含氟类锂离子电池电解质的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,锂离子电池被看作是未来可充电池市场中最佳的替代电池。究其原因主要是锂电池的能量密度高,寿命长,单体电压和比能量高。作为可靠环保的能源已经在小型的电源驱动设备中得以应用。这也促使锂电池的研究慢慢成为科学领域的一个焦点。锂离子电池电解质是锂离子电池的一个相当重要的组成部分,在锂电池充放电过程中,有机溶剂与电解质组成的电解液充当着锂离子电池的“心脏”,决定了电荷的传送速度和效率。因此,对于锂离子电池电解质的研究也显得格外重要。由于邻苯二酚,3-氟邻苯二酚,四氟邻苯二酚,乙二酸中含有的氧负离子能够与硼形成大的螯合阴离子,该阴离子与锂离子结合后可以生成锂硼盐,这种锂硼盐具有较好的电化学性能。
     论文共分五章。
     第一章通过文献调研,概括介绍了锂离子电池及其组成部分的研究现状及发展前景。
     第二章含氟类锂硼盐化合物的合成及其表征。主要是通过核磁共振对合成的锂硼盐进行表征,说明了目标产物的生成。
     第三章对合成的含氟类锂硼盐进行电化学性质的研究。主要是从溶解度,电导率,热稳定性,氧化电位方面进行数据分析,研究含氟类锂硼盐的电化学和热力学方面的性质。
     第四章利用DFT研究方法,对LBDCB及其衍生物进行了理论研究,分析了此类锂盐的分子结构与电子结构。从理论上阐述了该类锂盐的热稳性、溶解性、导电性及电化学稳定性与分子结构关系的本质。
     第五章结论。通过大量实验和测试结果比较得到一种电导率和氧化电位都比较高的含氟类锂硼盐,展望锂电池的商业前景。
     本论文最终成功合成了两种新的含氟类锂硼盐,我们对这两种新合成的锂硼盐的结构,热力学和电化学性质分别做了测试和数据分析,研究结果表明合成的两种锂硼盐都有较好的溶解性,较高的电导率和氧化电位,再结合理论计算通过对比分析,全面而系统的阐述了本课题的主要内容。
The lithium-ion battery possess high operating voltage, high specific capacity and energy density which was compared to other secondary batteries. The lithium-ion battery is one of the most active research fields in modern science. Because the dihydroxybenzene and the oxalic can form an integration anion with B, they assemble new lithium salts combining with the lithium ion which should have novel structure and a good electrichemical property.
     The lithium-ion battery is seen as one of the best alternative batteries in the rechangeable battery market in the future. The reason is mainly on the lithium batteries which possess the high energy density, long life, high operating voltage and high specific capacity. As a reliable energy, the lithium-ion battery has been applied in small driven devices.
     The thesis is divided into five chapters.
     In the first chapter, on the basis of the large investigation of documents and analysis of summarizations, we found many lithium borates with bigπbond which is good for making up molecular designer, self-assembly more easily.
     In the second chapter, a series of lihium borates are synthesized which included Lithiumbis[1,2-benzenediolato(2)-O,O'-4-cyclopentene-1,2,3-trione] borate (LBDCB), Lithium[3-fluoro-1,2-benzenediolato(2-)-o,o'-4-cyclopentene-1,2,3-trione]borate (FLBDCB), Lithium[fourfluoro-1,2-benzenediolato(2-)-o,o'-4-cyclopentene-1,2,3-trione]borate(PFLBDCB). They were characterized by NMR analysis.
     In the third chapter, electrochemical properties of lithium borates salts with fluorine were studied. The experiment data of lithium borates had been tested by TG and cyclic voltammetry (CV) in PC, the solubility had been tested by ICP and the conductivity had been tested in different organic solvents such as PC, PC+EMC, PC+DME, PC+EC+EMC, PC+EC+DME.
     In the fourth chapter, using of the DFT methods, we carried on detailed theoretical researches on lithium salt LBDCB and its derivatives, and analyzed molecular structure and electronics structure of this kind of lithium salts. We also elaborated the essence of the relationships between the property (thermal stability, solubility, electric conductivity, and electrochemical stability window) and the structure.
