临近空间大气动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临近空间大气是指20-120km的大气,是地球中高层大气的重要组成部分。临近空间大气存在着与太阳活动影响的日-地关系和低层气象变化相关的复杂耦合作用,与人类的生存和发展密切相关,对航天活动具有重要的影响,因此,对临近空间大气特性和内在机制的研究一直是各国科学家关注的领域。尤其是在近几年,临近空间的开发利用对临近空间大气的探测与研究提出了迫切的需求。在此背景下,本文选题临近空间大气动力学前沿研究,对临近空间大气进行了若干特性的分析及模式研究,主要研究内容可以概括为以下七个方面:
     (1)利用NCAR的二维物理模式(SOCRATES)模拟研究了临近空间大气温度和风场的气候变化特征,将模拟结果与中频雷达风场观测结果和TIMED/SABER卫星温度观测结果进行了比较,结果相互吻合。采用资料分析和模拟研究相结合的方法,利用武汉和日本中频雷达资料和SOCRATES模式,分析了中间层和低热层(MLT)大气的风场结构特性,首次利用模式模拟结果解释了北纬30oN中频雷达风场的季节变化特征,揭示了大气重力波在MLT大气结构中的重要性。
     (2)利用新的COSMIC GPS无线电掩星观测温度数据计算了大气重力波的位能,分析得到了低平流层大气重力波活动的全球分布特征,揭示了重力波波源和背景风场的影响,以及大气行星波的调制作用。
     (3)利用TIMED/SABER的温度数据,通过仿真模拟实验首次定量地分析了由于数据地方时覆盖不全造成的信号混淆对提取大气定常行星波的影响,并首次获得了20-135km全球大气定常行星波的活动特征,尤其是100-135km低热层大气行星波活动特征,发现在上中间层及低热层存在较强的大气行星波活动,分析结果对该领域的研究具有重要的意义。
     (4)利用ERA-40再分析风场资料,分析了中国上空平流层准零风层的特点及其随季节和地理位置的变化特征。结果指出,准零风层一般处于18~25km高度范围内,零风线所在的高度随时间和地理位置的不同稍有变化。根据准零风层随纬度的变化特征,中国上空可以分成三个区域:低纬地区(5oN~20oN),中低纬过渡区域(20oN~32.5oN)、中高纬地区(32.5oN~55oN)。
     (5)分析和比较了利用卫星温度资料计算水平风场的方法,包括地转风、梯度风和平衡风的计算方法。以DAAC提供的MLS/UARS 1992年12月份的大气温度数据为例,计算了20-55km高度范围的地转风、梯度风和平衡风,并与ERA-40再分析风场资料作了对比和分析。结果显示,计算出的风场与再分析资料的特征和规律基本一致,由此表明,利用卫星温度观测资料通过理论公式进行数值计算是获取高空风特征的一种非常有效的方法,是弥补20-60km直接观测资料少的一种有效的途径。此外,利用平衡风场的计算结果,文中首次定量的计算了平衡方程中各项的大小和比值,分析了各项的贡献和相对重要性。
     (6)利用COSMIC资料分析得到了2007/2008年平流层爆发性增温(SSW)期间10-60km大气的变化特征,揭示了上平流层和下中间层大气(USLM)在SSW过程中西风减弱或反转、温度降低的特性,并通过波流相互作用理论从动力学方面对大气的变化特性进行了解释,结果表明, 2007/2008年SSW的发生可能是由底部超过某个临界值的行星波向上传播,与平流层与中间层的平均流相互作用引起的。此外,文中还通过热力学方程和连续性方程计算和分析了剩余环流在SSW期间的变化特性,结果显示,剩余环流在SSW期间环流圈的方向会发生反转。
     (7)利用TIMED/SABER 7年的观测数据建立了临近空间20-90km的大气月平均气候模式,参量包括:温度、压强、密度和水平风场。之后,利用该气候模式分析了北京、武汉、拉萨和海南临近空间大气环境的变化特性,并尝试了人工神经网络在建立中层大气气候模式中的应用,成功地构建了一个三层的BPNN神经网络模型,反映了2007年2月份20-70km高度范围内的月平均温度结构特性,可为将来临近空间大气的建模工作提供参考。
Near space atmosphere refers to the atmosphere in the altitude range from 20km to 120km,the important part of the earth’s middle and upper atmosphere. Many complex couplings related to the Sun-Earth connection under the effects of the solar activity and to the meteorologic variability fill the near space atmosphere, which is highly associated with living environments of human beings, and has significant influences on the spaceflight activities. Therefore, scientists all over the world have paid much attention to the studies of the atmospheric characteristics and their intrinsic mechanisms. Especially in the recent years, the rapid development and application of the near space techniques push the requirements of further explorations and researches of the near space atmosphere. Under this background, some front aspects of atmospheric dynamics in near space are selected for further investigation in this thesis. The works in the thesis are mainly focused on the analysis of the characteristics of the near space atmospheric dynamics and its model studies, which can be summarized as the following seven aspects:
     (1) Simulations are taken by the NCAR’s two dimensional physical model (SOCRATES) to study the climatic characteristics of the atmospheric temperature and wind fields in near space. Those simulation results are compared with the MF radar and the TIMED/SABER observations, which shows consistent features. With the method of combining the observations and the model simulations, the observations of Wuhan and Japanese MF radar and the SOCRATES model are used to analyze the characteristics of the wind fields in the mesosphere and lower thermosphere (MLT). With the results of the simulations, the features of wind seasonal variations at 30oN observed by MF radar are firstly interpreted. Results suggest the importance of the atmospheric gravity waves in determining the MLT wind structures.
     (2) With the new temperature profiles of COSMIC GPS radio occultation, the potential energies of atmospheric gravity waves are calculated, obtaining the global morphology of stratospheric gravity wave activity. The influences of the origins and the background winds and the modulation of the planetary waves on the gravity wave activity are discussed in details.
     (3) The temperature measurements from SABER instrument on board of TIMED satellite are used to study the temperature stationary planetary waves (SPWs). Through simulation, the amplitudes of the SPW parameters leaked from the nonmigrating tides due to the non-uniform sampling of the data in the LST domain are first quantitatively calculated. The global temperature SPWs extending from 20-135km by TIMED/SABER are firstly obtained. The SPWs in the upper mesosphere and lower thermosphere (UMLT) are large. These results are significant, especially for the results between 100 and 135km
     (4) The characteristics of the stratospheric quasi-zero wind layer and its seasonal and geographic variation features over China are obtained by using the ERA-40 reanalyzed wind data. Results show that quasi-zero wind layer generally exists at the height range of 18-25km and some variation of the height of the zero wind line would happen when the time or location change. According to the latitudinal variation of the quasi-zero wind layer, the atmosphere over China could be divided into three parts to discuss its features: low-latitude area (5oN-20oN), transition area (20oN-32.5oN), middle and high-latitude area (32.5oN-55oN).
     (5) Several methods of deriving horizontal wind fields from satellite temperature data are analyzed and compared in this paper, including the calculation methods of geostrophic wind, gradient wind and balance wind. Taking the temperature data of MLS/UARS in December, 1992 offered by DAAC for example, geostrophic wind, gradient wind and balance wind fields at the altitude range of 20-55km are inferred and compared with ERA-40 reanalyzed wind fields. Results show that, the characteristics of calculated winds are similar with that of the reanalyzed data, indicating that deriving wind fields from the satellite temperature data through theoretical equations is an effective way to supply the gap of lack of wind observations in the 20-60km. Moreover, values and ratios of the terms in balance equations are firstly calculated in this study, and the contribution and relative importance are also analyzed.
