. Biomat Sci Polym E, 1999,10:1145-1158
    
    11 Croll, T.I., O'Connor, A.J., Stevens, G.W., et al. Controllable Surface Modification of Poly(lactic- co-glycolic acid) (PLGA) by Hydrolysis or Aminolysis I: Physical, Chemical, and Theoretical Aspects. Biomacromolecules, 2004,5:463-473
    
    12 Cao, Y., Croll, T.I., Cooper-White, J.J., et al. Production and surface modification of polylactide-based polymeric scaffolds for soft tissue engineering; In Biopolymer Methods in Tissue Engineering; Hollander, A. P.; Hatton, P. V., Eds.; Humana Press: Totowa, NJ, 2003.
    
    13 Tsuji, H., Nakahara, K. Poly(L-lactide). IX. Hydrolysis in Acid Media. J Appl Polym Sci, 2002,86:186-194.
    
    14 Lee, S.J., Khang, G., Lee, Y.M., et al. Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces. J Biomater Sci Polym Ed, 2002,13:197-212.
    
    15 Khang, G., Choee, J.H., Rhee, J.M., et al. Interaction of different types of cells on physicochemically treated poly(L-lactideco-glycolide) surfaces. J Appl Polym Sci, 2002,85:1253-1262.
    
    16 Tsuji, H., Mizuno, A., Ikada, Y. Blends of aliphatic polyesters. III. Biodegradation of solution-cast blends from poly(L-lactide) and poly( ε -caprolactone). J Polym Sci Part A: Polym Chem, 1998,70:2259-2268.
    
    17 Tsuji, H., Mizuno, A., Ikada, Y. Enhanced crystallization of poly (L-lactide-co-caprolactone) during storage at room temperature. J Appl Polym Sci, 2000,76:947-953.
    
    18 Tsuji, H., Ikada, Y. Properties and morphology of poly(l-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution. Polym Degrad Stab, 2000,67:179-189.
    
    19 Tsuji, H.; Nakahara, K. Ikarashi, K., Poly(L-Lactide), 8. High-Temperature Hydrolysis of Poly(L-Lactide) Films with Different Crystallinities and Crystalline Thicknesses in Phosphate-Buffered Solution. Macromol Mater Eng, 2001,286:398-406.
    
    20 Tsuji, H.; Miyauchi, S. Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer, 2001,42:4463-4467.
    
    21 Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci, 1999, 81: 167-249.
    22 Vargha-Butler, E. I., Kiss, E., Lam, C. N. C., et al. Wettability of biodegradable surfaces. Colloid Polym Sci, 2001, 279: 1160-1168.
    1 Desai, N.P., Hubbell, J.A. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials, 1991,12:144-153.
    
    2 Desai, N.P., Hubbell, J.A. Surface physical interpenetrating networks of poly (ethylene terephthalate) and poly (ethylene oxide) with biomedical application. Macromolecules, 1992,25:226-232.
    
    3 Quirk, R.A., Davies, M.C., Tendler, S.J.B., et al. Controlling biological interactions with poly (lactic acid) by surface entrapment modification. Langmuir, 2001,17:2817-2820.
    
    4 Zhu, H., Ji, J., Lin, R., et al.Surface engineering of poly(D,L-lactic acid) by entrapment of chitosan-based derivatives for the promotion of chondrogenesis. J Biomed Mater Res. 2002,62:532-539.
    
    5 Zhu, H., Ji, J., Shen, J. Surface Engineering of Poly(dl-lactic acid) by Entrapment of Biomacromolecules. Macromol Rapid Commun, 2002,23:819 - 823
    
    6 Cai, K.Y., Yao, K.D., Cui, Y. L., et al. Influence of different surface modification treatments on poly(d,l-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials, 2002,23:1603-1611
    
    7 Cui, Y. L., Hou, X., Qi, A.D., et al. Biomimetic surface modification of poly (L-lactic acid) with gelatin and its effects on articular chondrocytes in vitro. J Biomed Mater Res, 2003,66:770-778,
    
    8 Cui, Y. L., Qi, A.D., Liu, W.G., et al. Biomimetic surface modification of poly(l-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials, 2003,24:3859-3868
    
    9 Chen, X.G., Park, H.J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, 2003,53:355-359.
    
    10 Moedritzer, K., Irani, R.R., The Direct Synthesis of a-Aminomethylphosphonic Acids. Mannich-Type Reactions with Orthophosphorous Acid. J Org Chem, 1966,31:603-1607
    
    11 Heras, A., Rodri'guez, N.M., Ramos, V., et al. N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydrate Polymers, 2001,44:1-8.
    