     In the fifth chapter, we had succeeded in synthesizing three kinds of lithium salts. The data of experiments and tests showed that these lithium salts had higher conductivity and higher oxidized potential. Perhaps they are better electrolytes and have a great deal of uses in the field of lithium-ion batteries.
     In short, the structures and properties of three kinds of synthesized lithium salts had been studied in this thesis. The experimental results showed that these lithium salts might have better commercial prospects.
     Keywords:fluorine, croconic acid, lithium borates, electrochemical properties
引文
[1]周恒辉,等.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94.
    [2]宋文顺.化学电源工艺学[M].北京:中国轻工业出版社.1998.1-2.
    [3]刘景,温兆银,吴梅梅,等.锂离子电池正极材料的研究进展[J].无机材料学报,2002,17(1):1-9.
    [4]路密等,锂离子电池负极石墨材料的修饰与改性,电池,2001.
    [5]钱湛芬等,炭素工艺学,冶金工业出版社,2001.
    [6]刘建生,等.二次锂离子电池电解质研究的进展.广东有色金属学报:2001,11(2):1-2.
    [7]Reichardt C.有机化学中的溶剂效应M.唐培,谢周,陈之基,林吉文译.北京:化学工业出版社,1987.
    [8]Sylla S,Sanchez J Y,Armand M.Insertion Electrode Materials for Lithium Batteries[J].Journalofthe Electrochemical Society,2004,151(4):A632-A638.
    [9]韩景立,于燕梅,陈健,等.锂离子电池电解液低温导电性能的研究[J].电化学,2003,9(2):222-227.
    [10]Tarascon J M,Guyoard D.Capacity Fade of Li1+xMn2-xO4-Based Lithium-Ion Cell,[J].Solid State Ionics,1994,69:293-305.
    [11]Botte G G, White R E, Zhang Z. Journal of Power Sources, 2001,97-98:570-573.
    [12]Sloop S E, Puugh J K, Wang S et al. Electrochemical and Solid-State Letters,2001,4(4):A42-A44.
    [13]MacNeil D D, Dahn J R. J. Electrochem. Soc.,2001,148(11): A1211-A1215.
    [14]MacNeil D D, Dahn J R. J. Electrochem. Soc.,2001,148(11): A1205-A1210.
    [15]郭炳,徐徽,王先友,肖立新.锂离子电池M.长沙:中南大学出版社,2002.
    [16]Chen Y G,Wang C G,Zhang X Y,et al. Synthetic Metals.2003, 135-136:225-226.
    [17]Zhang S S,Angell C A. J. Electrochem Soc.1996,143(12):4047-4053.
    [18]韩景立, 刘国庆.锂离子电池电解质溶剂的研究J.电化学,2000,6(1):116-118.
    [19]Sasaki Y, Handa M,Sekjya S,et al. J. Power Sources,2001,97-98.
    [20]Barthel J,Buestrich R,Carl E,et al.J. Electrochem Soc,1996,143(11):3572-3575.
    [21]陈猛,史鹏飞,程新鲜.塑料锂离子电池研究概况[J].电池,2000,30(3):129-132.
    [22]郭炳焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002.
    [23]Zagahib K,Armand M,Gauthier M.Electrochemistry of Anodes in solid-state Li-ion polymer batteries[J].J.Electroche-mistry Soc,1998,(9):3135-3140.
    [24]Du Pasquier A,Disma F,Bowmer T,et al.Diffrential scanning calorimetry study of carbon anodes in plastic Li-ion batteries[J]J.Electrochem Soc,1998,(2):472-477.
    [25]丁黎民,董绍俊,汪尔康.高分子固体电解质研究进展[J].电化学,1997,(4):349-361.
    [26]Angell C A,Liu C,Sanchez E,Nature,1993,362(11):137-139.
    [27]赵峰,钱新明,汪尔康.离子导电聚合物的研究[J].化学进展2002,9:374-383.
    [28]Choi B K,Shin K H,Kim Y W.Lithium ion conduction in PEO-salt electrolytes gelled with PAN[J].Solid State Ionics,1996,113-115:123-127.
    [29]Lee Kyoung-Hee,Park.Jung-Kim,etal.Electrochemical characteristics of PAN ionomer based polymer electrolytes[J].Electuochim.Acta,2000,45:1301-1306.
