基于小波变换的深空通信图像压缩算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于小波变换的图像压缩算法具有分辨率及保真度可分级性(从有损到无损渐进传输)、较强抗误码性能、低内存空间占用和编解码快速等特点。它能有效缓解图像在深空通信(DSC)存储和传输中,大量占用整个系统有限缓存及带宽资源的矛盾,提高深空探测器处理图像信息量的能力。但DSC传输数据与通常的地面和卫星通信相比有更多的挑战,诸如长距离、非常低的信噪比、高信号衰减延迟和数据毁坏率、不对称带宽等。因此不能简单地把Internet网上的基于小波变换的图像压缩算法(如JPEG2000)直接用于DSC中。
     为此,本文以CCSDS在2005年推出了应用于DSC的基于小波变换的图像压缩标准(简称CCSDS标准)为基础,以DSC与Internet网传输压缩图像中的编解码需求、容错性和数据用途3个不同点展开研究。开始详细介绍了该标准,并通过与JPEG2000算法比较发现,二者虽然有同样的基本结构,但它们之间的小波基、小波变换级数、位平面编码及不同小波系数之间相关性处理都有很大不同。这些不同主要为了降低算法复杂度,从而能减少探测器的功率消耗和寄存器的使用。通过对DSC压缩数据流存储及传输的特殊性问题研究,本文提出适合CCSDS标准特点的4种方法。
     首先提出一种适合CCSDS标准的对整幅图像分块的方法。它能进一步降低探测器缓存溢出及压缩数据流传输过程中的干扰造成地面解码器的错误传播。分割在图像小波变换域进行,在预分割的基础上,各个分块再进行基于图像特征的分割及融合。各个分块是基于多种图像特征(如颜色,频带及纹理等)通过高斯混合模型完成分割,并可根据探测器CPU使用情况选择是否采用ICM及朴素Bayes法则实现联合特征分割。用仿真对分割的结果验证。
     其次提出一种CCSDS标准感兴趣区压缩的算法,并根据标准的速率-失真(R-D)模型及借鉴一种用于语音量化最优分配位的方法,实现了感兴趣区(ROI)与非感兴趣区(NON-ROI)的位优化分配。它根据图像的优先权分区及压缩算法中位平面编码特点,调整ROI与NON-ROI小波系数间位平面相对位置。且为图像分割的每个区域提供最优压缩比,使固定的有限速率下行信道能优化分配发送比特。其CCSDS标准的R-D模型则是基于Mallat关于图像变换域R-D关系的启发,对多幅图像的测试仿真所得。
     然后提出一种对CCSDS标准树形的小波系数重新分组的压缩方法,并根据标准的R-D模型及借鉴一种用于语音量化最优分配位的方法,实现不同分组位优化分配。这种方法不但能实现压缩数据流的鲁棒性传输,且也能达到地面接收图像信息更大化的目的。它把小波系数分成9组独立、交织的位流,并按照最终的信息量最大化原则为每组分配一个优化压缩比。
     最后提出一种CCSDS标准与Turbo码联合解码的方法。它对压缩端没做任何改变,但在信道信噪比不变的情况下,却能降低接收压缩数据流的错误率,该方法尤其适合DSC。它根据CCSDS标准熵编码过程中的残留冗余、不同小波系数之间的相关性,结合Turbo码解码过程中迭代方法、分量码MAP解码中对外信息的使用,实现最终的信源信道联合解码。
The image compression algorithms based on Discrete Wavelet Transformation (DWT) can provide ratings according to the image resolution and fidelity (the progressive transmission from lossy to lossless).And it has stronge anti-mistake coder ability, low memory space taken up and fast coding characteristics. Therefore it can availably abate the conflict that the storage and transmission of images in Deep Space Communication (DSC) largely occupy the limited buffer and channel bandwidth of the whole system, and improve the ability that the explorer deals with the images.But compared with common terra and satellite communications, DSC faces more challenges, such as long distance, very low signal noise ratio, high signal propagation delays and data corruption rates, asymmetric bandwidth and so on.Thus, the image compression algorithms based on DWT in the Internet (such as JPEG2000) can not simply apply to DSC.