     (6) The observations of COSMIC are used to analyze the variability of the atompshere between 10 and 60km during the sudden stratospheric warming (SSW) in 2007/2008. Results show that the westerly wind is weakened or reversed, and the temperature is cooled during the SSW in the upper stratosphere and lower mesosphere (USLM). Through the wave-mean low interactions, the features are interpreted from the dynamic aspects. Results suggest that the occurrence of the SSW in 2007/2008 may be ralated to the planetary waves, which exceed the critical values, and propagate upward, interact with the mean flow in the upper atostratosphere. Furthermore, through the thermodynamic and continuous equations, the residual circulations are calculated and analyzed, with the results that during SSW, the circulation circles of the residual circulations are reversed.
     (7) With the 7-year TIMED/SABER observations, a monthly-mean climate model has been developed. The parameters include temperature, pressure, density and horizontal winds. As an example of the application of this model, the atmospheric environments over Beijing, Wuhan, Lasa and Hainan are analyzed. In addition, Artificial neural network (ANN) is used to seek the middle atmosphere modeling with the abundant TIMED/SABER limb observed temperature profiles. A three-layer feed-forward network based on the back-propagation (BP) algorithm has been successfully constructed with the aim of reflecting the monthly mean temperature structure between 20 and 70km in 2007 February. These modeling experiments can provide some reference for future modeling.
引文
1. Alexander M. J., Dunkerton T. J., A spectral parameterization of mean-flow forcing due to breaking gravity waves, J. Atmos. Sci., 1999(56): 4167~4182
    2. Alexander M. J., May P. T., Beres J. H., Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment, J. Geophys. Res., 2004(109), D20S04, doi:10.1029/2004JD004729
    3. Alexander S. P., Tsuda T., Kawatani Y., COSMIC GPS Observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model, Geophys. Res. Lett., 2008(35), L10808, doi:10.1029/2008GL033174
    4. Allen S. J., Vincent R. A., Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations, J. Geophys. Res., 1995, 100(D1), 1327~1350
    5. Anderson D. A., Tannehill J. C., Pletcher R. H., Computational fluid mechanics and heat transfer, New York: McGraw-Hill, 1984
    6. Andrews D. G., Holton J. R., Leovy C. B., Middle Atmosphere Dynamics, Academic Press, Inc., London, 489pp., 1987
    7. Anthes R. A., Bernhardt P. A., Chen Y. et al., The COSMIC/FORMOSAT-3 Mission: Early Results, Bull. Amer. Meteor. Soc., 2008(89): 313~333
    8. Barath F. T., Chavez M. C., Cofield R. E. et al., The Upper Atmosphere Research Satellite Microwave Limb Sounder Instrument, J. Geophys. Res., 1993, 98(D6): 10751~10762
    9. Baumgaertner A. J. G., McDonald A. J., A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations, J. Geophys. Res., 2007(112), D05103, doi:10.1029/2006JD007504
    10. Bhattacharya Y., Shepherd G. G., Brown S., Variability of atmospheric winds and waves in the arctic polar mesosphere during a stratospheric warming, Geophys. Res. Lett., 2004(31), L23101
    11. Brasseur G., Hitchman M. H., The effect of breaking gravity waves on the distribution of trace species in the middle atmosphere, in Transport Processes in the Middle Atmosphere, D. Reidel, Hingham, Mass., 1987: 215~227
    12. Brasseur G., Hitchman M. H., Walters S. et al., An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere, J. Geophys. Res. 1990, 95(D5), 5639~5655
    13. Brasseur G.P., Smith A. K., Khosravi R. et al., Natural and human-induced perturbations in the middle atmosphere: A short tutorial, in: Siskind D.E., Eckermann S.D., Summers M.E. (Eds.), Atmospheric Science Across the Stratopause. AGU Geophys. Monogr. 2000(123): pp. 7~20
    14. Briggs B. H., The analysis of spaced sensor records by correlation techniques, in: Liu C.H., Edwards B. (Eds.), Handbook for MAP 13. SCOSTEP Secr., Univ. of Ill., Urbana, 1984, pp. 166~184
    15. Cevolani G., Long period waves in the middle atmosphere: response of mesospheric and thermospheric winds to recent minor stratospheric warmings at mid-latitudes, Ann. Geophys., 1989(7): 451~458
    16. Chabrillat S., Kockarts G., Fonteyn D., Brasseur G., Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere, Geophys. Res. Lett., 2002, 29(15), 10.1029/2002GL015309
    17. Chao W. C., Sudden stratospheric warmings as catastrophes, J. Atmos. Sci., 1985(42): 1631~1646
    18. Charney J. G., Drazin P. G., Propagation of Planetary-Scale Disturbances from the Lower into the Upper Atmosphere, J. Geophys. Res., 1961, 66(1), 83~109
    19. Chen Wen, Huang Rong-hui, The modulation of planetary wave propagation by the tropical QBO zonal winds and associated effects in the residual meridional circulation, Contr. Atmos. Phys., 1999, 72(2): 187~204
    20. Chen Wen, Huang Rong-Hui, The propagation and transport effect of planetary waves in the Northern Hemisphere winter, Advances in Atmospheric Sciences, 2002, 19(6): 1113~1126
    21. Chen Y. J., Zheng B., Zhang H., The features of ozone quasi-biennial oscillation in tropical stratosphere and its numerical simulation, Advances in Atmospheric Sciences, 2002, 19(5): 777~793
    22. Chen Y. J., Shi C. H., Zheng B., HCl quasi-biennial oscillation in the stratosphere and a comparison with ozone QBO, Advances in Atmospheric Sciences, 2005, 22(5): 751~758
    23. Chen Z., Liu R., Chen H. et a1., Advances in the studies of the middle and upper atmosphere in 2004~2006, Chin. J. Space Sci., 2006, 26(Supp1.): 61~70
    24. Cheng C. Z., Kuo Y. H., Anthes R. A. et al, Satellite constellation monitors global and space weather, EOS, 2006, 87(17): 166~167
    25. Cho Y. M., Shepherd G. G., Won Y. I. et al., MLT cooling during stratospheric warming events, Geophys. Res. Lett., 2004(31), L10104
    26. Crooks S. A., Gray L. J., Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset, Journal of Climate, 2005, 18(7): 996~1015
    27. Crowley G., Ridley A., Winningham J. D. et al., On the hemispheric symmetry in thermospheric nitric oxide, Geophysical Research Letters, 1999(26): 1545~1548
    28. Cucurull L., Derber J. C., Operational implementation of COSMIC observations into NCEP’s global data assimilation system, Wea. Forecasting, 2008, 23(4): 702~711
    29. DeMore W. B., Sander S. P., Golden D. M. et al., Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication 97-4, 1997
    30. Dowdy A. J., Vincent R. A., Tsutsumi M. et al., Polar mesosphere and lower thermosphere dynamics: 2. Response to sudden stratospheric warmings, J. Geophys. Res., 2007(112), D17105, doi:10.1029/2006JD008127
    31. Dunkerton T., On the mean meridional mass motions of the stratosphere and mesosphere, J. Atmos. Sci., 1978(35): 2325 ~2333
    32. Eckermann S. D., Hirota I., Hocking W. K., Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings, Q. J. R. Meteorol. Soc., 1995, 121(512), 149~186
    33. Eckermann S. D., Preusse P., Global measurements of stratospheric mountain waves from space, Science, 1999, 286 (5444), 1534~1537
    34. Evensen G.., Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model, J. Geophys. Res., 1992, 97, 17, 904 ~17,905
    35. Fels S.B., Radiative-dynamical interactions in the middle atmosphere, Adv. Geophys. 1985, 28A, 277~300
    36. Fleming E. L., Chandra S., Schoeberl M. R. et al., Monthly mean gloabal climatology of temperature, wind, geopotential height, and pressure for 0-120km, NASA technical memorandum, 100697, 1988
    37. Fleming E. L., Chandra S., Barnett J. J. et al., Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude, Adv. Space Res., 1990, 10(12): 11~59
    38. Fleming E. L., Chandra S., Burrage M. D. et al., Climatological mean wind observations from the UARS high-resolution Doppler imager and wind imaging interferometer: Comparison with current reference models, J. Geophys. Res., 1996, 101(D6): 10455~10473
    39. Fong C. J., Yen N., Chu V. et al., Operations challenges from the FORMOSAT-3/COSMIC constellation for global earth weather monitoring, Aerospace Conference, 2007 IEEE, 1~14
    40. Forbes J. M., Zhang X., Ward W. et al., Climatological features of mesosphere and lower thermosphere stationary planetary waves within±40°latitude, J. Geophys. Res., 2002, 107(D17), 4322, doi:10.1029/2001JD001232
