基于2,7-二溴-9,9-二(4-吡啶甲基)芴构筑的超分子、配位聚合物和纳米氧化铈的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于2, 7-二溴-9, 9-二(4-吡啶甲基)芴(dpfp)建筑块构筑了一系列超分子化合物,通过元素分析、紫外、红外光谱等手段对结构进行了表征,得到了其中四种化合物(dpfp)·NO_3,(dpfp)·ClO_4,(dpfp)·SiF_6和(dpfp)·Br的晶体结构,通过结构分析,比较了不同阴离子对主体结构以及分子内氢键作用力的不同影响。
     基于2, 7-二溴-9, 9-二(4-吡啶甲基)芴与过渡金属离子反应,制备了40余种金属配合物,通过元素分析、红外光谱、紫外光谱及X-射线单晶衍射等手段对配合物进行了结构表征,得到了[Mn(dpfp)_2Cl_2]_n (3a),[Cd_3(dpfp)_6Cl_6]_n (3b),[Cd_4(dpfp)_6(SCN)_8]_n (3c),[Zn(dpfp)Cl_2·2DMF]_n (3d),[Zn_4(dpfp)_2(CH_3COO)8]_n (3e),[Cu_2(dpfp)_2(CH_3COO)_5·2DMF]_n (3f)和[Cd(dpfp)(acac)_2]_n (3g)七种配合物的晶体结构。结构分析显示,它们均表现为具有不同空间构型的新型配位聚合物。其中, (3a),(3b),(3c)具有三维孔洞结构,(3d),(3e)具有一维螺旋结构,(3f)具有双链结构,而(3g)则具有二维菱格状结构。另外,对部分配合物的荧光性质、磁性以及电化学性质也进行了测定研究。
     通过水热法,以聚乙烯吡咯烷酮(K30)为结构控制剂,合成了形貌和尺寸可控的二氧化铈纳米粒子。使用XRD、TEM、SEM、UV-vis等测试手段对产物的物相结构、形貌和纳米尺寸进行了表征。研究了溶剂体系的调变、反应时间的不同对CeO2形貌和尺寸的影响。
A serials of supramolecular compounds based on 4-((2, 7-dibromo-9-((pyridin -4-yl)-methyl)-9H-fluoren-9-yl) methyl) pyridine (dpfp) have been synthesized and characterized by using elemental analysis, IR and UV methods. Four crystal structures of (dpfp)·NO_3, (dpfp)·ClO_4, (dpfp)·SiF_6 and (dpfp)·Br have been obtained. Structural analyses suggest that different anions have different influences on compound structures and intermolecular hydrogen-bond interactions.
     More than forty kinds of metal complexes have been synthesized based on the reactions of 4-((2, 7-dibromo-9-((pyridin-4-yl)-methyl)-9H-fluoren-9-yl) methyl) pyri- dine (dpfp) with transition metallic ions. By using elemental analysis, IR and UV methods, these complexes have been characterized. Seven crystal structures of [Mn(dpfp)_2Cl_2]_n, [Cd_3(dpfp)_6Cl_6]_n, [Cd_4(dpfp)_6(SCN)_8]_n, [Zn(dpfp)Cl_2·2DMF]_n, [Zn_4(dpfp)_2(CH_3COO)_8]_n, [Cu_2(dpfp)_2(CH_3COO)_5·2DMF]_n and [Cd(dpfp)(acac)2]_n have been determined by X-ray single crystal diffraction. Structural analyses reveal that these seven complexes are all novel coordination polymers with different geometric constructions. For instance, (3a), (3b) and (3c) exist as 3D holes; (3d) and (3e) form 1D helical chains; (3f) exhibits as double chains and (3g) aggregates as 2D diamond structures. In addition, for part of the complexes, their fluorescence emission spectra, magnetic properties and electrochemical properties have also been studied.
     Ceria nanoparticles with controllable morphologies and sizes are successfully synthesized via hydrothermal method in the presence of polyvinylpyrrolidone (K30). We have investigated the influence of different solvent ratio and reaction time to the formation of ceria nanoparticles. The as-synthesized samples are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and UV-vis absorption spectrum.