     As for it, this paper takes the image compression standards based on DWT that the CCSDS(referred as CCSDS standards) released in 2005 as foundation, studies three dissimilarities of transmitting the images between DSC and the Internet according to user requirements,error containment and data purpose.In the beginning, the CCSDS standards based on DWT is studied in detail.And compared with JPEG2000, although their basic structures are the same, there are different highly about Wavelet Base, DWT Level, Bit Plane Coding and the relativity between the coefficients. As these dissimilarities can lower complications, the power and the usage of the buffer can be lowered on the explorer.Based on studying the special problem that DSC transmit and store compressed bit streams, this paper presentes four methods fit for the characteristic of CCSDS standards.
     Firstly, the image segmentation method is presented that is fit for the CCSDS standards.It can lower the influence that buffer overload and error propagation of the ground decoder because of receiving error compressed bit streams. The segmentation is carried on after image DWT. After pre-segmentation of the image, each block is divided up and fused again.Each block can keep on be partitioned based on the image features (such as color, band and texture etc.) by Gaussian mixture models. Based on the usage of CPU in the explorer, ICM and naive Bayes can be selected to finish the segmentation together.The results are verified by simulation.
     Secondly, the new image compression scheme based on Region of Interest (ROI) is presented that is fit for the CCSDS standards.And according to the Rate- Distortion(R-D) model of CCSDS standards and the method used for voice quantization optimum bit assignment, the optimum bit assignment between ROI and NON Region of Interest (NON-RON) is achieved.Based on the priority partition table of the image and the character of Bit Plane Coding, the opposite position between ROI and NON-ROI is adjusted. Compression rate of each block can be assigned in order to carry out the optimized assignment of transmission bits under the condition of limited and fixed download channel rate. According to the elicitation of the relationship about R-D given by Mallat, R-D model of CCSDS standards is obtained by simulation of several test images.
     Thirdly, the method fit for CCSDS standards is presented.It divides wavelet coefficients of tree structure to different groups. Based on R-D model of CCSDS standards and the method used for voice quantization optimum bit assignment, the optimum bit assignments between different groupings is achieved.It can not only achieve robust transmission of compressed bit streams, but also make the information of image received by the ground more. It groups the wavelet efficients and produces nine independent and interlaced bit streams, and assigns compression ratio for each group so that total information can be maximized.
     Finally, the method of the joint decoding between CCSDS standards and Turbo coder is presented. When signal to noise ratio is invariable, the bit error rate of receiving the compressed bit streams can be lowered even if compression coding do not change at all. Such method is especially fit for the deep space communication.By combining the residual redundancy during entropy encoding and the relativity between the different wavelet coefficients of CCSDS standards with the iterative and the usage of extrinsic information during Turbo decoding, joint decoding can be carried out at last.
引文
1 K. Can, I. S. Egemen, Y. Gokhan, I. Gokhan. Technology Drivers and Challenges for Next Generation Distributed Spacecraft Systems. 2007. RAST'07.3rd International Conference on Recent Advances in Space Technologies, Houston. 2007:503~509