    41. Forbes J. M., Russell J., Miyahara S. et al., Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002, J. Geophys. Res., 2006(111), A10S06, doi:10.1029/2005JA011492
    42. Forbes J. M., Wu D., Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS, J. Atmos. Sci., 2006, 63(7), 1776~1797
    43. Freitas C. J., Crowley G., Space weather simulation on networks of workstations, in“Forum on parallel computing methods”, pp. 273-280, 1999, ASME International Mechanical Engineering Congress and Exposition, Nashville, TN, 1999
    44. Fritts D. C., Nastrom G.. D., Sources of mesoscale variability of gravity waves. Part II: Frontal, Convective and Jet stream excitation, J. Atmos. Sci., 1992, 49(2), 111~127
    45. Fritts D. C., Lu W., Spectral estimates of gravity wave energy and momentum fluxes Part II: Parameterization of wave forcing and variability, J. Atmos. Sci. 1993(50): 3695~3713
    46. Fritts D. C., Alexander M. J., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, 41(1), 1003, doi:10.1029/2001RG000106
    47. Fritts D. C., Vadas S. L. et al., Mean and variable forcing of the middle atmosphere by gravity waves, J. Atmos. Sol-Terr. Phy. 2006(68): 247~265
    48. Garcia-Comas M. et al., Errors in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters, J. Geophys. Res.,2008(113), D24106, doi:10.1029/2008JD010105
    49. Garcia R. R., Parameterization of planetary wave breaking in the middle atmosphere, J. Atmos. Sci., 1991(48): 1405~1419
    50. Garcia R. R., Stordal F., Solomon S. et al., A new numerical model of the middle atmosphere, 1, Dynamics and transport of tropospheric source gases, J. Geophys. Res., 1992, 97(D12), 12967~12992
    51. Garcia R. R., Marsh D. R., Kinnison D. E. et al., Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 2007(112), D09301, doi:10.1029/2006JD007485
    52. Gavrilov N. M., Fukao S., Nakamura T., Gravity wave intensity and momentum fluxes in the mesosphere over Shigaraki, Japan (35°N, 136°E) during 1986-1997, Ann. Geophys. 2000(18): 834~843
    53. Gille J. C., Lyjak L. V., Smith A. K., The global residual mean circulation in the middle atmosphere for the northern winter period, J. Atmos. Sci., 1987(44): 1437~1454
    54. Granier C., Brasseur G., Impact of heterogeneous chemistry on model predictions of ozone changes, J. Geophys. Res. 1992(97): 18,015~18,033
    55. Gregory J. B., Manson A. H., Wind and waves to 110km at mid-latitudes. III. Response of mesospheric and lower thermospheric winds to major stratospheric warmings, J. Atmos. Sci., 1975(32): 1676 ~1681
    56. Gruzdev A. N., Brasseur G. P., Long-term changes in the mesosphere calculated by a two-dimensional model, J. Geophys. Res., 2005(110), D03304, doi:10.1029/2003JD004410
    57. Gong S. S., Yang G. T., Wang J. M. et al., A double sodium layer event observed over Wuhan, China by lidar, Geophys. Res. Lett., 2003, 30(5), 1209, doi:10.1029/2002GL016135
    58. Hagan M. E., Forbes J. M., Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 2002, 107(D24), 4754, doi:10.1029/2001JD001236
    59. Hagan M. E., Forbes J. M., Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 2003, 108(A2), 1062, doi:10.1029/2002JA009466
    60. Hamilton K., Climatological Statistics of Stratospheric Inertia-Gravity Waves Deduced From Historical Rocketsonde Wind and Temperature Data, J. Geophys.Res., 1991, 96(D11), 20,831~20,839
    61. Hartmann D. L., Mechoso C. R., Yamazaki K., Observations of wave-mean flow interaction in the Southern Hemisphere, J. Atmos. Sci., 1984(41): 351~362
    62. Hays P. B., Jones R. A., Rees M. H., Auroral heating and the composition of the neutral atmosphere, Planet. Space Sci., 1973(21): 559~573
    63. Hays P. B., Abreu V. J., Dobbs M. E. et al., The High Resolution Doppler Imager on the Upper Atmosphere Research Satellite, J. Geophys. Res., 1993, 98(D6): 10713~10723
    64. Hedin A. E., Reber C. A., Newton G. P. et al., A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. I - N2 density and temperature, J. geophys. Res., 1977a,82:2139~2147
    65. Hedin A. E., Reber C. A., Newton G. P. et al., A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. II– Composition, J. geophys. Res., 1977b, 82: 2,148~2,156
    66. Hedin A. E., A revised thermospheric model based on mass spectrometer and incoherent scatter data:MSIS-83, J. geophys. Res., 1983, 88(A12): 10,170~10,088
    67. Hedin A. E., MSIS-86 thermospheric model, J. geophys. Res., 1987(92): 4649~4662
    68. Hedin A. E., Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. geophys. Res., 1991, 96(A2): 1159~1172
    69. Hedin A. E., Fleming E. L., Manson A.H. et al., Empirical wind model for the upper,middle and lower atmosphere, J. Atmos. Terr. Phys., 1996(58): 1421~1447
    70. Hei H., Tsuda T., Hirooka T., Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP, J. Geophys. Res., 2008(113), D04107, doi:10.1029/2007JD008938
    71. Hertzog A., Souprayen C., Hauchecorne A., Measurements of gravity wave activity in the lower stratosphere by Doppler lidar, J. Geophys. Res., 2001, 106(D8), 7879~7890
    72. Hines C. O., Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. 1. Basic formulation, J. Atmos. Solar-Terr. Phys., 1997a, 59, 371~386
    73. Hines C. O., Doppler-spread parameterization of gravity-wave momentumdeposition in the middle atmosphere. 2. Broad and quasi monochromatic spectra, and implementation, J. Atmos. Solar-Terr. Phys., 1997b, 59, 387~400
    74. Hitchaman M. H., Leovy C. B., Evolution of the zonal mean state in the equatorial middle atmosphere during October 1978-May 1979, J. Atmos. Sci, 1986(43): 3159~3176
    75. Hocke K., Igarashi K., 24- and 12-h oscillations during a time of strong eastward wind in the upper mesosphere at 31°and 45°N, J. Atmos. Sol-Terr. Phy. 1998a, 60, 1071~1079
    76. Hocke K., Igarashi K., Rapid COMMUNICATION Mean winds in the mesopause region observed by MF radars at 31°and 45°N, J. Atmos. Sol-Terr. Phy. 1998b, 60, 1081~1087
    77. Hocke K., Igarashi K., Diurnal and semidiurnal tide in the upper middle atmosphere during the first year of simultaneous MF radar observations in northern and southern Japan (45°N and 31°N), Ann. Geophys. 1999(17): 405~414
    78. Hocke K., Tsuda T., de la Torre A., A study of stratospheric GW fluctuations and sporadic E at midlatitudes with focus on possible orographic effect of Andes, J. Geophys. Res., 2002, 107(D20), 4428, doi:10.1029/2001JD001330
    79. Hoffmann P., Singer W., Keuer D., Variability of the mesospheric wind field at middle and Arctic latitudes in winter and its relation to stratospheric circulation disturbances, J. Atmos. Solar-Terr. Phys., 2002(64): 1229 ~1240
    80. Hoffmann P., Singer W., Keuer D. et al., Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events, J. Atmos. Solar-Terr. Phys., 2007, 69(17-18): 2355 ~2366
    81. Holton J. R., Wehrbein W. M., A numerical model of the zonal mean circulation of the middle atmosphere, Pure Appl .Geophys,1980(118): 285~306
    82. Holton J. R., Tan H.-Ch., The influence of equatorial quasi-biennial oscillation on the global circulation of 50mbar, J. Atmos. Sci., 1980(37): 2200~2208
    83. Holton J. R., The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci. 1982(39): 791~799
    84. Holton J. R., The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 1983, 40(10): 2497~2507
    85. Hu Xiong, Zhang Xun-Jie, Huang Xing-Yu., Equatorial QBO and the interannualvariability of winter stratospheric circulation, J. Atmos. Terr. Phys., 1995(57): 1203~1208
    86. Hu Xiong,Zhang Xun-jie,Gong Shun-sheng et a1., Simultaneous observations with a sodium lidar and an MF radar during PREASA-2 campaign, Earth Planets Space,1999(51):741~743
    87. Hu X., Zhang X. X. et al., A preliminary comparison of observations with MF radars in Wuhan and Yamagawa at 30–31oN, J. Atmos. Sol-Terr. Phys., 2006(68): 1036~1042
    88. Huang Kai Ming, Zhang Shao Dong, Yi Fan, A numerical study on nonresonant interactions of gravity waves in a compressible atmosphere, J Geophys Res, 2007(112), D11115, doi:10.1029/2006JD007373
    89. Huang Kai Ming, Zhang Shao Dong, Yi Fan, Propagation and reflection of gravity waves in a meridionally sheared wind field, J Geophys Res, 2008(113), D09106, doi:10.1029/2007JD008877
    90. Huang T., Walters S., Brasseur G. et al., Description of SOCRATES-A chemical dynamical radiative two-dimensional model, NCAR Tech. Note, NCAR/TN-440+EDD, Natl. Cent. For Atmos. Res., 1998, Boulder, Colorado, 35pp.
