金纳米颗粒生物探针的制备及其在生物医学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,球形金纳米颗粒和金纳米棒以其独特的物理化学性质如在光学方面的局部表面等离子体共振的优越特性以及良好的生物相容性、简便有效的表面修饰等特性受到了人们广泛的关注,并使其在生物传感器、药物输送、肿瘤细胞的靶向诊断与治疗方面等领域都开展了广泛的研究与应用。
     本文采用晶种生长法制备了阳离子表面活性剂十六烷基三甲基溴化胺(CTAB)保护的金纳米棒,并用带有负电荷的聚电解质聚丙烯酸(PAA)修饰其表面,通过静电吸引的方式用于承载具有正电荷的抗肿瘤药物阿霉素(DOX),从而得到了基于金纳米棒的药物载体。随后,我们研究了这种金纳米棒药物载体在前列腺癌DU145细胞治疗中的作用。此外,我们又提出了一种新的合成方法,利用半乳糖胺(D-galactosamine)一步还原氯金酸(HAuCl4),得到了能主动靶向识别肝癌细胞的新型金纳米颗粒探针。制备方法简单易行,产物尺寸均一、单分散性好,通过调节溶液的pH值就可以控制金颗粒的尺寸。在此基础上,我们又成功的将这种半乳糖保护的金纳米颗粒探针用于检测蓖麻凝集素RCA120 ,此方法的检测限达到2 ng/mL。本文所用的表征方法主要包括透射电子显微镜、荧光显微镜、紫外可见分光光度计和荧光分光光度计等。
In recent years, spherical gold nanoparticles (GNPs) and gold nanorods (GNRs) have gained increasing interest owing to their unique physical and chemical properties, such as excellent optical property in localized surface plasmon resonance (LSPR), good biocompatibility, easy and efficient surface modification. Many applications in various fields in biosensing, drug delivery and site-specific diagnostic and therapy in cancer have been developed.
     Herein, water-soluble GNRs were synthesized via a well-established seed-mediated method, using the cationic surfactant cetyltrimethylammonium bromide (CTAB) as a capping agent. To employ as a carrier for drug delivery, the surfaces of GNRs were modified with thioled poly(ethylene glycol) SH-PEG and negatively charged polyelectrolyte polyacrylic acid (PAA) to get the stable GNRs probes in different solutions with negative charged surfaces. Then positively charged anti-cancer drug, doxorubicin, was loaded onto the surfaces of GNRs via electrostatic attraction. Drug-loaded PEG-PAA-GNRs probes was carried out for the treatment of prostate cancer DU145 cells, demonstrating that the GNRs probes can serves as a promising carrier for drug delivery. In addition, we developed a novel one-pot method to fabricate monodispersed GNPs by reducing HAuCl4 with galactosamine. The method was easy to operate and the size of GNRs can be simply controlled by changing the pH of solution. Furthermore, the as-prepared GNPs were successfully utilized as a novel bioprobe for the rapid and sensitive detection of ricin agglutinin RCA120 with the detection limit of 2 ng/mL. The characterization method used here are transmission electron microscopy (TEM), fluorescence spectrophotometer, fluorescence microscopy, UV-Vis spectrophotometer, and etc.
引文
[1] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J].
    [2] Nie S, Eniory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106. Nature Biotech, 2001, 19: 365-370.
    [3] Imahori H, Fukuzumi S. Porphyrin monolayer-modified gold clusters as photoactive materials
    [4] Weiss S. Fluorescence spectroscopy of single biomolecules[J]. Science, 1999, 283(5408): 1676-1683. [J]. Adv Mater, 2001, 13(15): 1197-1199.
    [5] Rosi N L, Mirkin C A. Nanostructures in Biodiagnostics[J]. Chem Rev, 2005, 105(4): 1547-1562.
    [6] Biroccio A, Leonetti C, Zupi G. The future of antisense therapy: combination with anticancer treatments[J]. Oncogene, 2003, 22(42): 6579-6588.
    [7] Stahel R A, Zangemeister W U. Antisense oligonucleotides for cancer therapy an overview[J]. Lung Cancer, 2003, 41: S81-S88.
    [8] White L K, Wright W E, Shay J W. Telomerase inhibitors[J]. Trends in biotechnology, 2001, 19(3): 114-120.