    [30]Song J Y,Wang Y Y.Review of gel-type polymer electrolytes for lithium-ion batteries[J].J.PowerSources,1999,77(1):183-197.
    [31]Gozdz A.S,J.M.Tarascon,et al,Performance of Bellcore's plastic rechargeable Li-ion batteries.[J].Solid State Ionics,1996,86-88:49-54.
    [32]A.Magistris,E.Quartarone,P.Mustarelli,Y.Sato,H.Kataoka,PVDF-based porous polymerelectrolytes for lithium batteries[J]J.Solid State Ionics,2002,152-153:347-354.
    [33]Qiao Shi,Mingxin YU,Xiao Zhou,Yushun Yan,Chunrong Wan,,Structure and performance ofporous polymer electrolytes based on P(VDF-HFP)for lithium ion batteries[J] 2002,102:286-292.
    [34]钱新明,古宁宇,程志亮等.碳酸乙烯酯(EC)增塑的(PEO)16LiCl04聚电解质电导率的研究[J].北京大学学报(自然科学版),2001,37(2):182—186.
    [35]赵莹歆,刘昌炎.一种新型固体电解质的导电性的研究[J].电化学,1999,5:94—98.
    [36]流路,王久林,解晶莹等.P(VdF-HFP)-PMMA聚合物固体电解质的研究[J]功能材料与器械学报,2003,9:8-12.
    [37]李德湛,盘毅,谢凯,刘邻,纳米SiO2改性聚合物锂离子电池的研究[J]国防科技大学学报2003,25,19-23.
    [38]Dolye M, Choi S K. [J]. J. Electrochem. Soc.,2000,147:34-37.
    [39]M. A. J. Georgia, R. R. William, B. De A. Wagner, F. D. S. Helio. Theoretical analysis of the oxocarbons:structure and spectroscopic propert-ies of croconate ion and its coordination compound with lithium[J]. Phys.Chem.,2001,3:3499.
    [40]Jiri Spevacek, Jiri Brus, Jiri Dybal. Solid-State 13C NMR and DFT Qua-ntum-Chemical Study of Polymer Electrolyte Poly(2-ethyl-2-oxazoline)/AgCF-3SO3 [J].American Chemical Society,2005, 38 (12):5083-5087.
    [41]Z.M.Xue,C.H.Chen, Density functional theory study on lithium bis[1,2-benzenediolato(2-)-O,O] borate and its derivatives:electronic structures, ener-gies and molecular properties[J].Electrochimica Acta, 2004,49 5167-5175.
    [42]C.J.Cramer,G.R.Fmaini,A.H.Lowrey.Use of calculated quantum chemical Properties as surrogates for solvatochromic parameters in structure-activity relationships[J].Acc.Chem.Res.,1993,63:1533.
    [43]Z. M. Xue, C.H. Chen, Density functional theory study on lithium bis[1,2-benzenediolato(2-)-O,O] borate and its derivatives:electronic structures, energies and molecular properties[J].Electrochimica Acta,2004,49: 5167-5175.
    [44]Rey,I.Johansson,P.Lindgren,J.Lassegues. Spectroscoopic and theoretical study of (CF3SO2)2N-(TFSI-) and (CF3SO2)2NH(HTFSI)[J], Phys. Chem., 1998,102(19):3249-2289.
    [45]J.Adebahr, P. Johansson, P. Jachobsson.Ab initio calculations, Raman and NMR investigation of the plastic crystal di-methyl pyrrolidinium iodide[J].Electrochim.acta,2003,48:2283-2289.
    [46]Z.M.Xue,C.H.Chen, Density functional theory study on lithium [1,2-be-nzenediolato(2-)-O,O] borate and its derivatives:electronic structures, energies and molecular properties[J].Electrochimica Acta,2004, 49:5167-5175.
    [1]Barthel J,M.Muhr,R.Buestrich, H J.Gores. A New class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. I.synthesis and properties of lithium bis [1,2-benzenediolato (2)-O,O']borate[J].Electrochem Soc,1995,142(8):2527-2531.
    [2]Wu Xu, C. Auster Angell. LBOB and Its Derivatives Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions[J]. Electrochemical and Solid-State Letters,2001,4(1):1-4.