引文
[1] Mohammad. R, Mehdi. P, Mehdi. B, et.al Synthesis and antibacterial activity of some new derivatives of pyrazole, World J Microbiol Biotechnol, 2010, 26: 317-321
    [2] Bakr F. Abdel-Wahab, Hatem A. Abdel-Aziz, Essam M. Ahmed, et.al, Synthesis and antimicrobial evaluation of some 1,3-thiazole, 1,3,4-thiadiazole, 1,2,4-triazole, and 1,2,4-triazolo [3,4-b][1,3,4]-thiadiazinederivatives including a 5-(benzofuran-2-yl)-1-phenylpyrazole moiety Monatsh Chem, 2009, 140: 601-605
    [3] Li rong Yang, Cai yun Shao, Zi liang Wang, et.al, Crystal Structure and Thermode composition Kinetics of Mn(II) Complex with1-Phenyl-3-Methyl-4-Benzoyl-5-Pyrazolone, J Chem Crysta llogr, 2010, 40: 58-63
    [4] Hong-Yu Xia, Guang-Xiang Liu, Sadafumi Nishihara, et.al, Syntheses and Characterizations of Three Cu(II) Complexes with 2, 2′-Bipyridine-3, 3′-dicarboxylate and N-Donor Ancillary Ligands, J Inorg Organomet Poly, 2010, 20: 110-117
    [5] Ibrahim Kani, Yilmaz Aksu, Hydrothermal Synthesis and Crystal Structures of Cd(II)-Based 1D Coordination Polymer and Mn(II) Coordination Complex with Mixed N- and O-donor Ligands: [Cd2(4-4′-bpy)2(pa)4]n·0.25(H2O) and [Mn(4-4′-bpy)2(pa)(H2O)3]ClO4·2(H2O), J Inorg Organomet Polym, 2010, 20: 69-77
    [6] Jian-Rong Li, Ying Tao, Qun Yu, et.al, A pcu-type metal–organic framework with spindle [Zn7(OH)8]6+ cluster as secondary building units,Chemical Communications, 2007, 15: 1527-1529
    [7] Leandro C. Tabares, Jorge A. R. Navarro, et.al, Cooperative Guest Inclusion by a Zeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amine and Group 1 Metal Salts, J Am Chem Soc, 2001, 123: 383-387
    [8]郭向华,班立桐,王永庄,滑菇对不同碳氮源营养源的利用[J].天津农业科学,2002, 8 (3): 4-6.
    [9] Barton J K, Dannenberg J J, Raphael A L., Enantiomeric selectivity in binding tris(phenanthroling)zinc(II) to DNA, [J].J Am Chem Soc, 1982, 104 (18): 4967-4969.
    [10] FemandoS, Delgado, FemandoLahoz, et.a1, Supramolecular Networks in Copper(II)Malonate Complexes, Crystal Growth & Design, 2008, 8 (9): 3219-3232.
    [11] M.R.Arkin, E.D.A.Stemp, R.E.Holrnlin, et.a1, Science, 1996, 273-475.
    [12] Eva Corral, Anna C. G. Hotze, Hans den Dulk, Ruthenium polypyridyl complexes and their modes of interactionwith DNA: Is there a correlation between these interactionsand the antitumor activity of the compounds, J Biol Inorg Chem., 2009, (14): 439-448
    [13] Jie Liu, Jin-Wang Huang, Ping Zhao, et.a1, A novel porphyrin–polypyridyl ruthenium (II) hybrid. Synthesis, characterization and photoinduced DNA cleavage activity, Transition Metal Chemistry, 2006, (31): 1040-1044
    [14] Shuxia Liu, Dehui Li, Linhua Xie, Two-Dimensional Lanthanide Heteropolyvanadates of Manganese(IV) and Nickel(IV) Containing Two Types of Heteropoly Anions with 1:13 and 1:12 Stoichiometry, Inorg. Chem., 2006, 45 (20): 8036-8040
    [15] Yaoqi Li, Lei Xie, Yang Liu, Favorable Hydrogen Storage Properties of M(HBTC)(4, 4′- bipy )·3DMF (M = Ni and Co), Inorg. Chem., 2008, 47 (22): 10372-10377
    [16] Hua Jin, Yanfei Qi, Enbo Wang, Molecular and Multidimensional Organic-Inorganic Hybrids Basedon Polyoxometalates and Copper Coordination Polymer with Mixed 4, 4′-Bipyridine and 2, 2′-Bipyridine Ligands, Crystal Growth & Design, 2006, 6 (12): 2693-2698
    [17] Matthew T. Allen, Andrew D, Burrows Mary F. MahonHydrogen bond directed crystal engineering of nickel complexes: the e?ect of ligand methyl substituents on supramolecular structure, Dalton Transactions, 1999, 999 (12): 215-222
    [18] W M Latimer,W H Rodebush., Polarity and ionization from the standpoint of the lewis theo Valence, [J].J.Am.Chem.Soc., 1920, 42: 1419-1433.