    12 Ramosa, V.M., Rodri'guez, N.M., Daz, M.F., et al. N-methylene phosphonic chitosan. Effect of preparation methodson its properties. Carbohydrate Polymers, 2003,52:39-46.
    
    13 Ge, H.C., Luo, D.K. Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydrate Research, 2005,340:1351-1356.
    1 Mann, S. Principles and concepts in bioinorganic materials chemistry. Biomineralization, Oxford University Press, 2001
    
    2 Simkiss, K., Wilbur, K.M. Biomineralization—cell biology and mineral deposition. San Diego, CA: Academic Press; 1989. p.284-293.
    
    3 Mann, S. Molecular recognition in biomineralization. Nature, 1988,332:119-124.
    
    4 Calvert, P., Mann, S. The negative side of crystal growth. Nature, 1997;386:127-128.
    
    5 Hayakawa, S., Tsuru, K., Ohtsuki, C, et al. Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid. J Am Ceram Soc, 1999,82:2155-2160.
    
    6 Peaker, A.J.S., Czernuszka, J.T. The effect of electric field on the formation of hydroxyapatite coatings. Thin film Solid, 1996,287:174-183.
    
    7 Yamashita, K., Oiawa, N., Umegaki, T. Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem Mater, 1996,8:2697-2700.
    
    8 Sato, K., Kumagai, Y., Tanaka, J. Apatite formation on organic monolayers in simulated body environment. J Biomed Mater Res, 2000,50:16-20.
    
    9 Tanahashi, M., Matsuda, T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res, 1997,34:305-315.
    
    10 Buckwalter, J,A., Glimcher,M.J.,Cooper, R.R., Bone biology. Part II: Formation, form, modeling, remodeling, and regulation of cell function. J Bone Joint Surg-Am,1995,77:1256-1275
    
    11 Raj, P.A., Soni, S.D., Levine, M.J. et al. Membrane-induced helical conformation of an active candidacidal fragment of salivary histatins.J Biol Chem, 1992,267:5968-5976
    
    12 Clark, R.H., Campbell, A.A., Klumb, L.A., et al.Protein Electrostatic Surface Distribution Can Determine Whether Calcium Oxalate Crystal Growth is Promoted or Inhibited. Calcif Tissue Int 1999,64:516-521.
    
    13 Addadi, L., Weiner, S. Interactions between Acidic Proteins and Crystals: Stereochemical Requirements in Biomineralization. Proc Natl Acad Sci, 1985,82:4110-4114.
    
    14 George, A., Bannon, L., Sabsay, B., et al. The Carboxyl-terminal Domain of Phosphophoryn Contains Unique Extended Triplet Amino Acid Repeat Sequences Forming Ordered Carboxyl-Phosphate Interaction Ridges That May Be Essential in the Biomineralization Process. J Biol Chem. 1996, 271:32869-32873.
    
    15 Ylanen, H., Karlsson, K.H., Itala, A., et al. Effect of immersion in SBF on porous bioactive bodies made by sintering bioactive glass microspheres. J Non-Cryst Solids, 2000,275:107-115.
    
    16 Gu, Y.W., Khor, K.A., Cheang, P. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomaterials, 2003,24:1603-1611.
    
    17 Barrere, F., Van Blitterswijk, C.A., De Groot, K., et al. Nucleation of biomimetic Ca-P coatings on Ti6A14V from a SBFA×5 solution: influence of magnesium. Biomaterials ,2002,23:2211-2220.
    
    18 Barrere, F., Van Blitterswijk. C.A., De Groot, K., et al. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFX5 solution. Biomaterials, 2002,23:1921-1930.
    