    91. Igarashi K., Nishimuta I., Murayama Y. et al., Comparison of wind measurements between Yamagawa MF radar and the MU radar, Geophys. Res. Lett. 1996, 23(23), 3341~3344
    92. Igarashi K., Murayama Y., Hocke K. et al., Coordinated observations of the dynamics and coupling processes of mesosphere and lower thermosphere winds with MF radars at the middle-high latitude, Earth Planets Space 1999(51): 657~664
    93. Igarashi K., Kato H., The 2 - 16 day recurrence cycle of daily sporadic-E activity and its relation to planetary-wave activity observed with MF radar in spring and summer 1996, Adv. Spa. Res. 2001(27): 1271~1276
    94. Igarashi K., Namboothiri S. P., Kishore P., Tidal structure and variability in the mesosphere and lower thermosphere over Yamagawa and Wakkanai, J. Atmos. Sol-Terr. Phy. 2002(64): 1037~1053
    95. Isoda F., Tsuda T. et al., Long-Period wind oscillations in the mesosphere and lower thermosphere at Yamagawa (32°N,131°E), Pontianak (0°N,109°E) andChristmas Island (2°N,157°W), J. Atmos. Sol-Terr. Phy. 2002(64): 1055~1067
    96. Jarvinen H., Jean N. T., Phillippe C., Quasi-continuous variational data assimilation, ECMWF Research Dept. Tech. Memo., 1995, 210
    97. Jiang Guo-ying, Xiong Jian-gang, Wan Wei-xing et a1., The 16-day waves in the mesosphere and lower thermosphere over Wuhan (30.6°N, 114.5°E) and Adelaide (35°S, 138°E), Advances in Space Research, 2005, 35(11): 2005~2010
    98. Jiang G., Xiong J., Wan W. et al., Observation of 6.5-day waves in the MLT region over Wuhan, J. Atmos. Sol-Terr. Phys., 2008, 70(1): 41~48
    99. Jiang J. H., Wang B., Goya K. et al., Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses, J. Geophys. Res., 2004(109), D03111, doi:10.1029/2003JD003756
    100.Jiang J. H., Eckermann S. D., Wu D. L. et al., Seasonal variation of gravity wave sources from satellite observation, Adv. Space Res., 2005, 35(11), 1925~1932
    101.Kazil J., Kopp E., Chabrillat S. et al., The University of Bern Atmospheric Ion Model: Time-dependent modeling of the ions in the mesosphere and lower thermosphere, J. Geophys. Res., 2003, 108(D14), 4432, doi:10.1029/2002JD003024
    102.Khosravi R., Brasseur G., Smith A. et al., Response of the mesosphere to human-induced perturbations and solar variability calculated by a 2-D model, J. Geophys. Res. 2002, 107(D18), 4358, doi:10.1029/2001JD001235
    103.Kiehl J. T., Wolski B. P. et al., Documentation of radiation and cloud routines in the NCAR community climate model (CCM1), NCAR Tech. Note, NCAR/TN-288+IA, Natl. Cent. For Atmos. Res., Boulder, Colo., 1987
    104.Killworth P. D., McIntyre M. E., Do Rossby-wave critical layers absorb, reflect or over-reflect? J. Fluid Mech., 1985(161): 449~492
    105.Kirchengast G., Hafner J., Poetzi W., The CIRA86aQ_UoG model: An extension of the CIRA-86 monthly tables including humidity tables and a Fortran95 global moist air climatology model, IMG/UoG technical report for ESA/ESEC-No.8/1999, IMG/UoG, Graz, Austria, 1999
    106.Kishore P., Namboothiri S. P., Igarashi K., Study of mesosphere lower thermosphere (MLT) mean winds over Yamagawa (31.2°N, 130.6°E) during 1996-1998, J. Geophys. Res-Atmos. 2000, 105(D20), 24863~24870
    107.Kishore P., Namboothiri S. P., Igarashi K., Murayama Y., Watkins B. J., MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1°N,147.5°W), Ann. Geophys. 2002(20): 679~690
    108.Kursinski E. R., Hajj G. A., Schofield J. T. et al., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research-Atmospheres, 1997, 102(D19): 23,429~23,465
    109.Labitzke K., Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter, J. Atmos. Sci., 1972(29): 756~766
    110.Labitzke K., Barnett J. J., Edwards B. (eds.), Handbook MAP 16, SCOSTEP, University of Illinois, Urbana, 1985
    111.Labitzke K. et al., The Berlin Stratospheric Data Series, CD from the Meteorological Institute, Free University Berlin, 2002
    112.Lee H., Smith A. K., Simulation of the combined effects of solar cycle, QBO, and volcanic forcing on the stratospheric ozone changes in recent decades, J. Geophys. Res. 2003, 108(D2), 4049, doi:10.1029/2001JD001503
    113.Li Q., Graf H.-F., Giorgetta M. A., Stationary planetary wave propagation in Northern Hemisphere winter - climatological analysis of the refractive index, Atmos. Chem. Phys. Discuss., 2006(6): 9033~9067
    114.Lieberman R. S., The gradient wind in the mesosphere and lower thermosphere, Earth Planets Space, 1999(51): 751~761
    115.Lindzen R. S., Kuo H. L., A reliable method for the numerical intergration of a large class of ordinary and partial differential equations, Mon. Wea. Rev., 1969(97): 732~734
    116.Lindzen R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 1981(86): 9707~9714
    117.Liu H. L., Roble R. G., A study of a self-generated stratospheric sudden warming and its mesospheric–lower thermospheric impacts using the coupled TIME-GCM/CCM3, J. Geophys. Res., 2002, 107(D23), 4695, doi:10.1029/2001JD001533
    118.Liu R. Q., Lu D. R. et al., Quadratic nonlinear interactions between atmospheric tides in the mid-latitude winter lower thermosphere, J. Atmos. Sol-Terr. Phys., 2006(68): 1245~1259
    119.Liu R. Q., Lu D. R. et al., Phase relationships between tidal horizontal wind components observed in the mid-latitude winter upper mesosphere, J. Atmos. Sol-Terr. Phys., 2008, 70(1):1~12
    120.Livesey N. J., Waters J. W., Khosravi R. et al., Stratospheric CH3CN from theUARS Microwave Limb Sounder, Geophys. Res. Lett., 2001, 28(5): 779~782
    121.Livesey N. J., Read W. G., Froidevaux L. et al., The UARS Microwave Limb Sounder version 5 dataset: Theory, characterization and validation, J. Geophys. Res., 2003, 108(D13), 4378, ACH 2: 1~21
    122.LüD., VanZandt T., Clark W., VHF Doppler Radar Observations of Buoyancy Waves Associated with Thunderstorms, J. Atmos. Sci., 1984, 41(2): 272~282
    123.LüDa-ren, VanZandt T. E., Clark W. L., Mesoscale Spectra of the Free Atmospheric Motion in Mid-latitude Summer-Universality and Contribution of Thunderstorm activities, Adv. Atmos. Sci., 1987, 4(1): 105~112
    124.Ma G., Igarashi K., Hocke K., Mid-latitude winds in the mesosphere: a superposed epoch analysis over the geomagnetic storm times, J. Atmos. Sol-Terr. Phy. 2001(63): 1993~2001
    125.Manson A, H., Meek C. E., Fleming E. et al., Comparisons between satellite-derived gradient winds and radar-derived winds from the CIRA-86, J. Atmos. Sci., 1991(48): 411~428