    [19]陈晓峰,姜大炜,施莉,氢键在现代化学中的作用,化学教育, 2009, 30 (8): 6-10
    [20] Koji Baba, Taka-aki Okamura, Hitoshi Yamamoto, Dioxotungsten 1, 2-Benzenedithiolate Complex Stabilized by NH···S Hydrogen Bonds, Inorg. Chem., 2006, 45 (20): 8365-8371
    [21] Graham Smith, Urs D. Wermuth, One-Dimensional Hydrogen-Bonded Structures in the 1:1 Proton-Transfer Salts of 4, 5-Dichlorophthalic Acid with the Aliphatic Lewis Bases Diisopropylamine and Hexamethylenetetra, J Chem Crystallogr, 2010, 40: 207-212
    [22] Taka-aki Okamura, Kaku Taniuchi, Keonil Lee, Crystal Structures and 77Se NMR Spectra of Molybdenum(IV) Areneselenolates Having Intramolecular NH···Se Hydrogen Bonds, Inorg. Chem., 2006, 45 (23): 9374-9380
    [23] Roger Johansson, Lars ?hrstr?m, Ola F. Wendt, Hydrogen Bond Control of Dimensionality in Organometallic {2,6-Bis[(di-t-butylphosphino)methyl]phenyl}palladium(II) Compounds: Di mers, Chains, and a 3D-Net with an Apparent Channel Structure, Crystal Growth & Design, 2007, 7 (10): 1974-1979
    [24] Sebastian Muthu, Jagadese J. Vittal, A New Polymorph of 4-Pyridinethione Containing a Helical Assembly Based on N?H···S Hydrogen Bonds, Crystal Growth & Design, 2004, 4 (6): 1181-1184
    [25] Joong Tark Han, Sun Young Kim, Jong Seok Woo, et.al, Hydrogen-Bond-Driven Assembly of Thin Multiwalled Carbon Nanotubes, J. Phys. Chem. 2008, 112, 15961-15965
    [26] T Steiner, G Koellner, Hydrogen bonds withπ-acceptors in proteins: frequence and role in stabilizinglocal 3D struetures, [J].J. Mol. Biol., 2001, 305: 535-557.
