纳米吸水树脂的制备及在遇水崩解型聚苯乙烯中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先通过反相乳液聚合制备纳米吸水树脂,讨论影响反相乳液体系稳定性及聚合稳定性的因素,确定了稳定聚合的条件。研究了搅拌速率、油水相质量比、乳化剂用量等对纳米吸水树脂粉末平均粒径、粒径分布的影响,得到了制备较小平均粒径和窄粒径分布吸水树脂粉末的条件,即搅拌速率为800r/min,油水相质量比2:1,Span-80/tween-80复配乳化剂用量为6%,乳化时间为1.5h,丙烯酸溶液的中和度为90%,交联剂、引发剂用量分别为3‰,聚合4.5h。在该条件下制备出平均粒径为55nm的P(AMPS-AANa)吸水树脂粉末。同时研究了聚合工艺、聚合温度、交联剂用量、引发剂用量、丙烯酸中和度和AMPS的用量对吸水树脂的吸水倍率的影响,聚合工艺不同,吸水倍率不同,吸水倍率随着聚合温度的升高先增大后减小,随交联剂、引发剂的用量、丙烯酸中和度和AMPS用量的增大而下降。另外,研究了交联剂用量、AMPS用量对凝胶强度的影响,随交联剂用量或者共聚单体AMPS用量的增加,所得吸水树脂的凝胶强度逐渐增大。DSC测试发现所得吸水树脂水凝胶中含有许多利于WDPS崩解的结合水和束缚水,依据该理论基础研究了该纳米吸水树脂在不同条件下的保水性,发现在恒温、加压、自然条件和土壤高温中保水性良好。
     将纳米吸水树脂粉末在表面活性剂Span-80作用下与苯乙烯在过氧化苯甲酰引发本体聚合过程中共混,制得遇水崩解型聚苯乙烯(WDPS)。该遇水崩解产物黏附吸水树脂水凝胶,具有良好的保水保肥作用,且对环境友好。在实验中探讨了影响WDPS崩解性能的因素。研究发现,吸水树脂的粒径越小、含量越高、凝胶强度越大时,WDPS崩解速度越快且彻底,而聚苯乙烯分子量越高,WDPS越难崩解,当Span-80用量占单体质量3%时,WDPS崩解后粒径均匀,崩解产物为粒径是1~10μm的粉末。在此基础上,对崩解过程的微观机理进行了深入探讨。
     采用“两步法”发泡工艺,制备出遇水崩解型聚苯乙烯泡沫。用显微镜观察了泡沫的泡孔结构,发现添加纳米二氧化硅第二成核剂能够改善泡孔结构。同时对泡沫的密度与壁厚的关系进行了理论分析,为得到遇水崩解性能稳定的泡沫材料奠定了基础。
Nano-particles of water absorbent resin were prepared by inverse emulsion polymerization.Influences of inverse emulsion polymerization on the stability of the emulsion were discussed,and the condition of polymerization was determined.In the inverse emulsion polymerization,affection of stirring rate,weight ratio of oil to water and emulsifier concentration on average particle diameter,particle diameter distribution was studied.Condition of preparing low average particle diameter and narrow particle diameter distribution water-absorbent resin powder was optimized. When stirring rate is 800r/min,weight ratio of oil to water is 2:1,dosage of compound emulsifier is 6%,emulsifing time is 1.5h,and neutralization degree of acrylic acid solution is 90%,both dosage of cross-linking and dosage of initiator are 3‰and polymerization reaction time is 4.5h,the polymerization condition is optimalizing. Water absorbent resin which average particle diameter was 55nm were prepared under this condition.Influence of water-absorbency of nanometer water absorbent resin including polymerization process,polymerization temperature,dosage of cross-linking, dosage of initiator,neutralization degree of acrylic acid and the dosage of AMPS were studied.There was different water-absorbency when polymerization process was different.With the increase of the polymerization temperature,the water-absorbency of nanometer water absorbent resin increased at first and then decreased.With the increase of dosage of cross-linking,dosage of initiator,neutralization degree and the dosage of 2-acrylamido-2-methylpropanesulfonic acid,the water-absorbency decreased.Influence of gel strength included the dosage of cross-linking and the dosage of 2-acrylamido-2-methylpropanesulfonic acid,the more the dosage of cross-linking or the dosage of 2-acrylamido-2-methylpropanesulfonic acid is,the higher the gel strength is.Results show that the prepared water-absorbent resin contains much combined and bound water which can benefit to disintegrating of water-disintegrable polystyrene.Based on this theory,water retention of nano-particles of water absorbent under different conditions were studied.Results show that the water-absorbent resin possesses water retention at constant temperature,pressure, natural conditions and soil t constant high temperature in soil.