    [9] Rosi N L, Giljohann D A, Mirkin C A, et al. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation[J]. Science, 2006, 312(5776): 1027-1030.
    [10] Li C Z, Male K B, Hrapovic S, et al. Fluorescence properties of gold nanorods and their application for DNA biosensing[J].Chem Commun, 2005, 31: 3924-3926.
    [11] Wang C G, Chen Y, Wang T T, et al. Biorecognition-Driven Self-Assembly of Gold Nanorods: A Rapid and Sensitive Approach toward Antibody Sensing[J]. Chem Mater, 2007, 19(24): 5809-5811.
    [12] Stone J W, Sisco P N, Goldsmith E C, et al. Using Gold Nanorods to Probe Cell-Induced Collagen Deformation[J]. Nano Lett, 2007, 7(1): 116-119.
    [13] Marinakos S M, Chen S, Chilkoti A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor[J]. Anal Chem, 2007, 79(14): 5278-5283.
    [14] Chen C C, Lin Y P, Wang C W, et al. DNA?Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation[J]. J Am Chem Soc, 2006, 128(11), 3709-3715.
    [15] Zhang J L, Du J M, Han B X, et al. Sonochemical formation of single-crystalline gold nanobelts
    [16] Li C C, Shuford K L, Cai W P, et al. High-yield synthesis of single-crystalline gold nano-octahedra[J]. Angew Chem, 2007, 119(18): 3328-3332. [J]. Angew Chem , 2006, 45(7): 1116-1119.
    [17] Chen J Y, Li X D, Xia Y N, et al. Gold nanocages: bioconjugation and their potential use as opticalimaging contrast agents
    [18] Grabar K C, Allison K J, Baker B E, et al. Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal Surfaces[J]. Langmuir, 1996, 12(10): 2353-2361. [J]. Nano Lett, 2005, 5(3): 473-477.
    [19] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601): 2176-2179.
    [20] Sun Y G, Xia Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium[J]. J Am Chem Soc, 2004, 126(12): 3892-3901.
    [21] Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J]. Langmuir, 2001, 17(22): 6782-6786.
    [22] Li C C, Shuford K L, Cai W P, et al. High-yield synthesis of single-crystalline gold Nano-octahedra[J].
    [23] Sau T K, Murphy C J. Angew Chem, 2007, 119(18): 3328-3332. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution[J]. J Am Chem Soc, 2004, 126(28)
    [24] Kwon K, Lee K Y, Kim M J, et al. High-yield synthesis of monodisperse polyhedral gold nanoparticles with controllable size and their surface-enhanced Raman scattering activity[J]. Chem Phys Letters, 2006, 432: 209-212. : 8648-8649.
    [25] Hornyak G L, Stockert J A, Martin C R, et al. Optical properties of composite membranes containing arrays of nanoscopic gold cylinders[J]. J Phys Chem, 1992, 96(19): 7497-7499.
    [26] Turkevitch J, Stevenson P C, Hillier J. A study of the nucleation and growth process in the synthesis of colloidal gold[J]. Discuss Faraday Soc, 1951, 11: 55-75.
    [27] Van Bergen en Henegouwen P M, Leunissen J L. Controlled growth of colloidal gold particles and implications for labelling efficiency[J]. Histochemistry and Cell Biology, 1986, 85(1): 81-87.
    [28] Creighton J A, Blatchford C G, Albrecht M G. Plasma resonance enhancement of Ranan scattering by pyridine adsorbed on silver or gold Sol particles of size comparable to excitation wavelength[J]. J Chem Soc Faraday Trans, 1979, 75: 790-798.
    [29] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241(5384): 20-23.
    [30] Muller C, Baigent C L. Antigen controlled immuno diagnosis‘ACID test’[J]. J Immunol Methods, 1980, 37(2): 185-190.
    [31] Brown K R, Natan M J. Hydtoxylamine seeding of colloidal Au nanoparticles in solution and on surfaces[J]. Langmuir, 1998, 14(4): 726-728.
    [32] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv Mater, 2001, 13, 1389-1393.
    [33]朱健,王永昌,王勤.胶体金纳米颗粒的荧光光谱特性[J].光子学报, 2003, 32(3): 58-62.
    [34] Wilconxon J P, Williamson R L, Baughman R. Optical properties of gold colloids formed in inverse micelles[J]. J Chem Phys, 1993, 98: 9933-9950.