    2 J. W. Layland, L. L. Rauch. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program. TDA Progress Report 42-130, Jet Propulsion Laboratory. August,1997
    3 李平, 张纪生. NASA 深空网(DSN)的现状及发展趋势. 飞行器测控学报. 2003, 22(4):10~17
    4 A. Kiely, R. Manduchi, M. Klimesh. Maximizing Science Return: Data Compression and Onboard Science Processing. IND Technology & Science News. 2002,6: Issue 12
    5 J. H. Yuen. Deep Space Telecommunication Systems Enginneering. New York:Plenum, 1983
    6 C. Berrou, A. Glavieux. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo codes. IEEE Trans. On Communications.1996,44:1261~1271
    7 Consultative Committee for Deep Space Data Systems. Telemetry Channel Coding (101.0-B-6 Blue Book). 2002, Houston, Texas, USA
    8 W. B. Thomas, H. G. Charles, A. B. Edmund. The Lunar Orbiter Telecommunications Systems. IEEE Trans. on Communication Technology. 1967, 15(3):433~443
    9 S. Y. Pen. Implementation of CCSDS Lossless Data Compression for Space and Data Archive Applications. NASA/Goddard Space Flight Center ,pen-shu.yeh@gsfc.nasa.gov
    10 Consultative Committee for Deep Space Data Systems. Lossless Data Compression Recommendation for Space Data Systems Standards (121.0-B-1, Issue 1). 1997, Houston, Texas, USA
    11 Consultative Committee for Deep Space Data Systems. Lossless Data Compression (120.0-G-1 Green Book). 1997, Houston, Texas, USA
    12 W. b. pennebaker, J. L. Mitchel. JPEG Still Image Data Compression Standard. VNR 115 fifth avenue, New york, NY 10003, 1993
    13 L. Ekroot, S. Dolinar, K. M. Cheung. Integer Cosine Transform Compression for Galileo at Jupiter: A Preliminary Look. TDA Progress Report 42-1 15, Jet Propulsion Laboratory, November, 1993
    14 A. Kiely, M. Klimesh. The ICER Progressive Wavelet Image Compressor. IPN Progress Report 42-155. 2003,11
    15 A. Kiely, M. Klimesh, J. Maki. ICER on Mars Wavelet-Based Image Compression for the Mars Exploration Rovers. IND Technology & Science News. 2002,(6):Issue 15
    16 Consultative Committee for Deep Space Data Systems.Image Data Compression (122.0-B-1 Blue Book). 2005,Houston,Texas,USA
    17 姜宏旭, 周孝宽. CCSDS 图像无损压缩标准在恒速信道中的应用研究. 中国空间科学技术. 2003, (5):33~38
    18 宋鹏, 张晓林. 关于 CCSDS 无损数据压缩建议的初步研究. 遥测遥控. 2001, 22(1):8~13
    19 王明远. 空间遥感数据压缩编码技术的发展. 中国航天. 2003, (6):20~22
    20 姜宏旭, 周孝宽. 遥感图像压缩中 CCSDS 标准的应用及 VLSI 实现. 计算机工程及应用. 2004, (15):222~225
    21 刘虹, 孙春燕, 丁雷. 一种基于 RICE 算法的遥感图像数据的实时无损压缩和解压缩算法的研究及 FPGA 实现. 量子电子学报. 2005, 22(1):19~24
    22 S. Mallat. Multifrequency Channel Decompositions of Image and Wavelet Models. IEEE Trans. on ASSP. 1989, 37(12):2091~2110
    23 J. M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coefficients. IEEE Trans. on Image Processing. 1993, 41(12):3445~3462
    24 A. Said and W. A. Pearlman. A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees. IEEE Trans. on Circuits and Systems for Video Technology.1996, 6(8):243~250
    25 C. Chrysafis, A. Said, A. Drukarev, W. A. Pearlman, A. Islam. SBHP-A Low Complexity Wavelet Coder. International Conference on Acoustics, Speech, and Signal Processing. 2000, Istanbul Turkey
    26 F. W. Wheeler, W. A. Pearlman. SPIHT Image Compression without Lists. Proceedings of the IEEE ICASSP 2000. 2000
    27 B-J. Kim and W. A. Pearlman. Low-Delay Embedded Video Coding with SPIHT. Proceedings of SPIE 3309, Visual Communications and Image Processing'98. 1998: 955~964
    28 A. Islam, W. A. Pearlman. An Embedded and Efficient Low-Complexity Hierarchical Image Codec. Proceedings of SPIE3653, Visual Communications and Image Processing’99. 1999, San Jose , CA :Enero
    29 A. Zandi, J. Allen, E. Schwartz. CREW: Compression with Reversible Embedded Wavelets. IEEE Data Compression Conference. 1995:212~221, Snowbird, UT: [s. n.]