     Styrene,surfactant Span-80 and nano-particles of water absorbent resin were mixed and the in-situ blend polymerization of styrene was carried out when the initiator benzoperoxide was added.Results show that the environment-friendly water-disintegrated products adhered water-absorbent resin gel have properties of water and fertilizer retention.The influence of disintegrative was discussed.Results show that with the decrease of the particle diameter of nano-particles of absorbent,the increase of the content nano-particles of water absorbent and the increase of the gel strength of the water absorbent,the decrease of molecular weight,the disintegrative performance improved.The polystyrene disintegrated into even particle size which diameter was 1~10μm when the dosage of span-80 is 3%.Based on this studies,the disintegrative microscopic mechanism was further discussed.
     The water-disintegrable polystyrene foam was prepared by "two-step" process. The cell structure of foam was observed by microscope and the result shows that the cell structure was improved by adding second nucleating agent such as nano- SiO_2.At last the theory research of relationship between bubble hole density and wall thickness which can be helpful for preparing stable disintegrable foam.
引文
[1]张洪涛,黄锦霞,乳液聚合新技术及应用[M],北京:化学工业出版社,2007。102-135
    [2]Vanderhoff J W,Inverse emulsion polymerization[J],Advancesin Chemistry Serises,USA,1962,34:32-51
    [3]胡金生,曹同玉,刘庆普等,乳液聚合[M],北京:化学工业出版社,1987。35-63
    [4]胡金生,高分子材料科学与工程[J],1985,(1):34-43
    [5]Dimonie M V,Boghina,Marinescu,et.al.Inverse Suspension Polymerization of Acrylamide[J]Eur Polym,1982,18:639-647
    [6]]Graillt C,Pichot C,Film formation with latex particles[J],Colloid & Polymer Science,1992,270(8):806-821.
    [7]Glukhikh V.J,Graillat.C,Pichot.C,Inverse Emulsion Polymerization of Acrylamide.2.Acid[J]Polym Sci Polym Chem,1987,25:1127-1161.
    [8]Brown J M.Specialist Periodical Reports[J],Colloid Sci,1979,3,.259.