    [3]Barthel J,Schmid A,Gores H J. A New class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. I.synthesis and
    properties of lithium bis[2,3-pyridinediolato(2)-O,O]borate[J].Electrochem. Soc,2000,147(1):21-24.
    [4]Wu Xu, C.Auster Angell. LBOB and Its Derivatives Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions[J].Electrochemical and Solid-State Letters,2001,4(1):1-4.
    [5]Barthel J,Schmidt M, Gores H J. Lithium bis[5-fluoro-2-olato-1-benzene sulfonato (2-)-O,O'] borate (12),a new anodically and cathodically stable salt fdr electrolytes of lithium2ion cells[J].Elec-trochem Soc,1998,145(2):17-20.
    [6]Tapas Kumar Maji, Debajyoti Ghoshal, Ennio Zangrando, JoanRibas,Nirmalendu Ray. A novel 2D mixed valence copper(Ⅰ/Ⅱ) rectangular grid constructed with pyrazine and croconate[J]. CrystEngComm,2004,6(101):623-626.
    [7]Jagannath Panda,Peter R Virkler, Michael R Detty.A Comparison of Linear Optical Properties and Redox Properties in Chalcogenopyrylium Dyes Bearing Ortho-Substituted Aryl Substituents and tert-Butyl Substituents[J]. Org Chem. 2003,68(5):1804-1809.
    [8]Luisa Calatayud,Isabel Castro,Jorunn Sletten,Juan Cano,Francesc Lloret,Juan Faus,Miguel Julve,Gunther Seitz, Klaus Mann. Coordination Modes of the 1,3-Dithiosquarate (1,3-dtsq) Ligand. Syntheses, Crystal Structures, and MagneticPropertiesof[Ni(tren)(1,3-dtsq)(H2O)]and[Ni2(tren)2(1,3-dtsq)](ClO4)2-[tren]Tris(2-aminoethyl)amine] [J]. Inorganic Chemistry. 1996,35(10):2857-2865.
    [9]Wietelmann,et al. Lithium bisoxalatoborate,the production thereof and its use as a conducting salt[P].CA:02336323.
    [1]Gunther Seitz,Peter Imming.Oxocarbons and Pseudooxocarbons[J].Chemical Reviews,1992,92(6):1228-1337
    [2]Lucimara R.,Martins, Mauro C,C. Molecular Dynamics Simulations of the Squarate Dianion (C4O42-) in Aqueous Solution[J].Phys Chem.,2002,106(21):5493-5499
    [3]David R, Tallant, Dennis H. Application of Studies of the Infrared Internal Reflection Electrochemical Reduction[J].Electroanal Chem.,1967,14:834-838
    [4]赵铭姝.锂离子电池正极材料LiMn2O4及其相关材料的制备与理论研究[D].东北大学博士论文,2002
    [5]M. J. Sisley, R. B. Jordan.Kinetic and Equilibrium Studies of Complexes of Aqueous Iron(Ⅱ1) and Squaric Acid, Inorganic Chemistry [J].1991,30(9): 2190-2195
    [6]Tina M. Morwick,Leo A. Paquette. Combined Addition of Alkenyl and Allenic Anions to Squarate Esters. Direct Competition between Six-Ring and Eight-Ring Electrocyclization of 1,2,4,6,8-Cumulenic Pentaenes[J].Org Chem.,1997,62(3): 627-635
    [7]Solomon Jacobson, Richard Pizer.Multidentate Lewis Acids:Theoretical Study of Anion Binding by Organoboron Macrocyclic Hosts[J].Am ChemSOC., 1993,115(24):11216-11221
    [8]Richard Pizer, P. J. Ricatto. Thermodynamics of Several 1:1 and 1:2 Complexation Reactions of the Borate Ion with Bidentate Ligands[J].11B NMR Spectroscopic Studies' anic Chemistry.1994,33(11):2402-2406
    [9]Pavel I. Kitov, David R. Bundle. On the Nature of the Multivalency Effect:A thermodynamicmodel[J].AM.CHEM.SOC,2003,125; 16271-16284
    [10]Werner Uhl,Malte Prott. Insertion von Rhodizonsaure in die Galliumbzw. Indium-Indium-Bindungen von Digallan(4)- bzw. Diindan(4)-Verb indungen-Z[J].Inorg Chem.,2002,628:2259-2263
    [11]Alexander J.Fatiadi. Pseudooxocarbons. Synthesis of 1,2,3-Tris (dicyano methyl-lene) croconate Salts. A New Bond-Delocalized Dianion, Croconate Blue[J].Org.