    30 W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM Journal of Mathematical Analysis. 1998 ,29(2):511~546
    31 S. D. Servetto, K. Ramchandran. Image Coding Based on a Morphological Representation of Wavelet Data. IEEE Trans. on Image Processing. 1999,8(9):1161~1174
    32 B. B. Chai, J. Vass, X. Zhuang. Significance-Linked Connected Component Analysis for Wavelet Image Coding. IEEE Trans. on Image Processing. 1999,8(6):774~784
    33 D. Taubman. High Performance Scalable Image Compression with EBCOT. IEEE Trans. on Image Processing. 2000, 9(5):1158~1170
    34 M. Rabbani, R. Joshi. An Overview of the JPEG2000 Still Image Compression Standard. Signal Processing: Image Communication. 2002, 17(1):3~48
    35 H. Shih-Ta, J. W. Woods. Embedded Image Coding Using Zeroblocks of Subband/Wavelet Coefficients and Context Modeling. IEEE Int Sysposium on Circuits and System (ISCAS 2000). 2000, (3):662~665, Switzerland:Geneva
    36 O. Joser, P. M. Manuel. Low-Complexity Multiresolution Image Compression Using Wavelet Lower Trees. IEEE Trans. on Circuits and Systems for Video Technology. 2006, 16(11):1437~1444
    37 胡涛, 刘改进. 进一步的EZW改进形式. 计算机工程. 2006, 1(32):221~223
    38 宋好好, 王欣. 一种改进的 SPECK 图像编码算法. 山东大学学报(工学版). 2004, 34(2):51~54
    39 杜伟娜, 周磊, 孙军. 易于硬件实现的内嵌图像编码算法. 红外与激光工程. 2005,34(3):352~355
    40 刘凯, 李云松, 吴成高. 性能的 EBCOT 编码及其 VLSI 结构. 软件学报. 2006, 17(7):1553~1560
    41 C. Christopoulos, J. Askelof, M. Larsson. Efficient Methods for Encoding Regions of Interest in the Upcoming JPEG2000 Still Image Coding Standard. IEEE Signal Processing Letters. 2000, 7(9):247~249
    42 Z. Wang, A. C. Bovik. Bitplane-by-Bitplane Shift (BbBShift): A Suggestion for JPEG2000 Region of Interest Image Coding. IEEE Signal Processing Letters. 2002, 9(5): 162~166
    43 L. J. LIU, G. L. FAN. A New JPEG2000 Region-of-Interest Image Coding Method: Partial Significant Bitplanes Shift. IEEE Signal Processing Letters. 2003, 10(2):35~38
    44 J. XIAO, C. K. WU, J. X. DENG. A Method for ROI Coding in Multispectral Remote Sensing Image Coding System. Journal of Astronautics. 2004, 25(1):13~18
    45 Consultative Committee for Deep Space Data Systems. Telemetry Channel Coding (101.0-B-6 Blue Book).2002,Houston, Texas, USA
    46 K. Andrews, S. Dolinar, D. Divsalar. Design of Low-Density Parity- Check (LDPC) Codes for Deep-Space Applications. IPN Progress Reports 42-159. 2004
    47 Z. M. Liu, M. Y. Zhao, Z. X. Xiong. Efficient Rate Allocation for Progressive Image Transmission via Unequal Error Protection over Finite-State Markov Channels. IEEE Trans. on Signal Processing. 2005, 53(11):4330~4338
    48 T. Nikolaos, V. B. Nikolaos, G. S. Michael. Wireless Image Transmission Using Turbo Codes and Optimal Unequal Error Protection. IEEE Trans. on Image Processing. 2005, 14(11):1890~1901
    49 王永芳, 余松煜. 基于 LDPC 的不均等错误保护 H.264 抗误码算法. 系统工程与电子技术. 2006, 28(11): 1637~1640
    50 K. Sayood, J. C. Borkenhage. Use of Residual Redundancy in the Design of Joint Source/Channel Coders. IEEE Trans. on Communication. 1991, 39(6):838~846
    51 M. Jeanne, J. Claude, P. Siohan. Joint Source-Channel Decoding of Variable-Length Codes for Convolutional Codes and Turbo Codes. IEEE Trans. on Communications. 2005, 53(1):10~15
    52 K. Jeanne, T. Tian, J. Villasenor. Iterative Decoder Design for Joint Source- Channel LDPC Coding. EUROCON2005. 2005, Serbia & Montenegro, Belgrade: 486~489
    53 M. Grangetto, B. Scanavino, G. Olmo, S. Benedetto. Iterative Decoding of Serially Concatenated Arithmetic and Channel Codes with JPEG2000 Applications. IEEE Trans. on Image Processing. 2007, 16(6):1557~1567
    54 [美]Ingrid Daubechies 著, 李建平, 杨万年译. 小波十讲(第一版). 北京:国防工业出版社. 2004:10~50