    126.Manson A. H., Meek C., Chshyolkova T. et al., Winter warmings, tides and planetary waves: comparisons between CMAM (with interactive chemistry) and MFR-MetO observations and data, Ann. Geophys., 2006(24): 2493 ~2518
    127.Manzini E., McFarlane N. A., The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model, J. Geophys. Res., 1998, 103(D24): 31,523~31,539
    128.Matsuno T., A dynamical model of the stratospheric sudden warming, J. Atmos. Sci., 1971, 28(8): 1479~1494
    129.McLandress C., McFarlane N. A., Interactions between orographic gravity wave drag and forced stationary planetary waves in the winter northern hemisphere middle atmosphere, J. Atmos. Sci., 1993, 50(13), 1966~1990
    130.McLandress C., Ward W. E., Tidal/gravity wave interactions and their influence on the large-scale dynamics of the middle atmosphere: Model results, J. Geophys. Res., 1994, 99(D4), 8139–8155
    131.McLandress Charles, Zhang Sheng-pan P., Satellite observations of mean winds and tides in the lower thermosphere: 1. Aliasing and Sampling issues, J. Geophys. Res., 2007(112), D21104, doi:10.1029/2007JD008456
    132.Mechoso C. R., Hartmann D. L., Farrara J. D., Climatology and interannual variability of wave, mean-flow interaction in the Southern Hemisphere, J. Atmos.Sci., 1985(42): 2189~2206
    133.Medvedev A. S., Klaassen G. P., Beagley S. R., On the Role of an Anisotropic Gravity Wave Spectrum in Maintaining the Circulation of the Middle Atmosphere, Geophys. Res. Lett., 1998, 25(4): 509~512
    134.Mertens C. J., Mlynczak M. G., Lopez-Puertas M. et al., Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-um Earth limb emission under non-LTE conditions, Geophys. Res. Lett., 2001(28): 1391~1394.
    135.Mertens C. J. et al., SABER observations of mesospheric temperature and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign, Geophys. Res. Lett., 2004(31), L03105, doi:10.1029/2003GL018605
    136.Miles T., Grose W. L., Comparison of geostrophic and nonlinear balanced winds from LIMS data and implications for derived dynamical quantities, PAGEOPH, 1989, 130(2/3): 320 ~342
    137.Miyahara S., Wu D. H., Effects of solar tides on the zonal mean circulation in the lower thermosphere: solstices condition, J. Atmos. Terr. Phys. 1989(51): 635~647
    138.Mlynczak M. G., Russell III J. M., Errors in SABER kinetic temperature caused by non-LTE model parameters, J. Geophys. Res., 2008, doi:10.1029/2008JD010105, in press
    139.Moller M. F., A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 1993(6): 525 ~533
    140.Murayama Y., Tsuda T., Fukao S., Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar, J. Geophys. Res., 1994, 99(D11), 23,057~23,069
    141.Nakamura T., Tsuda T., Fukao S. et al., Mesospheric gravity waves at Saskatoon (52°N), Kyoto (35°N) and Adelaide (35°S), J. Geophys. Res. 1996, 101(D3), 7005~7012
    142.Namboothiri S. P., Kishore P., Igarashi K. et al., MF radar observations of mean winds over Yamagawa (31.2 degrees N, 130.6 degrees E) and Wakkanai (45.4°N,
    141.7°E), J. Atmos. Sol-Terr. Phy. 2000, 62(13), 1177~1187
    143.Nastrom G. D., Fritts D. C., Sources of mesoscale variability of gravity waves.Part I: Topographic excitation, J. Atmos. Sci., 1992, 49(2), 101~110
    144.Nastrom G. D., Hansen A. R., Tsuda T. et al., A comparison of gravity wave energy observed by VHF radar and GPS/MET over central North America, J. Geophys. Res., 2000, 105(D4), 4685~4687
    145.Naujokat B., Labitzke K., Collection of reports on the stratospheric circulation during the winters 1974/75-1991/92, Solar Terrestrial Energy Program (STEP) Handbook, Urbana: Free University Berlin, 1993
    146.Oberheide J., Hagan M. E., Ward W. E. et al., Modeling the diurnal tide for the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) 1 time period, J. Geophys. Res. 2000, 105(A11): 24917~24930
    147.Oberheide J., Lehmacher G. A., Offermann D. et al., Geostrophic wind fields in the stratosphere and mesosphere from satellite data, J. Geophys. Res., 2002, 107(D23), 8175, CRI 3: 1~18
    148.Oberheide J., Gussev O. A., Observation of migrating and nonmigrating diurnal tides in the equatorial lower thermosphere, Geophys. Res. Lett. 2002(29): 2167~2170
    149.Paegle J., Tomlinson E. M., Solution of the balance equation by Fourier transform and Gauss elimination, Mon. Wea. Rev., 1975(103): 528 ~535
    150.Palo S. E., Forbes J. M., Zhang X. et al., Planetary wave coupling from the stratosphere to the thermosphere during the 2002 Southern Hemisphere pre-stratwarm period, Geophys. Res. Lett., 2005(32), L23809, doi:10.1029/2005GL024298
    151.Pancheva D. et al., Global-scale tidal structure in the mesosphere and lower thermosphere during the PSMOS campaign of June-August 1999 and comparison with the global-scale wave model, J. Atmos. Sol-Terr. Phy. 2002(64): 1011~1035
    152.Pancheva D. et al., Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004, J. Geophys. Res., 2008a, 113, D12105, doi:10.1029/2007JD009011
    153.Pancheva D., Mukhtarov P., Andonov B. et al., Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: Part 1, Comparison with the UKMO temperature results, J. Atmos. Solar-Terr. Phys., 2008b, 71(1), 61~74
    154.Pancheva D., Mukhtarov P., Andonov B. et al., Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphereduring the winter of 2003/2004: Part 2—Altitude and latitude planetary wave structure, J. Atmos. Solar-Terr. Phys., 2008c, 71(1), 75~87
    155.Pascoe C. L., Gray L. J., Crooks S. A. et al., The quasi-biennial oscillation: Analysis using ERA-40 data, J. Geophys. Res., 2005, 110(D08105)
    156.Picone J. M., Hedin A. E., Drob D. P. et al., Enhanced empirical models of the thermosphere, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2000,25( 5-6):537~542
    157.Picone J. M., Hedin A. E., Drob D. P. et al., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. geophys. Res., 2002,107(A12):1468,doi:10.1029/2002JA009430
    158.Pogoreltsev A. I., Sukhanova S. A., Simulation of the global structure of stationary planetary waves in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 1993, 55(1), 33~40
    159.Poli P., Healy S. B., Rabier F. et al., Preliminary assessment of the scalability of GPS radio occultations impact in numerical weather prediction, Geophys. Res. Lett., 2008( 35), L23811, doi:10.1029/2008GL035873.