    [27] L Pack, Y L Jack, Hydrothermal synthesis, crystal structure and magnetic property of copper (II) coordination networks with ehessboard tunnels, [J]. J.Solid State Chem., 2001, 158: 315-319
    [28]倪一萍,陈建定,超分子聚合物研究进展,合成树脂及塑料,2008, 25 (5): 73-77
    [29] Daofeng Sun, Rong Cao, Yanqiong Sun, et.al, Novel Silver-Containing Supramolecular Frameworks Constructed by Combination of Coordination Bonds and Supramolecular Interactions, Inorg. Chem., 2003, 42 (23): 7512-7518
    [30]李长顺,超分子材料研究进展,广东化工,2006, 33 (9): 100-102
    [31]李文林,李梅兰,超分子化学的现状及进展,广东化工,2009, 36 (9): 80-81
    [32]穆劲,康诗钊,高等无机化学,华东理工大学出版社:刘强,1997, 113-114
    [33] Sherrington D C, Taskinen K A, Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions, [J].Chem.Soc.Rev, 2001, 30, 83-93
    [34] Sareeva Bureekaew, Satoru Shimomura, Susumu Kitagawa, Chemistry and application of flexible porous ccmrdination polymers, [J].Sei Technol Adv Mater, 2008, 9, 1-12
    [35] Moulton, M. J. Zaworotko, From Molecules to Crystal Engineering: Supramoleeular Isomerism and Polymorphism in Network Solid, [J].Chem. Rev., 2001, (101):1629-1658
    [36] Mitsuru Kondo, Yuri Hayakawa, Makoto Miyazawa, et.al, A New Redox-Active Coordination Polymer with Cobalticinium Dicarboxylate, Inorg. Chem., 2004, 43 (19): 5801-5803
    [37] Dongbin Dang, Hui Gao, Yan Bai, et.al, Crystal Structure and Luminescent Properties of One Coordination Polymer of Copper(II) Achieved from Pyridine -3,5-dic arboxylate, J Chem Crystallogr, 2010, 40: 332-336
    [38] Hui-Zhong Kou, Yi-Tong Wang, Wang-Xi Luo, et.al, One-Dimensional Mn (III) Coordination Polymer Exhibiting Ferromagnetic Coupling, Crystal Growth & Design, 2008, 8 (11): 3908-3910
    [39] Bernard F.Hoskins., Richard Robson., Infinite PolymericFrameworks Consisting of Three- Dimensionally Linked Rod-like Segments, J.Am.Chem.Soc, 1989, 5962-5964
    [40] Yun-Zhi Tang, Xi-Sen Wang, Ting Zhou, et.al, A Novel 2D Manganese(II) Coordination Polymer Exhibiting Ferromagnetic Interaction, Crystal Growth & Design, 2006, 6 (1): 11-13
    [41] Yong-Quan Huang, Xiao-Qing Zhao, Wei Shi, et.al, Anions-Directed Metal-Mediated Assemblies of Coordination Polymers Based on the Bis (4,4′-bis-1,2,4-triazole) Ligand, Crystal Growth & Design, 2008, 8 (10): 3652-3660
    [42] Salome′Delgado, Pablo J. Sanz Miguel, Jose′L. Priego, et.al, A Conducting CoordinationPolymer Based on Assembled Cu9 Cages, Inorg. Chem., 2008, 47 (20): 9128-9130
    [43] Steven W. Keller, Susan Lopez, A Two-Dimensional Geomimetic Coordination Polymer Containing Pentagonal Cavities, J. Am. Chem. Soc. 1999, 121, 6306-6307
    [44]李薇,李昶红,杨颖群,三维网状配位聚合物{[Cd2(phen)2(H2O)2(C6H5NO2)2]·(ClO4)}的水热合成、晶体结构及荧光性质,无机化学学报,2008, 24 (7): 1051-1055
    [45] Kai Liu, Hongpeng You, Guang Jia, et.al, Hierarchically Nanostructured Coordination Polymer: Facile and Rapid Fabrication and Tunable Morphologies, Crystal Growth & Design, 2010, 10 (2): 790-797
    [46]朱坤,许焕民,刘光祥,配位聚合物[Zn(PDA)(obix)]的合成、晶体结构和荧光性质,无机化学学报,2009, 25 (9): 1677-1681
    [47] Charlotte E. Willans, Sara French, Leonard J. Barbour, et.al, A catenated imidazole-based coordination polymer exhibiting significant CO2 sorption at low pressure, Dalton Trans., 2009, 33, 6480-6482
    [48] Chun-Yan Tian, Wei-Wei Sun, Qin-Xiang Jia, et.al, A novel manganese (II) coordination polymer with azide and neutral dicarboxylate ligands: helical structure and magnetic properties, Dalton Trans., 2009, 31, 6109-6113