    55 M. D. Adams, F. Kossentini. Low-Complexity Reversible Integer-to-Integer Wavelet Transforms for Image Coding. Proceedings of IEEE Pacific Rim Conference Communication, Computers, Signal Processing. 1999:177~180
    56 A. K. Jain, R. Duin, J. Mao. Statistical Pattern Recognition: A Review. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2000, 22(1):4~38
    57 T. Y. Wing, J. J. Ya, T. C. Keung. Local Color Transfer via Probabilistic Segmentation by Expectation Maximization. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005 , San Diego, CA,USA: 747~754
    58 K. Popat, R. Picard. Cluster Based Probability Model and Its Application to Image and Texture Processing. IEEE Trans. on Image Processing. 1997, 6 (2):268~284
    59 余彭, 封举富. 基于高斯混合模型的纹理图像分割.中国图象图形学报. 2005, 3(10):281~285
    60 S. Dolinar, A. Kiely, M. Klimesh, R Manduchi, A. Ortega, S. Lee, P. Sagetong, H. Xie, G. Chinn, J. Harel, S. Shambayati, and M. Vida. Region-of-Interest Data Compression with Prioritized Buffer Management. 2001 Earth Science Technology Conference. 2001, College Park,MD
    61 S. Dolinar, A. Kiely, M. Klimesh, R Manduchi, A. Ortega, S. Lee, P. Sagetong, H. Xie, and S. Shambayati. Region-of-Interest Data Compression with Prioritized Buffer Management (II). 2002 Earth Science Technology Conference. 2002, Pasadena, CA
    62 S. Dolinar, A. Kiely, M. Klimesh, R Manduchi, A. Ortega, S. Lee, P. Sagetong, H. Xie, and S. Shambayati. Region-of-Interest Data Compression with Prioritized Buffer Management (III). 2003 Earth Science TechnologyConference. 2003, the University of Maryland Inn and Conference Center
    63 乔玉龙. 小波在纹理图像处理中的应用研究. 哈尔滨工业大学博士学位论文. 2006:2~11
    64 B. Julesz, R. B. Textons. The Fundamental Elements in Preattentive Vision and Perception of Textures. Bell System Technology. 1983, 6:1619~1645
    65 李弼程. 智能图像处理技术. 电子工业出版社. 2004:10~30
    66 R. Mukundan, S. H. Ong, P. A. Lee. Image Analysis by Tchebichef Moments. IEEE Trans. on Image Processing. 2001, 10(9):1357~1364
    67 P. T. Yap, R. Paramesran, S. H. Ong. Image Analysis by Krawtchouk Moments. IEEE Trans. on Image Processing.2003, 12(11):1367~1377
    68 M. Ferraro, G Boccignone, T. M. Caelli. Entropy-based Representation of Image Information. Pattern Recognition Letter.2002, 23(12):1391~1398
    69 C. Santamaria, M.Bober, W. Szajnowski. Texture Analysis Using Level-crossing Statistics. International Conference on Pattern Recognition. 2004, (2):712~715
    70 F. Tomita, S. Tsuji. Computer Analysis of Visual Textures. Kluwer, Norwell, Ma. 1990:40~60
    71 M. Pietikanen, T. Manpaa. Texture Analysis with Local Binary Patterns. In C. H. Chen, P. S. P. Wang (eds.) The Handbook of Pattern Recognition and Computer Vision, World Scientific Publishing Co., 2005:197~216
    72 E. Montiel, A. S. Aguado, M. S. Nixon. Texture Classification via Conditional Histograms. Pattern Recognition Letter. 2005, 26(11):1740~1751
    73 F. M. Vilnrotter, R. Nevada, K. E. Price. Structural Analysis of Natural Textures. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1986,8(1):76~89
    74 J. Hsu, L. C. Liu. C. Li. Determination of Structure Component in Image Texture Using Wavelet Analysis. International Conference on Image Processing. 2001,(3):166~169
    75 R. Urquhart. Graph Theoretical Clustering Based on Limited Neighborhood Set. Pattern Recognition. 1982, 15(3):173~187
    76 N. Ahuja. Dot Pattern Processing Using Voronoi Neighborhood. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1982, 4(3): 336~343
    77 M. Tuceryan, A. K. Jain. Texture Segmentation Using Voronoi Polygons.IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990, 12(2): 211~216
    78 J. Besag. Spatial Interaction and Statistical Analysis of Lattice Systems.Journal Royal Statistical Society Series B. 1974, (48):192~226