    Chem.1980,45(7):1338-1339
    [12]Isabel Castro, Jorunn Sletten, Juan Faus.Exchange Interaction through a Croconato Bridge:Synthesis,Crystal Structure, and Magnetic Properties of (h-Croconato) bis[(bis(2-pyridylcarbonyl)amido)copper(Ⅱ)] Trihydrate[J]. Inorg. Chem.,1992,31(10):1889-1894
    [13]Paul-Louis Fabre Fre'de'ric Dumestre, Brigitte Soula, Anne-Marie Galibert. Spectroelectrochemical behaviour in dimethylformamide of pseudo-oxocar bons dianions derived from the croconate dianion[J].Electrochimica Acta., 2000,45:2697-2705
    [14]Lowell M. Schwmtr, Robert. Gelb.Janet. Yardley Aqueous Dissociation of Croconic Acid[J].Physical Chemistry,1975,79(21):2246-2253
    [15]David Eggerding, Robert West.Synthesis and Properties of Deltic Acid (Dihydroxycyclopropenone) and the Deltate Ion[J].American Chemical Society, 1976,98(12):3341-3345
    [16]Yukio Sasaki,Minoru Handa. Application of Lithium Organoborate with Salicylic Ligand to Lithium Battery Electrolyte[J]. Electrochemical Society.2001,148(9): 999-1003
    [1]N. Nanbu, K. Tsuchiya, T. Shibazaki, Y. Sasaki.Lithium Tris(3-fluoro-1,2-benzenediolato(2-)-O,O')phosphate as a Novel Lithium Salt
    for Lithium BatteryElectrolytes[J].Electrochem. Solid-State Lett.,2002,5(9): A202
    [2]M. Handa, M. Suzuki, J. Suzuki, H. Kanematsu, Y. Sasaki.A New LithiumSalt with a Chelate Complex of Phosphorus for Lithium Battery Electrolytes[J]. Electrochem. Solid-State Lett.,1999,2(2):60
    [3]X. M. Wang, E. Yasukawa, S. Kasuya. J.Lithium imide electrolytes with two-oxygen-atom-containing cycloalkane solvents for 4 V lithium metal rechargeable batteries[J].Electrochem. Soc.,2000,147(7):2421
    [4]Wu. Xu, C. A. Angell.LiBOB and its derivatives, weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions [J].Electrochem. Solid-State Lett.,2001,4(1):E1
    [5]J.Barthel, A.Schmid, H.J.Gores.A new class of electrochemically and thermall-y stable lithium salts for lithium battery electrolytes V. Synthesis and prop-erties of lithium bis[2,3-pyridinediolato(2)-O,O']borate [J].Electrochem. Soc.,2000,147(1): 21
    [6]J. Barthel, R. Buestrich, H. J. Gores, M.Schmidt and M.Wu hr. A NewClass of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes[J].Electrochem. Soc.,1997,144:3866
    [7]J. Barthel, M.Wuhr. R. Buestrich, H. J. Gores. J.A New Class of Electroch-emically and Thermally Stable Lithium Salts for Lithium Battery Electrolyt-s[J]. Electrochem. Soc.,1995,142(8):2527
    [8]J. Barthel, R. Buestrich, E. Carl, H. J. Gores, J.A New Class of electrochemically and thermally stable Lithium Salts for Lithium battery electrolyies.conductivity of Lithium organoborates in dimethoxyethane and propylene carbonate. [J] Electrochem. Soc.,143(11) (1996) 3572
    [9]M. Handa, S. Fukuda, Y. Sasaki, K. Usami, J.Use of a Chelate Complex with Boron as a Lithium Salt for Lithium Battery Electrolyte[J].Electrochem.Soc.,1997, 144(9):L235
    [10]J. Barthel, R. Buestrich, H. J. Gores, M. Schmidt, M. Wu,J.A New Classof Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes[J].Electrochem. Soc.,1997,144:3866
    [11]W. Xu and C. A. Angell,Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions[J].Electrochem. Solid-State Lett., 2001,4; E1
    [12]M. Ue, A. Murakami, S. Nakamura. J. Anodic Stability of Several AnionsExamined by Ab Initio Molecular Orbital and Density Functional Theories[J].Electrochem. Soc.,2002,14(12):A1572