    [49] Wei-Wei Sun, Chun-Yan Tian, Xue-Hui Jing, et.al, Solvent-modulated metamagnetism in a nickel(II) coordination polymer with mixed azide and carboxylate bridges, Chem.Commun., 2009, 31, 4741-4743
    [50] Jiangfeng Xiang, Caixian Chang, Ming Li, A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery, Crystal Growth & Design, 2008, 8 (1): 280-282
    [51]徐涵,李一志,白俊峰,一维链状铜配合物的合成、晶体结构与磁性研究,人工晶体学报,2009, 38 (4): 1022-1026
    [52] Zeric Hulvey, Elizabeth Ayala, Joshua D. Furman, et.al, Structural Diversity in Coordination Polymers Composed of Divalent Transition Metals, 2, 2-Bipyridine, and Perfluorinated Dicarboxylates, Crystal Growth & Design, 2009, 9 (11): 4759-4765
    [53] Yan-Qin Wang, Qin-Xiang Jia, Kun Wang, et.al, Diverse Manganese(II) Coordination Polymers with Mixed Azide and Zwitterionic Dicarboxylate Ligands: Structure and Magnetic Properties, Inorg. Chem., 2010, 49 (4): 1551-1560
    [54] Lai-Ping Zhang, Jian-Fang Ma, Jin Yang, et.al, Series of 2D and 3D Coordination Polymers Based on 1, 2, 3, 4-Benzenetetracarboxylate and N-Donor Ligands: Synthesis, Topological Structures, and Photoluminescent Properties, Inorg. Chem., 2010, 49 (4): 1535-1550
    [55] Xiaojun Gu, Dongfeng Xue, Spontaneously Resolved Homochiral 3D Lanthanide-Silver Heterometallic Coordination Framework with Extended Helical Ln-O-Ag Subunits, Inorg.Chem., 2006, 45 (23): 9257-9261
    [56] Mei-Hong Hu, Gui-Lan Shen, Jing-Xiang Zhang, New Copper Coordination Polymers Derived from p- and o-BIMB via Different Reaction Approaches: Toward the Effects of Isomeric Ligands (BIMB=Bis-(imidazol-1-ylmethyl)benzene), Crystal Growth and Design, 2009, 9 (10): 4533-4537
    [57] Takashi Okubo, Naoya Tanaka, Kyung Ho Kim, et.al, Magnetic and Conducting Properties of New Halide-Bridged Mixed-Valence CuI?CuII 1D Coordination Polymers Including a Hexamethylene Dithiocarbamate Ligand, Inorg. Chem., 2010, 3, As Soon As Publishable
    [58] Abdul Malik Puthan Peedikakkal , Jagadese J. Vittal, Molecular Fabric Structure Formed by the 1D Coordination Polymer, [Pb(bpe)(O2CCH3)(O2CCF3)], Crystal Growth & Design, 2008, 8 (2): 375–377
    [59] Wen-Guan Lu, Jin-Zhong Gu, Long Jiang, et.al, Achiral and Chiral Coordination Polymers Containing Helical Chains: The Chirality Transfer Between Helical Chains, Crystal Growth & Design, 2008, 8 (1): 192-199
    [60] Xiu-Teng Wang, Zhe-Ming Wang, and Song Gao, Honeycomb Layer of Cobalt (II) Azide Hydrazine Showing Weak Ferromagnetism, Inorg. Chem., 2007, 46 (25): 10452–10454
    [61] Huifang Zeng, Taohai Li, Zhaowei Yan, Two Porous Metal-Organic Frameworks Showing Different Behaviors to Sodium Cation, Crystal Growth & Design, 2010, 10 (2): 475-478
    [62] Jie-Peng Zhang, Yan-Yong Lin, Xiao-Chun Huang, et.al, Copper(I) 1, 2, 4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties, J. Am. Chem. Soc., 2005, 127, 5495-5506
    [63] Mei-Xiang Jiang, Cai-Hong Zhan, Yun-Long Feng, et.al, A Series of Rutile Networks Constructed by Dinuclear Transition Metal Units and 5-Carboxyl-1-carboxymethyl-3-oxido pyridimium, Crystal Growth & Design, 2010, 10 (1): 92-98
    [64] Menon S, Rajasekharan M V, Bischelate Cu (II) complexes of dafone-synthesis, structural, EPR and optical spectralstudies., Polyhedron, 1998, 17 (15): 2463-2476.