    79 G R. Cross, A. K. Jain. Markov Random Field Texture Models. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1983, 5(1):25~39
    80 H. W. Deng, D. A. Clausi. Gaussian MRF Rotation-Invariant Features for Image Classification. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2004, 26(7):951~955
    81 H. Ishikawa. Exact Optimization for Markov Random Fields with Convex Priors. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2003, 25(10):1333~1334
    82 R. Paget. Strong Markov Random Field Model. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2004, 26(13):408~413
    83 B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco. 1983:25~41
    84 A. Pentland. Fractal based description of natural scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1984, 6(6): 661~674
    85 W. L. Lee, Y. C. Chen, Y C. Chen, K. S. Hsieh. Unsupervised Segmentation of Ultrasonic Liver Images by Multiresolution Fractal Feature Vector. Information Sciences. 2005, 175(3):177~199
    86 C. R.Tolle, T. R. McJunkin, D. J. Gorsich. Suboptimal Minimum Cluster Volume Cover-based Method for Measuring Fractal Dimension. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2003, 25(1):32~41
    87 F. Liu. Modeling Spatial and Temporal Textures. Massachusetts Institute of Technology PHD dissertation.1997:37~52
    88 J. M. Francos, A. Narasimhan, J. W. Woods. Maximum Likelihood Parameter Estimation of Textures Using a Wold-decomposition Based Model. IEEE Trans. on Image Processing. 1995, 4(12):1655~1666
    89 Y. Huang, K. L. Chan. Texture Decomposition by Harmonics Extraction from High Statistics. IEEE Trans. on Image Processing. 2004, 13(1):1~14
    90 孟帆, 叶正麟, 潘璐璐. 小波域多尺度 ARMA 模型的纹理分割方法. 计算机工程与应用. 2005, (29):45~47
    91 P. Garcia, M. Petrou, S. Kamata. The Use of Boolean Model for Texture Analysis of Grey Images. Computer Vision and Image Understanding. 1999, 74(3):227~235
    92 J. Besag. On the Statistical Analysis of Dirty Pictures. Journal of Royal Statistic Society (B). 1986, 48(3):259~302
    93 P. Carnevalli, L. Coletti, S. Patarnello. Image processing by simulated annealing. IBM Journal of Research and Development. 1985, 29(6):569~579
    94 J. Kitter, M. Hatef, R. Duin, J. Matas. On Combining Classifiers. IEEE Trans. on PAMI. 1998, 20(3):531~547
    95 D. D. Lewis. Native (Bayes) at forty: The Independence Assumption in Information Retrieval. Proceedings of ECML-98, 10th European Conference in Machine Learning. 1998
    96 A. Nosratinia, J. Lu, B. Aazhang. Source-Channel Rate Allocation for Progressive Transmission of Images. IEEE Trans. on Communication. 2003, 51(2):186~196
    97 D. C. Lee, W. Baek. Expected File-Delivery Time of Deferred NAK ARQ in CCSDS File-Delivery Protocol. IEEE Trans. on Communication. 2004, 52(8):1408~1416
    98 S. Mallat, F. Falzon. Analysis of Low Bit Rate Image Transform Coding. IEEE Trans. on Signal Processing, 1998, 46(4) :1027~1042
    99 Y. Shoham, A. Gersho. Efficient Bit Allocation for an Arbitrary Set of Quantizers. IEEE Trans. on Acoust. Speech and Signal Process. 1988, 36(9):1445~1453
    100 H. Y. Joseph, M. K. Simon, W. Miller. Modulation and Coding for Satellite and Space Communications. Proceedings of the IEEE. 1990, 78(7):1250~1266
    101 C. Vinay, F. Nariman. Progressive Transmission of Image over Memoryless Noisy Channel. IEEE Journal of Selected Areas in Communications. 2000, 18(6):850~860
    102 T. Nikolaos, V. B. Nikolaos, G. S. Michael. Optimized Transmission of JPEG2000 Streams Over Wireless Channels. IEEE Trans. on Image Processing. 2006, 15(1):54~67
    103 D. C. Charles. A New Method of Robust Image Compression Based on theEmbedded Zerotree Wavelet Algorithm. IEEE Trans. on Image Processing. 1997, 6(10):1436~1442