    160.Portnyagin Yu. I., Basic features of global circulation in the mesopause-lower thermosphere region, Handbook for MAP, 1984(10): 134~142
    161.Portnyagin Yu. I., The climatic wind regime in the lower thermosphere from meteor radar observations, J. Atmos. Terr. Phys., 1986(48): 1099~1109
    162.Portnyagin Yu. I., An empirical model of the zonal circulation at the 70–110 km, J. Meteorol Hydrol, 1987(4): 6~14
    163.Portnyagin Yu. I., Solovjova T. V., An empirical model of the meridional wind in the mesopause-lower thermosphere, Part 1, a monthly mean empirical model, J. Meteorol Hydrol, 1992(10): 28~35
    164.Portnyagin Yu. I., Forbes J. M., Solovjeva T. V. et al., Momentum and heat sources of the mesosphere and lower thermosphere regions 70–110 km, J. Atmos. Terr. Phys., 1995(57): 967~977
    165.Portnyagin Y., Solovjova T., Merzlyakov et al., Mesosphere/lower thermosphere prevailing wind model, Adv. Space Res., 2004(34): 1755~1762
    166.Preusse P., Eckermann S. D., Offermann D., Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments, Geophys. Res. Lett., 2000, 27(23), 3877~3880
    167.Randel W. J., The evaluation of winds from geopotential height data in the stratosphere, Journal of Atmospheric Sciences, 1987, 44(20): 3097~3120
    168.Ratnam M. V., Tetzlaff G., Jacobi C., Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite, J. Atmos. Sci., 2004a, 61(13), 1610~1620
    169.Ratnam M. V., Tsuda T., Jacobi C. et al., Enhancement of gravity wave activity observed during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements, Geophys. Res. Lett., 2004b, 31, L16101, doi:10.1029/2004GL019789
    170.Reber C. A., Trevathan C. E., McNeal R. J. et al., The Upper Atmosphere Research Satellite (UARS) mission, J. Geophys. Res., 1993, 98(D6): 10643~10647
    171.Remsberg E., Lingenfelser G., Harvey V. L. et al., On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses, J. Geophys. Res., 2003, 108(D20), 4628, doi:10.1029/2003JD003720
    172.Remsberg E. E. et al., Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res., 2008(113), D17101, doi:10.1029/2008JD010013
    173.Richter J., Sassi F., Garcia R. R. et al., Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3), J. Geophys. Res., 2008(133), D08101, doi:10.1029/2007JD009269
    174.Roble R. G., Ridley E. C., A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km), Geophys. Res. Lett., 1994, 21(6): 417~420
    175.Salby M. L., Sampling theory for asynoptic satellite observations. Part I: Space–time spectra, resolution, and aliasing, J. Atmos. Sci., 1982a, 39(11), 2577~2600
    176.Salby M. L., Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic mapping, J. Atmos. Sci., 1982b, 39(11), 2601~2614
    177.Salby M. L., Garcia R. R., Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior, J. Atmos. Sci.,1987, 44(2), 458~498
    178.Santee M. L., Diagnostic calculations of the circulation in the Martian atmosphere, Journal of Geophysical research, 1995(100): 5465~5484
    179.Sassi F., Garcia R. R., Boville B. A. et al., On temperature inversions and the mesospheric surf zone, J. Geophys. Res., 2002, 107(D19), 4380, doi:10.1029/2001JD001525
    180.Sassi F., Boville B., Kinnison D. et al., The effects of interactive ozone chemistry on simulations of the middle atmosphere, Geophys. Res. Lett., 2005(32), L07811, doi:10.1029/2004GL022131
    181.Scherhag R., Die explosionsartigen Stratosph?renerw?rmungen des Sp?twinters 1951/52, Berichte des deutschen Wetterdienstes in der US-Zone, 1952, 6(38): 51~63
    182.Shine K. P., The middle atmosphere in the absence of dynamical heat fluxes, Quart. J. Roy. Meteor. Soc. 1987(113): 603~633
    183.Shiotani M., Hirota I., Planetary wave-mean flow interaction in the stratosphere: a comparison between Northern and Southern Hemispheres, Q. J. R. Meteorol. Soc., 1985(111): 309~334
    184.Shoeberl M. R., Srtobel D. F., The zonally averaged circulation of the middle atmosphere, J. Atmos. Sci., 1978, 35(4): 577~591
    185.Singer W., Hoffmann P., Manson A. H. et al., The wind regime of the mesosphere and lower thermosphere during the DYANA campaign, J. Atmos. Terr. Phys., 1994(56): 1717~1729
    186.Siskind D. E., Coy L., Espy P. Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument, Geophys. Res. Lett., 2005(32), L09804
    187.Smith A. K., Stationary waves in the winter stratosphere: seasonal and interannual variability, J. Atmos. Sci., 1983(40): 245~261
    188.Smith A. K., Avery S. K., A resonant wave in a numerical model of the 1979 sudden stratospheric warming, J. Atmos. Sci., 1987(44): 3150~3161
    189.Smith A. K., Longitudinal variations in mesospheric winds: Evidence for gravity wave filtering by planetary waves, J. Atmos. Sci., 1996(53): 1156~1173
    190.Smith A. K., Stationary planetary waves in upper mesospheric winds, J. Atmos. Sci., 1997(54): 2129~2145
    191.Smith A. K., The Origin of Stationary Planetary Waves in the Upper Mesosphere,J. Atmos. Sci., 2003, 60(24), 3033~3041
    192.Swinbank R., Ortland D. A., Compilation of wind data for the UARS Reference Atmosphere Project, J. Geophys. Res., 2003(108), D19, 4615, doi:10.1029/2002JD003135
    193.Tie X., Brasseur G., Briegleb B., Granier C., Two-dimensional simulation of Pinatubo aerosol and its effect on stratospheric ozone, J. Geophys. Res. 1994(99): 20,545~20,562
    194.Torre A. de la, Tsuda T., Hajj G. A. et al., A global distribution of the stratospheric gravity wave activity from GPS occultation profiles with SAC-C and CHAMP, JMSJ, 2004, 82(1B), 407~417
    195.Torre A. de la, Schmidt T., Wickert J., A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP, Geophys. Res. Lett., 2006(33), L24809, doi:10.1029/2006GL027696
    196.Tsuda T., Murayama Y., Yamamoto M., Kato S., Fukao S., Seasonal variations of momentum flux in the mesosphere observed with the MU radar, Geophys. Res. Lett. 1990(17): 725~728