    [65]姜崴,纳米氧化铈制备进展,广州化工,2009, 37 (3): 23-27
    [66]苏锵,稀土化学[M] .郑州:河南科学技术出版社, 1993, 202.
    [67] KASPAR J, FORNASIERO M, GRAZIANI M. Use of CeO2 Based Ox-ides in the Three - way Catalysis, [J]. Catal Today, 2000, 50, 285-298.
    [68] TOSHIYUKI M, JOHN D, WANG Y R, et al, Influence of Nano-structure on Electrolytic Properties in CeO2 Based System, [J]. Journal of Ther-mal Analysis and Calorimetry, 2002, 70: 309-319.
    [69]杜玉成,孙立柏,张久兴,纳米颗粒氧化铈的制备研究,矿冶,2003, 12 (4): 52-54
    [70] TA Na, ZHANG Milin, LI Juan, et al, Facile Synthesis of CeO2 Nanospheres, Chinese Journal of Catalysis, 2008, 29 (11): 1070-1072
    [71] Kebin Zhou, Zhiqiang Yang, and Sen Yang, Highly Reducible CeO2 Nanotubes, Chem. Mater. 2007, 19: 1215-1217
    [72] Vantomme A, Yuan Z-Y, Du G, et al., Surfactant-Assisted Large-Scale Preparation of Crytalline CeO2 Nanorods, Langmuir, 2005, 21 (3): 1131-1135
    [73] YIN L X, WANG Y Q, PANG G S, et al, Sonochemical Synthesis of Ceriumoxide Nanoparticles-effect of Additives and Quantum Size Effect , [J]. Journal of Colloid and Interface Science, 2002, 246: 78- 84
    [74]石硕,鲁润华,汪汉卿,W/O微乳液CeO2超细粒子的制备,[J].化学通报, 1998, 12: 51-54
    [75] Hirano M, Kato E., Hydrothermal synthesis of cerium (Ⅳ) oxide, [J]. J Am Ceram Soc, 1996, 79: 777-780.
    [76]韩振华,李国彬,田峰等,纳米CeO2的制备及其应用,纳米科技,2007, 5: 23-30
    [77]韦薇,杨冬霞,杨申明等,化学共沉淀法制备纳米二氧化铈的研究,稀土,2009, 30 (5): 19-21
    [78]陈建君,邓慧芳,王尚平等,纳米二氧化铈的低温水热一步法合成,材料导报,2009, 23 (14): 145-150
    [79] O.M.Yaghi, Z.Sun, D.A.Richardson, et al, Directed Transformation of Molecules to Solids: Symthesisofa microporous sulfidefrom Molecular Germanium Sulfide Cages, J.Am.Chem. Soc., 1994, 116, 807-808
    [80] Sun J Y, Weng L H, Zhou Y M, et al, QMOF-1 and QMOF-2: three-dimensional metal-organic open frameworks with a quartzlike topology, [J]. Angew Chem Int Ed, 2002, 41 (23): 4471-4473
    [81] Pan L, Sander M B, Huang X Y, et al, Microporous metal organic materials: promising candidates as sorbents for hydrogen storage, [J]. J Am Chem Soc, 2004, 126 (5): 1308-1309
    [82] Anthony O, King, Ei-ichiNegishi, Ageneral Synthesisof Terminal and Internal Arylalkynes by the Palladium-Catalyzed Reaction of Alkynylzinc Reagents with Aryl Halides, J. org. Chem, 1978, 43 (2): 359-362
    [83] Batten S R, Robson R., Interpenetrating nets: ordered, periodic entanglement [J ]. Angew Chem. Int Ed Engl. 1998, 37: 1460
    [84] Aizpurua J., Hanarp P., Sutherland D.S., et al, Optical Properties of Gold Nanorings, Phys. Rev. Lett., 2003, 90 (5): 057401
    [85]喻德忠,艾军,邹菁,纳米级金属氧化物的合成及其性质比较,武汉工程大学学报,2007, 29 (3): 1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700