    [35] Mallick K, Wang Z L, Pal T. Seed-mediated successive growth of gold particles accomplished photochemical approach for size-controlled synthesis[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2001, 140(1): 75-80.
    [36] Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles[J]. Langmuir, 1996, 12(3):788-800.
    [37] Li T, Liu D J, Wang Z X. Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes[J]. Biosensors and Bioelectronics, 2009, 24(11): 3335-3339.
    [38] Gao J Q, Liu D J, Wang Z X. Microarray-Based Study of Carbohydrate-Protein Binding by Gold Nanoparticle Probes[J]. Anal Chem, 2008, 80(22): 8822-8827.
    [39] Zhang Z Y, Ross R D, Roeder R K. Preparation of functionalized gold nanoparticles as a targeted X-ray contrast agent for damaged bone tissue[J]. Nanoscale, 2010, 2: 582-586.
    [40] Li G P, Li D, Wang E K, et al. One-Step Synthesis of Folic Acid Protected Gold Nanoparticles and Their Receptor-Mediated Intracellular Uptake[J]. Chem Eur J, 2009, 15(38): 9868-9873.
    [41] Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer[J]. Nanotoday, 2007, 2(1): 18-29.
    [42] Elghanian R, Storhoff J J, Mirkin C A, et al. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles[J]. Science, 1997, 277(5329): 1078-1081.
    [43] Yu Y Y, Chang S S, Wang C R C, et al. Gold nanorods: electrochemical synthesis and optical properties[J]. J Phys Chem B, 1997, 101(34): 6661-6664.
    [44] Chang S S, Shih C W, Chen C D, et al. The shape transition of gold nanorods[J]. Langmuir, 1999, 15(3): 701-709.
    [45] Martin C R. Nanomaterials: A Membrane-Based Synthetic Approach[J]. Science, 1994, 266(5193): 1961-1965.
    [46] Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods[J]. J Am Chem Soc, 2002, 124(48): 14316-14317.
    [47] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J].
    [48] Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metalsurface plasmon resonance and its enhancement of the radiative andnonradiative properties of nanocrystals of different shapes[J]. Chem Soc Rev, 2006, 35: 209-217. J Phys Chem B, 2001, 105(19): 4065-4067.
    [49] Bonoiu A C, Mahajan S D, Ding H, et al. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons[J]. PNAS, doi/10.1073/pnas.0901715106.
    [50] Li Z M, Huang P, Cui D X, et al. RGD-Conjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy[J]. Mol Pharmacol, 2010, 7(1): 94-104.
    [51] Durr N J, Larson T, Smith D K, et al. Two-photon luminescence imaging of cancer cells usingmolecularly targeted gold nanorods[J]. Nano Lett, 2007, 7(4): 941-945.
    [52] Park J H, Maltzahn G V, Sailor M J, et al. Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery[J]. Adv Mater, 2010, 22(8): 880-885.
    [53] Wang C G, Chen J J, Irudayaraj J, et al. Gold Nanorod/Fe3O4
    [54] Wang C G, Irudayaraj J. Multifunctional Magnetic–Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens[J]. small, 2010, 6(2): 283-289. Nanoparticle“Nano-Pearl-Necklaces”for Simultaneous Targeting, Dual-Mode Imaging, and Photothermal Ablation of Cancer Cells[J]. Angew Chem, 2009, 48(15): 2759-2763.
    [1]张阳德.纳米生物技术学[M].北京:科学技术出版社, 2004. 25-26.
    [2] Arruebo M, Ibarra M R, Santamar J, et al. Magnetic nanoparticles for drug delivery[J]. Nano Today, 2007, 2(3): 22-32.
    [3] Derfus A M, Maltzahn G. V, Harris T J, et al. Remotely Triggered Release from Magnetic Nanoparticles[J]. Adv Mater, 2007, 19(22): 3932-3936.
    [4] Kohler N, Sun C, Zhang M Q, et al. Methotrexate-Immobilized Poly(ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery[J]. Small, 2006, 2(6): 785-792.
    [5] Alexiou C, Schmid R J, Parak F G, et al. Targeting cancer cells: magnetic nanoparticles as drug carriers[J]. Eur Biophys J, 2006, 35(5): 446-450.