    197.Tsuda T., Nishida M., Rocken C. et al., A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res., 2000, 105(D6), 7257~7273
    198.Uppala S. M., Kallberg P. W., Simmons A. J. et al., The ERA-40 reanalysis, Quart. J. Roy. Meteor. Soc., 2005(131): 2961~3012
    199.VanZandt T. E., A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci. 1985(20): 1323~1330
    200.Vincent R. A., Alexander M. Joan, Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability, J. Geophys. Res., 2000, 105(D14), 17,971~17,982
    201.Walterscheid R. L., Sivjee G. G., Roble R. G., Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada, (80oN), Geophys. Res. Lett., 2000(27): 2897~2900
    202.Wang D. Y., Ward W. E., Shepherd G. G. et al., Stationary planetary waves inferred from WINDII wind data taken within altitudes 90– 120 km during 1991– 1996, J. Atmos. Sci., 2000(57): 1906~1918
    203.Wang L., Geller M. A., Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data, J. Geophys.Res., 2003, 108(D16), 4489, doi:10.1029/2002JD002786
    204.Wang X., LüD. R., Retrieval of water vapor profiles with radio occultation measurements using an artificial neural network, Adv. Atmos. Sci., 2005, 22(5): 759 ~764
    205.Warner C. D., McIntyre M. E., An ultrasimple spectral parameterization for nonorographic gravity waves, J. Atmos. Sci., 2001(58): 1837~1857
    206.Wehrbein W. M., Leovy C.B., An accurate radiative heating and cooling algorithm for use in a dynamical model of the middle atmosphere, J. Atmos. Sci., 1982, 39(7): 1532~1544
    207.Weinstock J., Gravity wave saturation and eddy diffusion in the middle atmosphere, J. Atmos. Terr. Phys., 1984(46): 1069~1082
    208.Wu Dong L., Hays P. B., Skinner W. R., A least squares method for spectral analysis of space–time series, J. Atmos. Sci., 1995, 52(20), 3501~3511
    209.Wu D. L., Waters J. W., Satellite observations of atmospheric variances: A possible indication of gravity waves, Geophys. Res. Lett., 1996(23): 3631~ 3634
    210.Wu D. L., Read W. G., Shippony Z. et al., Mesospheric temperature from UARS MLS: retrieval and validation, J. Atmos. Sol-Terr. Phy., 2003, 65(2): 245~267
    211.Wu X. D., Cao H. X., Andrew F. et al., Forecasting monsoon precipitation using artificial neural networks, Adv. Atmos. Sci., 2001, 18(5): 950 ~ 958
    212.Xiao C.Y., Hu X., Zhang X. X. et al., Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30°N with the 2D-SOCRATES model, Adv. Space Res., 2007, 39(8), 1267~1277
    213.Xie P., Arkin P. A., Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Am. Meteor. Soc., 1997, 78(11), 2539~2558
    214.Xu J., Smith A. K., Brasseur G. P., The effects of gravity waves on distributions of chemically active constituents in the mesopause region, J. Geophys. Res., 2000, 105(D21): 26,593~26,602
    215.Xu Ji-yao, Ma Rui-ping, Smith A. K., The study and applications of photochemical-dynamical gravity wave model II, SCI CHINA SER A, 2002, 45(s1), 175, doi:10.1007/BF02889700
    216.Xu Ji-yao, A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region, J. Geophys. Res., 2003(108), 4119, doi:10.1029/2001JD001570
    217.Xu Ji-yao, Studies of gravity wave–induced fluctuations of the sodium layer using linear and nonlinear models, J. Geophy.s Res., 2004(109), D02306, doi:10.1029/2003JD004038
    218.Xu, J., Smith A. K., Yuan W. et al., Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER, J. Geophys. Res., 2007(112) D24106, doi:10.1029/2007JD008546
    219.Xue Xiang-hui, Wan Wei-xing, Xiong Jian-gang et al., Diurnal tides in mesosphere/low-thermosphere (MLT) during 2002 at Wuhan using Canonical Correlation Analysis, J. Geophys. Res., 2006(112), doi:10.1029/2006JD007490
    220.Xue Xiang-hui, Wan Wei-xing, Xiong Jian-gang et al., The characteristics of the semi-diurnal tides in mesosphere/low-thermosphere (MLT) during 2002 at Wuhan (30.6oN, 114.4oE) -using Canonical Correlation Analysis technique, Adv. Space Res., 2008(9): 1415~1422
    221.Yi F., Klostermeyer J., Rüster R., VHF radar observation of gravity wave critical layers in the mid-latitude summer mesopause region, Geophys. Res. Lett., 1991, 18(4): 697~700
    222.Yi Fan, Klostermeyer J., Ruster R., VHF radar observation of gravity wave critical layers in the polar summer mesopause region, Annales geophysicae, 1992, 10(11-12): 88~894
    223.Yi F., Zhang S., Zeng H. et al., Lidar observations of sporadic Na layers over Wuhan (30.5°N, 114.4°E), Geophys. Res. Lett., 2002, 29(9), 1345, doi:10.1029/2001GL014353
    224.Yi Fan, Zhang Shao-dong, Yu Chang-ming et al., Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China, J. Geophys Res, 2007(112), D04303, doi:10.1029/2006JD007413
    225.Yi Fan, Zhang Shao-dong, Yue Xian-chang et al., Some ubiquitous features of the mesospheric Fe and Na layer borders from simultaneous and common-volume Fe and Na lidar observations, J. Geophys Res, 2008(113), A04S91, doi:10.1029/2007JA012632
    226.Yi Fan, Yu Chang-ming, Zhang Shao-dong et al., Seasonal variations of the nocturnal mesospheric Na and Fe layers at 30°N, J. Geophys Res, 2009(114), D01301, doi:10.1029/2008JD010344
    227.Yoden S., Bifurcation properties of a stratospheric bacillation model, J. Atmos.Sci., 1987(44): 1723~1733
    228.Zeng Z., Hu X., Zhang X., Applying artificial neural network to the short-term prediction of electron density structure using GPS occultation data, Geophys. Res. Lett., 2002, 29(9), 1321, doi:10.1029/2001GL013656
    229.Zhang S. D., Yi F., A numerical study of nonlinear propagation of a gravity-wave packet in compressible atmosphere, J. Geophys. Res., 1999, 104(D12), 14,261~14,270
    230.Zhang S.D., Yi F., Wang J.F., The nonlinear efects on the characteristics of gravity wave packets:Dispersion and polarization relations, Ann.Geophysical,2000(18): 1316~1324
    231.Zhang S. D., Yi F., A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere, J. Geophys. Res., 2002, 107(D14), 4222, doi:10.1029/2001JD000864