    [13]K. Tasaki.Computational Study of Salt Association in Li-Ion Battery Electr-olytes[J].Electrochem. Soc.,2002,149(4):A418
    [14]P. Johansson, S. P. Gejji, J. Tegenfeldta, J. Lindgren.The imide ion:pote-ntial energy surface and geometries[J].Electrochim. Acta,1998,143(10-11): 1375
    [15]Zhao-Ming Xue, Chun-Hua Chen.Density functional theory study on lithium bis[1,2-benzenediolato(2-)-(O, O'] borate and its derivatives:Electronic structures, energies, and molecular properties[J].Electrochim. Acta.2004,49: 5167
    [16]Z. M. Xue, C. H. Chen, Progress in studies of lithium salts for Li-ion ba-ttery in nonaqueous electrolytes [J].化学进展,2005,17(3):399
    [17]Z. M. Xue, B. Liu, C. H. Chen.A theoretical study of electrical and elect-rochemical properties of dicyanomethylene derivatives of squaric acid[J].Electrochim.Acta,2006,51:4554
    [18]Z. M. Xue, J. J. Cheng, C. H. Chen, J.Theoretical study of the gas-phase acidity and aromaticity of a novel derivative of nitrogen squaric acid[J].Molecular Structure:Theochem.2006,763:181
    [19]Z. M. Xue, C. H. Chen.The relationship between structure and electrochemical property of cyanoimino derivatives of squaric acid[J].Molecular Simulation, 2006,32:401
    [20]Z. M. Xue, C. H. Chen.New lithium salts with croconato-complexes of bor-on for lithium battery electrolyte[J].J. Power Sources.
    [21]C. Lee, W. Yang, R. G. Parr.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J].Phys. Rev.B,1988,37:785
    [22]P. J. Hay, W. R. Wadt.Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J].J.Chem.Phys.,1985,82:270
    [23]E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold. NBO Version 3.1
    [24]Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004
    [25]R. Arnaud, D. Benrabah, J.-Y. Sanchez.Theoretical study of CF3SO3Li, (C-F3SO2)2NLi, and (CF3SO2)2CHLi ion pairs[J].J.Phys.Chem.,1996,100: 10882
    [26]J. S. Francisco, I. H. Williams.Structural and spectral consequences of ion pairing.4. Theoretical study of BF4-M+(M=Li, Na, K, and Rb) [J].J. Phys. Chem.,1990,91:8522
    [27]M. Spoliti, N. Sanna, V. J. Di Martino.Ab initio study on the MBF4 and MAlF4 molecules[J].Mol. Struct.1992,258:83
    [28]F. Ramondo, L. Bencivenni, R. Caminiti, C. Sadun, Ab initio SCF study on LiC104 and Li2SO4 molecules:Geometries and vibrational frequencies [J].Chem. Phys.,1991,151:179
    [29]A.E. Reed, L.A. Curtiss, F. Weinhold.Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J].Chem. Rev.,1988,88:899.
    [30]R. G. Pearson. Proc. Natl. Acad. Sci. USA,1996,89:1827
    [31]D. J. Tozer, F. De Proft. J.Computation of the hardness and the problem of negative electron affinities in density functional theory[J].Phys. Chem. A, 2005,109:8923
    [32]C. J. Cramer, G. R. Famini, A.H. Lowrey.Use of calculated quantum che-mical properties as surrogates for solvatochromic parameters in structureactivity relationships [J]. Acc. Chem. Res.1993,26:599
    [33]M. Ue, S. Mori.Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and y-butyrolactone[J].J. Electroche-m. Soc.,1994,141:3336
    [34]H. H. Horowitz, J. I. Haberman, L. P. Klemann, G. H. Newman, E. L. Stogryn, and T. A. Whitney, in Lithium Batteries, H. V. Venkatasetty, Editor, PV81-4, p.131, The Electrochemical Society Proceedings Series, Pennington, NJ1981
    [35]J. B. Foresman, A. Frisch.Exploring Chemistry with Electronic Structure Methods,2nd ed., Gaussian, Pittsburgh, PA1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700