    [6] Jain T K, Morales M A, Sahoo S K, et al. Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents[J]. Mol Pharmacol, 2005, 2(3): 194-205.
    [7] Wang X M, Zhang R Y, Wu C H, et al. The application of Fe3O4
    [8] Yu M K, Jeong Y Y, Park J, et al. Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo[J]. Angew Chem, 2008, 47(29): 5362-5365. nanoparticles in cancer research: A new strategy to inhibit drug resistance[J]. J Biomed Mater Res Part A, 2007, 80(4): 852-860.
    [9] Guo S J, Li D, Wang E K, et al. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery[J]. Biomaterials, 2009, 30(10): 1881-1889.
    [10] Connor E E, Murphy C J, Wyatt M D, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3): 325-327.
    [11] Ghosh P, Han G, Rotello V M, et al. Gold nanoparticles in delivery applications[J]. Adv Drug Deliv Rev, 2008, 60(11): 1307-1315.
    [12] Huang X, El-Sayed I H, El-Sayed M A, et al. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy[J]. Nanomedicine, 2007, 2(5): 681-693.
    [13] Stone J W, Sisco P N, Murphy C J, et al. Using gold nanorods to probe cell-induced collagen deformation[J]. Nano Lett, 2007, 7(1): 116-119.
    [14] Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size[J]. Colloids Surf B Biointerfaces, 2008, 66(2): 274-280.
    [15] Elbakry A, Zaky A, Breunig M, et al. Layer-by-Layer Assembled Gold Nanoparticles for siRNA Delivery[J]. Nano Lett, 2009, 9(5), 2059-2064.
    [16] Rex M, Hernandez F E, Campiglia A D. Pushing the Limits of Mercury Sensors with Gold Nanorods[J]. Anal Chem, 2006, 78(2): 445-451.
    [17] Thomas K G, Barazzouk S, Kamat P V, et al. Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods[J]. J Phys Chem B, 2004, 108(35): 13066-13068.
    [18] Huang X H, El-Sayed I H, El-Sayed M A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods[J]. J Am Chem Soc, 2006, 128(6): 2115-2120.
    [19] Li C Z, Male K B, Luong J H T, et al. Fluorescence properties of gold nanorods and their application for DNA biosensing[J]. Chem Commun, 2005, 31: 3924-3926.
    [20] Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light[J]. Chem Commun, 2005, 17: 2247-2249.
    [21] Nikoobakht B, El-Sayed M A. Surface-enhanced Raman scattering studies on aggregated gold nanorods[J]. J Phys Chem A, 2003, 107(18): 3372-3378.
    [22] Liao H W, Hafner J H. Gold Nanorod Bioconjugates[J]. Chem Mater, 2005, 17(18): 4636-4641.
    [23] Pérez-Juste J, Liz-Marzán L M, Mulvaney P, et al. Gold nanorods: synthesis, characterization and applications[J]. Coord Chem Rev, 2005, 249(17-18): 1870-1901.
    [24] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J Phys Chem B, 2001, 105(19): 4065-4067.
    [25] Y. Y. Yu, S. S. Chang. C. L. Lee, C. R. C. Wang, Gold nanorods: electrochemical synthesis and optical properties [J]. J Phys Chem B, 1997, 101(34): 6661-6664.
    [26] Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J]. J Phys Chem B, 1999, 103(16): 3073-3077.
    [27] Imura K, Nagahara T, Okamoto H. Plasmon mode imaging of single gold nanorods[J]. J Am Chem Soc, 2004, 126(40): 12730-12731.
    [28] Cortesi R, Esposito E, Menegatti E, et al. Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA[J]. Int J Pharm, 1996, 139(1-2): 69-78.
    [29] Mirska D, Schirmer D, Brezesinski G, et al. Biophysical and biochemical properties of a binary lipid mixture for DNA transfection[J]. Colloids Surf B, 2005, 40(1): 51-59.
    [30] Alaaldin M, Murphy C J, Wyatt M D. Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects[J]. Small, 2009, 5(6): 701-708.
    [31] Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-Mediated growth method[J]. Chem Mater, 2003, 15(10): 1957-1962.
    [1]董守安,唐春. DNA识别、生物传感器和基因芯片中的纳米金和银粒子[J].贵金属, 2005, 26(1): 55-61.