    19 Kim, H.M., Kishimoto, K., Miyaji, F., et al. Composition and structure of theapatite formed on PET substrates in SBF modified with various ionic activity products. J Biomed Mater Res 1999,46:228-235.
    
    20 Dorozhkin, S.V., Dorozhkina, E.I., Epple, M. Precipitation of carbonate apatite from a revised simulated body fluid in the presence of glucose. J Appl Biomater Biomech, 2003,1:200-207.
    1 Wilson, C.J., Clegg, R.E., Leavesley, D.L., et al. Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 2005,11:1-18.
    
    2 Tsai, W.B., Grunkemeier, J.M., Horbett, T.A. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. J Biomed Mater Res, 1999,44:130-139.
    
    3 Balasubramanian, V., Grusin, N.K., Bucher, R.W., et al. Residence-time dependent changes in fibrinogen adsorbed to polymeric biomaterials. J Biomed Mater Res 1999,44:253-260.
    
    4 Haynes, C.A.; Norde, W. Globular proteins at solid/liquid interfaces. Colloids Surf, 1994, B2:517-566.
    
    5 Ramsden, J.J. Puzzles and paradoxes in protein adsorption. Chem Soc Rev, 1995,24:73-78.
    
    6 Ball, V., Bentaleb, A., Hemmerle, J., et al. Dynamic Aspects of Protein Adsorption onto Titanium Surfaces: Mechanism of Desorption into Buffer and Release in the Presence of Proteins in the Bulk Langmuir, 1996, 12, 1614-1621.
    
    7 Oberhauser,A.F., Fernandez, C.B., Vazquez, M.C. et al.The Mechanical Hierarchies of Fibronectin Observed with Single-molecule AFM. J Mol Biol, 2002,319:433-447.
    
    8 Jansson, E., Tengvall, P. Adsorption of albumin and IgG to porous and smooth titanium. Colloids and Surfaces B: Biointerfaces, 2004,35:45-51.
    
    9 Yu, J.L., Johansson, S., Ljungh, A. Fibronectin exposes different domains after adsorption to a heparinized and an unheparinized poly(vinyl chloride) surface. Biomaterials, 1997,18:421-427.
    
    10 Whittle, J.D., Bullett, N.A., Short, R.D. et al. Adsorption of vitronectin, collagen and immunogiobulin-G to plasma polymer surfaces by enzyme linked immunosorbent assay (ELISA). J Mater Chem, 2002,12:2726-2732.
    
    11 Tanaka, M., Mochizuki, A., Shiroya, T, et al. Study on kinetics of early stage protein adsorption on poly(2-methoxyethylacrylate) (PMEA) surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002,203:195-204.
    
    12 Bergkvist M, Carlsson J, Oscarsson S. Surface dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of atomic force microscopy.J Biomed Mater Res 2003;64A:349-56.
    
    13 Wang, M.S., Palmer, L. B., Schwartz, J.D., et al. Evaluating Protein Attraction and Adhesion to Biomaterials with the Atomic Force Microscope. Langmuir, 2004, 20:7753-7759.
    
    14 Lhoest, J.B., Detrait, E., van den Bosch de Aguilar, P., et al. Fibronectin adsorption, conformation, and orientation on polystyrene substrates studied by radiolabeling, XPS, and ToF SIMS. J Biomed Mater Res, 1998,41:95-103.
    
    15 McArthur, S.L., McLeanm K,M., Griesser, H.J., et al. XPS and surface MALDI-MS characterisation of Worn HEMA-based contact lenses. Biomaterials, 2001;22:3295-304.
    
    16 Friedl, P., Brocker, E.B. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci, 2000,57:41-64.
    
    17 Mostafavi-Pour, Z, Askari, J.A., Parkinson, S.J., et al. Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol, 2003,161:155-167.
    
    18 Kao, W.J. Evaluation of protein-modulated macrophage behavior on biomaterials: Designing biomimetic materials for cellular engineering. Biomaterials, 1999,20:2213-2221.
    