    [9]Xuewu Ge,Qiang Ye.et al.Radiation Copolymerization of Acrylamide and Cationic Monomer in an Inverse Emulsion[J],J.Appl.polym.sci,1998,39(10):1917-1920
    [10]Xu Zushun,Chen Yuanchun,Zhang Gueijun,The inverse emulsion polymerization of acrylamide using polystyrene-graft-polyoxyethylene as the stabilizer[J],Journal of Polymer Science,2000,37(15):2719-2725
    [11]Baade W,Reichert K H.Kinetics of the dispersion polymerization of acrylamide[J].Eur Polym J,1984,20(5):505-521
    [12]黄鹏程,二甲基二烯炳基氯化铵反相乳液聚合动力学及机理的研究[J],化学学报,1996,54(3):209-221
    [13]Zushun Xu,Changfeng Yi,Shiyuan Cheng,et.al,The inverse emulsion polymerization of acylamid eosing poly(methylmethacrylate) -graft- polyoxyethylene as the stabilizer[J],Journal of Applied Polymer Science,2001,79(3):528-534
    [14]Kurenkov V F.Khabibullina G Z,Zaitseva N N,Radical Copolymerization of Sodium 2-Acrylamido-2-methyl-2-propanesulfonate with N-Vinyl-2-pyrrolidone in Water and Aqueous Salt Solutions[J],Russian Journal of Applied Chemistry,2002,75(11):1855- 1858
    [15]Pei-Yun Jiang,Zhi-Cheng Zhang,Man-Wei Zhang,Kinetic Analysis of 60Coγ-Ray Initiated Inverse Emulsion Polymerization of Sodium Acrylate Solutions[J],Macromolecules,1996,29:6710-6716
    [16]Jose Hernandez-Barajas,David J.Hunkeler,Inverse-emulsion polymerization of acrylamide using block copolymeric surfactants:mechanism,kinetics and modeling[J],Polymer,1997,38(2):437-447
    [17]何平,谢洪泉,侯笃冠等,有关反相乳液聚合法制备聚丙烯酸增稠剂的几个问题[J],高分子材料科学与工程,2002,18(3):172-175
    [18]田大听,谢洪泉,丙烯酸/丙烯酰胺/甲基丙烯酸十六酯三元共聚合成缔合型增稠剂[J], 石油化工,2002,31(10):834-836
    [19]S.Tamil Selvan,A.Mani,K.Athinarayanansamy,K.L.N.Phani S.Pitichuumani,Synthesis of crystalline polyaniline[J],Materials Research Bulletin,1995,30(6):699-705
    [20]刘春秀,章悦庭,反相乳液聚合及其应用[J],金山油化纤,2003,22(2):22-28
    [21]Candau F,Zekhnini Z,Characterization of poly(acrylamide-co-acrylates) obtained by inverse microemulsion polymerization[J],Colloid & Polymer Science,1986,264(8):676-682
    [22]徐相凌,张志成,丙烯酸钠反相乳液聚合[J],高分子学报,1998(2):135-138
    [23]李建颖,高吸水与高吸油性树脂[M],北京:化学工业出版社,2005。3-7
    [24]温品谦二.有机合成化学.1980,38(6)
    [25]Sunada K,Kikuchi Y,Hashimoto K,et al.Environ Sci Technol,1998,32:726-7321
    [26]Flory PJ.Principles of Polymer Chemistry,New York:Cornell Univ.Prcss,1953
    [27]林润雄,黄毓礼,高吸水性树脂吸水机理的探讨[J],北京化工大学学报,1998,25(3):22-25
    [28]朱秀林,程振平,大粒径高吸水性树脂的合成及性能研究[J],高分子材料科学与工程,1998,14(3):32-35
    [29]李平,修国华,反相悬浮聚合反应制备高吸水性聚丙烯酸钠[J],精细石油化工,1998,4:20-23