    232.Zhang S., Yi F., A numerical study on global propagations and amplitude growths of large-scale gravity wave packets, J. Geophys. Res., 2004a, 109, D07106, doi:10.1029/2003JD004429
    233.Zhang S. D., Yi F., A numerical study on the propagation and evolution of resonant interacting gravity waves, J. Geophys. Res., 2004b, 109, D24107, doi:10.1029/2004JD004822
    234.Zhang S. D.,Yi F.,Hu X., MF radar observation of mean wind and tides of winter mesopause(80-98km)region over Wuhan(30oN,l14oE), J.Atmos.Solar Terr.Phys.,2004,66(1):15~25
    235.Zhang S. D., Yi F., A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E), China, Ann. Geophys., 2005(23): 665~673
    236.Zhang S. D., Huang C. M., Yi F., Radiosonde observations of vertical wavenumber spectra for gravity waves in the lower atmosphere over central China, Ann. Geophys., 2006(24): 3257~3265
    237.Zhang S. D., Yi F., Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China, J. Geophys. Res., 2007(112), D05109, doi:10.1029/2006JD007487
    238.Zhang Shao Dong, Yi Fan, A numerical study on the response of wave number spectra of atmospheric gravity waves to lower atmospheric forcing, J. Geophys.Res., 2008(113), D02102, doi:10.1029/2007JD008957
    239.Zhang Shao-dong, Yi Fan, Huang Chun-ming et al., Intensive radiosonde observations of gravity waves in the lower atmosphere over Yichang (111°18' E, 30°42' N), China, Annales geophysicae, 2008, 26(7): 2005~2018
    240.Zhang Sheng-pan P., McLandress Charles, Shepherd Gordon G., Satellite observations of mean winds and tides in the lower thermosphere: 2. WINDII monthly winds for 1992 and 1993, J. Geophys. Res., 2007(112), D21105, doi:10.1029/2007JD008457
    241.Zhang X., Forbes J. M., Hagan M. E. et al., Monthly tidal temperatures 20–120 km from TIMED/SABER, J. Geophys. Res., 2006(111), A10S08, doi:10.1029/2005JA011504
    242.Zhao Guang-xin, Liu Li-bo, Wan Wei-xing, Ning Bai-qi, Xiong Jian-gang, Seasonal behavior of meteor radar winds over Wuhan, Earth Planets Space, 2005a, 57(1): 61~70
    243.Zhao Guang-xin, Liu Li-bo, Ning Bai-qi, Wan Wei-xing, Xiong Jian-gang, The terdiurnal tide in the mesosphere and lower thermosphere over Wuhan, Earth Planets Space, 2005b, 57(5): 393~398
    244.Zheng W. Z., Zou C. Z., An improved algorithm for atmospheric wind retrievals from satellite soundings over the polar regions, Geophys. Res. Let., 2006(33), L06820
    245.艾勇.张训械.鲁述等.激光雷达观测的武汉上空钠原子层形态特性.中国激光,1998,25(7):653~656
    246.陈皓.易帆.武汉上空对流层与平流层大气密度和温度探测的初步结果.空间科学学报,2003,23(4):262~268
    247.陈权亮. Brewer-Dobson环流及其对平流层微量气体输送的研究[博士论文].中国科学技术大学,2006
    248.陈廷娣.薛向辉.窦贤康.合肥上空钠层夜间激光雷达观测的初步研究.中国科学技术大学学报,2007,37(8):873~878
    249.陈文.黄荣辉.准定常行星波对大气中臭氧输运的动力作用.大气科学,1995(19):513~524
    250.陈月娟.施春华.从HALOE资料看青藏高原上空HCL分布及其与O3的关系.高原气象,2005,24(1):1~8
    251.陈泽宇.吕达仁.东经120oE中间层和低热层大气潮汐及其季节变化特征.地球物理学报,2007,50(3):691~700
    252.陈泽宇.吕达仁.卫星遥感东经120o子午圈MLT典型温度结构:中间层顶统计分析.地球物理学报,2008,51(4):982~990
    253.邓淑梅.平流层爆发性增温的动力学过程及其对微量气体分布影响的研究[博士论文].合肥:中国科学技术大学,2007
    254.宫晓艳.胡雄.吴小成等.大气掩星反演误差特性初步分析.地球物理学报,2007,50(4):1017~1029
    255.胡雄.冬季平流层突然增温的动力学研究[博士论文].武汉:中国科学院武汉物理与数学研究所,1995
    256.胡雄.张训械.黄信愉.冬季平流层波动模型的分岔特性.地球物理学报, 1995, 38(4): 428~438
    257.胡雄.张训械.黄信愉.对流层强迫与平流层暴发性增温.地球物理学报, 1996, 39(2): 169~177
    258.胡雄.黄泽荣.张训械等.太阳质子事件警报.空间科学学报, 1998, 18(4): 323~328
    259.胡雄.曾桢.张冬娅等.武汉中层、低热层大气角谱中频雷达观测.空间科学学报,2003,23(4):256~261
    260.胡雄.张训械.张冬娅.重力波对中间层和低热层大气环流的影响.空间科学学报, 2005, 25(2): 111~117
    261.黄荣辉.严邦良.用线性化全球原始方程谱模式研究地形强迫行星波垂直传播特征.大气科学,1993,17(3):257~267
    262.李国辉.吕达仁.对流层顶变化对上对流层/下平流层臭氧分布的影响.空间科学学报,2003(23): 269~277
    263.李风琴.胡雄.张冬娅等.武汉中层大气中频雷达及其初步探测结果.空间科学学报,2002,22(1):65~71
    264.刘仁强.易帆.极区夏季中层顶大气波的共振非线性相互作用.中国科学(C辑), 2003, 33(2): 158~167
    265.刘小勤.胡顺星.李琛等.用激光雷达探测合肥高空钠层的变化.强激光与粒子束, 2006, 18(12): 1944~1948
    266.吕达仁.王英鉴.中国中层大气研究的近期进展.地球物理学报,1994,(增刊):74~84
    267.吕达仁等.零风层与我国首次高空气球停留试验.目标与环境特性研究, 2002(1): 45~51
    268.吕达仁.陈洪滨.平流层和中层大气研究的进展.大气科学,2003,27(4):750~769
    269.马瑞平. SOUSY—VHF雷达探测中间层大气的结果.空间物理与探测技术,1988,8(2):108~113
    270.马瑞平.彭晓岚.用全球原始方程半谱模式研究QBO对行星波传播的影响.空间科学学报,1992, 12(3): 205~213
    271.马瑞平.用织女一号火箭在海南站探测的高空风和风切变.空间科学学报,1997,17(1):70~74
    272.马瑞平.廖怀哲.中国地区20~80 km高空风的一些特征.空间科学学报,1999,19(4):334~341
    273.马瑞平.徐寄遥.廖怀哲.我国地区20~80 km高空大气温度特征.空间科学学报,2001,21(3):246~252
    274.欧阳晋.屈卫东.席裕庚.平流层平台的发展及其自主控制关键技术.工业仪表与自动化装置, 2004(1): 64~67
    275.彭勇刚.陈泽宇.陈洪滨等.利用HRDI/UARS资料分析东亚区域中层大气纬向风气候特征.空间科学学报,2006,26(2):124~131
    276.施春华.平流层微量气体变化趋势及其化学过程的研究[博士论文].中国科学技术大学,2006
    277.王少伟.平流层信息平台技术的发展及应用前景.地面防空武器, 2006(2): 40~44
    278.王英鉴.我国中高层大气观测研究的新进展.地球物理学报,1997,40(增刊):29~36
    279.翁衡毅.平流层爆发性增温动力机制的初步研究.大气科学, 1984, 8(3): 304~314
    280.吴振.陈泽宇.彭勇刚等.东亚MI T区域平均纬向风再评估—WINDII测量分析结果.地球物理学报,2008,51(1):44~50
    281.肖存英.胡雄.田剑华.利用卫星温度资料计算风场的方法分析与比较.地球物理学报, 2008, 51(2): 325~336
    282.肖霞.美国空军试验高空气球.电子对抗, 2005(3): 32~32
    283.熊建刚.易帆.大气中层顶区域波相互作用的一个观测个例.空间科学学报, 2001(4): 318~323
    284.熊建刚.万卫星.宁百齐等.武汉上空中层顶附近大气环流的流星雷达观测.科学通报,2003a,48(10):1102~1106
    285.熊建刚.万卫星.宁百齐等.武汉上空中层和低热层大气潮汐的流星雷达观测.空间科学学报,2003b,23(5):361~370
    286.徐寄遥.马瑞平. Smith A. K.光化-动力耦合重力波模式及其应用,I:模式的建立.中国科学, A辑(专刊), 2001(31): 141~148
    287.徐寄遥.纪巧.袁韦华等.TIMED卫星探测的全球大气温度分布及其与经验模式的比较.空间科学学报,2006,26(3):177~182
    288.易帆.刘仁强.极区夏季中间层潮汐和平均风的短期变化特征.电波科学学报, 2000, 15(4): 415~422
    289.余长明.易帆.武汉上空平流层气溶胶的激光雷达探测结果的初步分析.空间科学学报,2004,24(4):261~268
    290.张冬娅.胡雄.北纬30 N中间层和低热层大气平均风中频雷达观测.空间科学学报,2005,25(4):267~272
    291.张弘.陈月娟.吴北婴.准两年振荡对大气中微量气体分布的影响.大气科学,2000(24): 103~110
    292.张绍东.易帆. Klostemmyer J.等.极区中层惯性重力波临阶层的VHF雷达观测.空间科学学报,1996,16(3):227~232
    293.张绍东.易帆.胡雄.武汉上空(30 N,114 E)潮汐及其相互作用的MF雷达观测.空间科学学报,2003,23(6):430~235
    294.张晓芳.严卫.中高层大气探测技术的研究进展.气象科学,2007,27(4):457~463
    295.张训械.曾文.胡雄.利用人工神经网络研究电离层参量变化.电波科学学报, 1996, 11(3): 14~21
    296.赵天保.符淙斌.中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析.气候与环境研究, 2006, 11(1): 14~32
    297.郑彬.陈月娟.张弘. NOx的准两年周期变化及其与臭氧准两年周期振荡的关系—Ⅱ.模拟研究.大气科学,2003, 27(6): 1007~1017

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700