    19 Timpl, R., Tisi, D., Talts, J.F., et al. Structure and function of laminin LG modules. Matrix Biol, 2000,19:309-317.
    
    20 Schenk, S., Hintermann, E., Bilban, M., et al. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J Cell Biol, 2003,161:197-209.
    
    21 E(?)-Ghannam, A., Starr, L., Jones, J., Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6A1-4V implant material in vitro. J Biomed Mater Res, 1998,41:30-40.
    
    22 Preissner, K.T. Structure and biological role of vitronectin. Annu Rev Cell Biol, 1991,7:275-310.
    1 Grinnell, F., Feld, M.K. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem 1982,257:4888-4893.
    
    2 Hayman, E.G., Pierschbacher, M.D., Suzuki, S., et al. Vitronectin—a major cell attachment-promoting protein in fetal bovine serum. Exp Cell Res, 1985,160:245-258.
    
    3 Schneider, G., Burridge, K. Formation of focal adhesions by osteoblasts adhering to different substrata. Exp Cell Res, 1994,214:264-269.
    
    4 Gronowicz, G., McCarthy, M.B. Response of human osteoblasts to implant materials: Integrin-mediated adhesion. J Orthop Res, 1996,14:878-887.
    
    5 Folkman, J., Moscona, A. Role of cell shape in growth control. Nature, 1978,273:345-349.
    
    6 Grinnell, F. Cellular adhesiveness and extracellular substrata. Int Rev Cytol, 1978,53:65-144.
    
    7 Hanein, D., Sabanay, H., Addadi, L., et al. Selective interactions of cells with crystal surfaces: Implications for the mechanism of cell adhesion. J Cell Sci, 1993,104:275-288.
    
    8 Ertel, S.I., Ratner, B.D., Kaul, A., et al. In vitro study of the intrinsic toxicity of synthetic surfaces to cells. J Biomed Mater Res, 1994,28:667-676.
    
    9 Taipale, J., Keski-Oja, J. Growth factors in the extracellular matrix. FASEB J, 1997,11:51-59.
    
    10 Schwartz M.A., Baron, V. Interaction between mitogenic stimuli, or, a thousand and one connections. Curr Opin Biol, 1999,11:197-202.
    
    11 Aplin, A.E., Juliano, R.L. Integrin and cytoskeletal regulation of growth factor signalling to the MAP kinase pathway. J Cell Sci, 1999,112:695-706.
    
    12 Bagambisa, F.B., Kappert, H.F., Schilli, W. Cellularband molecular biological events at the implant interface. J Craniomaxillofac Surg, 1994,22:12-17.
    
    13 Chou, L., Firth, J.D., Uitto, V.J., et al. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci, 1995,108:1563-1573.
    
    14 Singer, I.I., Scott, S., Kawka, D.W., et al. Cell sufrace distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation. J Cell Biol, 1988,106:2171-2182.
    
    15 Hormia, M., KOnOnen, M. Immunolocalization of fibronectin and vitronectin receptors in human gingival fibroblasts spreading on titanium surfaces. J Periodont Res, 1994,29:146-152.
    
    16 Siebers, M.C., ter Brugge, P.J., Walboomers, X.F., et al. Integrins as linker proteins between osteoblasts and bone replacing materials: A critical review. Biomaterials, 2005,26:137-146.
    
    17 Clover, J., Dodds, R.A., Gowen, M. Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J Cell Sci, 1992,103:267-272.
    1. Langer, R., Vacanti, J. E. Tissue Engineering. Science, 1993, 260-920.
    2. Pappas, N. A., Roben, L., New challengen in biomaterials. Science, 1994: 263: 1715-1760
    3 Zund, G., Hoerstrup, S. P., Schoberlein, A., et al. Tissue engineering: a new approach in cardiovascular surgery: seeding of human fibroblasts fowllowed by humen endothelial cells on resorbable mesh. Enr J Cardiothrac Surg, 1998, 13: 160-164.
    4 Shinoka, T., Shun, T. D., Ma, P. X., et al. Creation of Viable pulmonary autografts through tissue engineering. J Thorac Cordiovasc Surgy, 1998, 115: 536-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700