    [30]徐昆,陈强,项盛等,两性纳米复合高吸水性树脂的结构与性能[J],高等学校化学学报,2006,27(12):2417-2421
    [31]王勇,刑凯华,邓雷等,柿单宁-丙烯酸系纳米级吸水树脂[J],功能材料,2008,39(8):1406-1409
    [32]陈雪萍,朱耕宇,黄志明等,NaAA吸水性树脂凝胶强度的研究[J],塑料工业,2003,31(4):32-34
    [33]范力仁,沈上越,夏开胜等,超强吸水性蒙脱石/聚丙烯酸钠复合材料的研究[J],矿物岩石:2005,25(3):88-90
    [34]王燕,杨鸿剑,王水云,复合聚丙烯酰胺凝胶体系的研究[J],新疆石油学院学报,2003,15(4):54-57
    [35]朱友良,吾国强,具有“核-壳”结构吸水树脂的合成[J],塑料,2005,34(1):23-26
    [36]柳明珠,江洪申,高强度超强吸水剂研究[J],兰州大学学报(自然科学版),2002,38(2):106-110
    [37]邹新喜,超强吸水剂[M],北京:化学工业出版社,2000。25-28
    [38]张京珍,泡沫塑料成型工艺[M],北京:化学工业出版社,2000。10-83
    [39]应宗荣,降解性高分子材料的研究开发进展[J],现代塑料加工应用,1999,12(1):40-43
    [40]崔小明,赵惠萍,我国苯乙烯生产消费现状及市场前景[J],中国石油和化工,2004(2):61-63
    [41]王国建,环境友好高分子材料与现代城市生活[J],徐州建筑职业技术学院学报,2005,5(1):7-10
    [42]于善普,徐福贵,刘玉勇等,遇水崩解型环境友好高分子共混材料及其制取方法[P],中国,CN1523055A,2003
    [43]金峰,水崩解性聚苯乙烯/聚丙烯酸钠共混物的制备、性能及其发泡研究,[学位论文]青岛:青岛科技大学,2005
    [44]田健,遇水崩解型聚苯乙烯的制备、性能及其发泡研究,[学位论文]青岛:青岛科技大学,2008
    [45]Mungai V W,Corneron J A,Modifying polymer/biological system interaction through controlled oxidation[J],Polym.Perpr.,1989,30(1):505-506
    [46]戈进杰,生物降解高分子材料及其应用[M],北京:化学工业出版,2002,285-343
    [47]约翰·沙伊斯,聚合物回收-科学、技术与应用[M],北京:化学工业出版社,2004。205-216
    [48]曹同玉,聚合物乳液合成原理性能及应用[M],北京:化学工业出版社,2007。45-66
    [49]汉斯.莫利特,阿诺德.顾本门著,杨光译,乳液、悬浮液、固体配合技术与应用[M],北京:化学工业出版社:2004:78
    [50]官建国,何平,谢洪泉等,丙烯酸反相乳液聚合稳定性的研究[J],石油化工,1994,23(8):514-519
    [51]秦增全,尹宝霖,丙烯酰胺与烯丙基磺酸钠的共聚合[J],高分子材料科学与工程,2004,10(2):73-77
    [52]Yabin Zhu,Bingyin Pu,Jianli Zhang,et.al,Synthesis of Anti-Salt Absorbent Resins and Studies of Reaction Mechanism[J],J.Appl.Poly.Sci.,2001,79(3):572-574
    [53]潘祖仁,高分子化学[M],北京:化学工业出版社,2007。149-150
    [54]张洪涛,黄锦霞,乳液聚合新技术及应用[M],北京:化学工业出版社,2007
    [55]朱友良,吾国强,具有“核-壳”结构吸水树脂的合成[J],塑料,2005,34(1):23-26
    [56]陈密峰,张秀娟,反相悬浮法合成高耐盐性的超强吸水剂[J],精细化工,2002,19(9):544-547
    [57]朱秀林,程振平,大粒径高吸水性树脂的合成及性能研究[J],高分子材料科学与工程,1998,14(3):32-35
    [58]钱欣,濮阳楠,高吸水性树脂聚丙烯酸钠盐制备工艺研究[J],功能高分子学报,1997,10(2):184-188
    [59]大森英三,丙烯酸酯及其聚合物Ⅰ[M],北京:化学工业出版社,1985。36
    [60]张娜,遇水崩解型聚苯乙烯的制备及其性能研究,[学位论文]青岛:青岛科技大学,2007
    [61]于善普,丙烯酸系增稠剂的合成聚合动力学及性能的研究,[学位论文]上海:上海大学,2000
    [62]朱学文,AMPS和丙烯酸共聚合反应及应用研究,[学位论文]广东:广东工业大学,2002
    [63]John Scheirs,Modern Styrenic Polymers:Polystyrenes and Styrenic Copolymers[M],Wiley Interscience onlinebook,2003。
    [64]Krammer E J,Berger L L,Fundamental processes of craze growth and fracture[J],Adv.Polym.Sci.,1990,91/92:1-68
    [65]孔磊等,纳米碳酸钙含量对PS发泡塑料泡孔形态的影响,中国塑料[J],2006,20(2):78-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700