    [2] Sun Y, Khang D Y, Hua F, et a1. Photolithographic poute to the fabrication of micro/nanowires of III-V semiconductors[J]. Adv Funct Mater, 2005, 15(1): 30-40.
    [3] Gittins D I, Bethell D, Schiffrin D J, et a1. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups[J]. Nature, 2000, 408: 67-69.
    [4] Cotri C W, Holliday R J. Commercial aspects of gold applications: from materials science to chemical science[J]. Gold Bull, 2004, 37(1/2): 20-26.
    [5] Haruta M. Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications[J]. Gold Bull, 2004, 37(1/2): 27-36.
    [6] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J].
    [7] Imahori H, Fukuzumi S. Nature Biotech, 2001, 19: 365-370. Porphyrin monolayer-modified gold clusters as photoactive materials
    [8] Faulk W P, Taylor G M. Communication to the editors: An immunocolloid method for the electron microscope[J]. Immunochemistry, 1971, 8(11): 1081-1083. [J]. Adv Mater, 2001, 13(15): 1197-1199.
    [9] Yang P H, Sun X, Chiu J F, et al. Transferrin-Mediated Gold Nanoparticle Cellular Uptake[J]. Bioconjugate Chem, 2005, 16(3): 494-496.
    [10] Csaki A, Moller R, Fritzsche W. Gold nanoparticles as novel label for DNA diagnostics[J]. Expert Rev Mol Diagn, 2002, 2(2): 187-193.
    [11] Hainfeld J F, Slatkin D N, Smilowitz H M. The use of gold nanoparticles to enhance radiotherapy in mice[J]. Phys Med Biol, 2004, 49: N309-N315.
    [12] Mukherjee P, Ahmad A, Mandal D, et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis[J]. Nano Lett, 2001, 1(10): 515-519.
    [13] Mukherjee P, Ahmad A, Mandal D, et al. Bioreduction of AuCl4- Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed[J]. Angew Chem Int Ed, 2001, 40(19): 3585-3588.
    [14] Huang H Z, Yang X R. Synthesis of Chitosan-Stabilized Gold Nanoparticles in the Absence/Presence of Tripolyphosphate[J]. Biomacromolecules, 2004, 5(6): 2340-2346.
    [15] Huang H Z, Qiang Y, Yang X R. Morphology study of gold–chitosan nanocomposites[J]. J Colloid Interface Sci, 2005, 282(1): 26-31.
    [16] Qi Z M, Zhou H S, Matsuda N, et al. Characterization of Gold Nanoparticles Synthesized Using Sucrose by Seeding Formation in the Solid Phase and Seeding Growth in Aqueous Solution[J]. J Phys Chem B, 2004, 108(22): 7006-7011.
    [17] Mucic R C, Storhoff J J, Mirkin C A, et al. DNA-Directed Synthesis of Binary Nanoparticle Network Materials[J]. J Am Chem Soc, 1998, 120(48): 12674-12675.
    [18] Basu N, Bhattacharya R, Mukherjee P. Protein-mediated autoreduction of gold salts to gold nanoparticles[J]. Biomed Mater, 2008, 3(3): 034105.
    [19] Raveendran P, Fu J, Wallen S L. Completely“Green”Synthesis and Stabilization of Metal Nanoparticles[J]. J Am Chem Soc, 2003, 125(46): 13940-13941.
    [20] Li G P, Li D, Wang E K. One-Step Synthesis of Folic Acid Protected Gold Nanoparticles and Their Receptor-Mediated Intracellular Uptake[J]. Chem Eur J, 2009, 15(38): 9868-9873.
    [21] Schofield C L, Mukhopadhyay B, Russell D A, et al. Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles[J]. Analyst, 2008, 133: 626-634.
    [22] Takae S, Akiyama Y, Kataoka K. Ligand Density Effect on Biorecognition by PEGylated Gold Nanoparticles: Regulated Interaction of RCA120 Lectin with Lactose Installed to the Distal End of Tethered PEG Strands on Gold Surface[J]. Biomacromolecules, 2005, 6(2): 818-824.
    [23] Otsuka H, Akiyama Y, Kataoka K, et al. Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified withα-Lactosyl-ω-mercapto-poly(ethylene glycol)[J]. J Am Chem Soc, 2001, 123(34): 8226-8230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700