    104 T. Nikolaos, V. B. Nikolaos, G. S. Michael. Wireless Transmission of Images Using JPEG2000. International conference on Image Processing. 2004, Thessaloniki, Greece:2523~2526
    105 A. Nosratinia, J. liu, B. A. Zhang. Source-Channel Rate Allocation for Progressive Transmission of Images. IEEE Trans. on Communications. 2003, 51(2):186~196
    106 P. G. Sherwood, Z. Kenneth. Error Protection for Progressive Image Transmission over Memoryless and Fading Channels. IEEE Trans. on Communications. 1998, 46(12):1555~1559
    107 G. Michael, R. Bixio. Source-Channel Communication with Feedback. ITW2003. 2003, paris,france:279~281
    108 A. B. Brian, B. Benjamin, T. R. Fishcher. Robust Image Transmission Using JPEG2000 and Turbo-codes. IEEE Signal Processing Letters. 2002, 9(4):117~119
    109 J. Hagenauer. Source-Controlled Channel Decoding. IEEE Trans. on Communication. 1995, 43(3):2449~2457
    110 N. Phamdo, N. Farvardin. Optimal Detection of Discrete Markov Sources over Discrete Memoryless Channels—Applications to Combined-Source Channel Coding. IEEE Trans. on Information Theory. 1994, 40(1):86~103
    111 D. J. Miller, M. Park. A Sequence-Based Approximate MMSE Decoder for Source Coding over Noisy Channels Using Discrete Hidden Markov Models. IEEE Trans. on Communication. 1998, 46(3):222~231
    112 T. Fingscheidt, T. Hindelang, R. V. Cox, N. Seshadri. Joint Source-Channel (De-) Coding for mobile Communications. IEEE Trans. on Communication. 2002, 50(2):200~212
    113 M. Adrat, J. M. Picard, P. Vary. Softbit-Source Decoding Based on the Turbo-Principle. IEEE Proceedings of Vehicular Technology the 54th Conference. 2001
    114 Z. S. Peng, Y. F. Huang, J. C. Costello, L. S. Robert. Joint Decoding of Turbo Codes for Subband Coded Image. IEEE Proceedings of Image Processing ICIP 98. 1998:329~333
    115 Z. S. Peng, Y. F. Huang, D. J. Costello. Turbo Codes for Image Transmission-a Joint Channel and Source Decoding Approach. IEEE Journal on Selected Areas in Communication. 2000, 18(6):868~879
    116 J. Kliewer, R. Thobaben. Iterative Joint Source-Channel Decoding of Variable-Length Codes Using Residual Source Redundancy. IEEE Trans. on Wireless Communications. 2005, 4(3):919~929
    117 P. Robertson. Illuminating the Structure of Parallel Concatenated Recursive Systematic (TURBO) Codes. Proc. Globecom'94. 1994, San Francisco,CA:1 298~1303
    118 P. Jung, M. M. Nasshan. Comprehensive Comparison of Turbo-code Decoders. IEEE Proceedings of Vehicular Technology. 1995:624~628
    119 P. Robertson, P. Hoeher, E. Villebrun. Optimal and Sub-Optimal Maximum a Posteriori Algorithm Suitable for Turbo Decoding. European Trans. on Telecommunication. 1997, (8):119~125
    120 K. Andrews, V. Stanton, S. Dolinar, V. Chen, J. Berner, F. Pollara. Turbo-Decoder Implementation for Deep Space Network. IPN Progress Report 42-148. 2002,Jet Propulsion Laboratory,Pasadena,California:1~20
    121 G. Norbert. On the Iterative Approximation of Optimal Joint Source-Channel Decoding. IEEE Journal on Selected Areas in Communication. 2001, 19(8):1662~1670
    122 L. Robert, K. Samir. Optimal Use of Markov Models for DPCM Picture Transmission over Noisy Channels. IEEE Trans. on Communications. 2000, 48(10):1702~1711
    123 W. R. Buccigrossi, E. P. Simoncelli. Image Compression via Joint Statistical Characterization in the Wavelet Domain. IEEE Trans. on Image Processing. 1999, 8(12):1688~1700
    124 M. Adrat, T. Clevorn, J. Brauers, P. Vary. Minumum Terms of Residual Redundancy for Successful Iterative Source-Channel Decoding. IEEE Communications Letters. 2006,10(11):778~780
    125 Z. Liu, L. J. Karam. Mutual Information-Based Analysis of JPEG2000 Contexts.IEEE Trans. on Image Processing. 2005,14(4):411~422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700