大气无线电GNSS掩星探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,地球大气无线电GPS掩星探测技术作为二十一世纪最先进的空间探测技术之一迅速发展起来,并成为国内外众多学者广泛关注的焦点。GPS掩星探测技术开辟了地球大气探测崭新的思路,可实现对全球范围的大气层和电离层进行探测。其基本原理是:在低轨LEO卫星上安装双频高动态的GPS接收机,对GPS卫星进行临边观测,当电波信号穿过电离层和中性大气层传播时,由于介质垂直折射指数变化,导致对电波的折射作用,使信号路径发生弯曲,由此可反演获得全球大气折射率、气压、密度、温度和水汽压等大气参数剖面及电离层电子密度剖面。掩星探测技术具有高精度、高垂直分辨率、长期稳定、全球覆盖、全天候和花费较低廉等优势,可弥补传统大气探测手段的不足,其探测资料对于提高数值天气预报精度、临近空间环境监测与研究、气候与全球变化研究、大气模式研究和数据同化等方面都具有重要的科学研究意义,在气候学、气象学、电离层和测地学等领域具有重大的科学研究价值和广泛的实际应用前景。
     本文以大气掩星反演技术为重点,系统介绍了无线电GPS大气掩星技术的基本原理和系统组成,从提高掩星反演精度出发,对几何光学反演方法和滑动谱全息反演方法所涉及的各个关键环节进行了深入的研究和探讨,开发高精度的数据处理算法,并形成拥有自主知识产权的大气掩星数据处理软件;利用该算法对GPS/MET、CHAMP和COSMIC实测大气掩星数据进行反演;本文对大气掩星中影响反演精度的各个误差源进行了全面深入的分析,探讨了大气掩星反演中的误差特性;本文同时对山基掩星观测试验结果进行了分析。
     本文的主要工作内容如下:
     1、介绍了无线电掩星仿真技术,利用卫星轨道数据,在给定大气和电离层模式背景的情况下,模拟计算GPS接收机将要接收的电波附加相位。仿真研究是掩星反演精度验证和误差分析的基础,对研究和发展掩星技术具有重要意义。
     2、深入系统地研究了大气掩星反演中传统的几何光学反演方法,完成和完善了多普勒数据质量检查和控制、数据预处理、局部圆弧中心修正、电离层修正、弯曲角统计优化和质量评估参数计算等关键环节的算法研究,形成空间科学与应用研究中心拥有自主知识产权的大气掩星数据处理软件。本文对GPS/MET、CHAMP和COSMIC实测大气掩星数据进行反演,分别与国际上权威的数据处理中心GFZ和UCAR的反演结果进行了对比分析,并开展了大量数据的统计验证工作。比较分析结果表明了我们的算法具有较高的精度。
     3、深入分析了大气掩星反演精度的影响因素,分别对卫星测量误差、掩星接收机测量误差和掩星反演算法误差等三大类影响大气掩星反演精度的误差源进行了较系统的总结。并采用仿真研究的方法,对各误差源对反演的影响进行了定量分析,并分析各误差源所带来的掩星反演误差的特点。定量分析了地球扁率和电离层对反演的影响,分析结果表明:反演算法中的局部圆弧中心的修正以及电离层修正,对于高精度的GPS掩星反演是非常重要的;电离层修正残差仍是制约30~60km高度范围内反演精度的重要因素,进一步完善和优化大气掩星反演需要发展新的电离层修正算法。同时分析了GPS和LEO卫星的位置误差、速度误差、卫星时钟的漂移、载波相位观测误差等对反演的影响,给出了定量的分析结果,指出高精度的掩星反演对上述测量精度的需求。
     4、针对影响低对流层掩星反演的多路径效应问题,研究并实现了全息反演方法之一的滑动谱反演方法,将该方法应用于COSMIC实测掩星数据的反演。通过与UCAR反演结果的对比分析表明:在富含水汽的低对流层区域,相比几何光学反演方法,滑动谱反演方法与UCAR的反演结果更为符合,说明滑动谱反演方法能够有效的减小多路径传播对反演的影响,反演结果更为可靠。
     5、利用全球探空数据,对COSMIC大气掩星数据进行了比较验证。结果表明,掩星探测大气温度剖面与探空观测结果符合较好,在10~30km的高度范围内,掩星反演温度廓线与探空观测温度廓线的平均偏差小于1K。
     6、对山基GPS掩星观测进行了研究。利用2005年8月1日至8月29日中国气象局组织实施的河北雾灵山山基GPS掩星观测试验数据,反演得到接收机高度以下的大气折射率剖面,并将反演结果与自动气象站观测结果进行比较,符合较好,说明山基GPS掩星观测对于低层大气环境监测具有重要的应用价值。
Recently, radio occultation technique using the Global Position System for observing the Earth’s atmosphere, one of the most advanced space exploring technique in the 21st century, has developed rapidly and become the focus of a lot of scientists both here and abroad. The radio occultation technique gives a new method of exploring the Earth’s atmosphere. This technique can observe global neutral atmosphere and ionosphere. The principle of the technique is to install the GPS receiver at the satellite of LEO and do limb sounding for GPS satellite. When the radio signal spread through the atmosphere and ionosphere, the signal path will be bended because of the variety of refractivity, from which we can retrieve the atmospheric refractivity, pressure, density, temperature, and water vapor, also we can obtain the electron density in the ionosphere. It can operate all weather with long-term stability and global coverage. And its product has high precision. Occultation sounding is the supplement of traditional measurements. The occultation data of global distributed will greatly promote the precision of numerical weather prediction and research on the space near the Earth, and in addition, it can be applied to study on climate and global change. The occultation technique is of great importance to research on atmosphere model and data assimilation. The GPS radio occultation technique has shown a great future in the field of climate, meteorology, ionosphere, and geodesy.
     This thesis focuses on the retrieval technique of atmospheric occultation. The basic theory and system construction of radio occultation technique are introduced all around. The main arithmetics of geometric optic method and sliding-spectral method in the occultation inversion are studied in-depth. The arithmetics of high precision and the software for processing atmospheric occulation data have been completed. The occultation data of GPS/MET, CHAMP, and COSMIC are processed using the method we developed. Some factors that influence the precision of retrieval and the characteristics in atmospheric inversion are discussed. At the same time, we analyze the data of the experiment of mountain-based radio occultation.
     The main works can be summarized as following:
     1. The method for GPS/LEO radio occultation simulation is introduced in this thesis. Using the simulation method, it can be calculated of atmospheric excess phase received by GPS receiver using the satellite orbit data when the atmospheric background is known. Study on simulation is the basic of validate of occultation and error anlysis. And it is important to study and develop occultation technique.
     2. The geometric optic method in atmospheric occultation inversion is introduced. We discuss some important process in detail, such as check up and control for Doppler shift data, data pretreatment, the local curvature correction, ionospheric calibration, optimal estimation of the bending angle and calculating the parameters of occultation quality. And the software for processing the occultation data is developed. The occultation data of GPS/MET, CHAMP, and COSMIC are processed, and we compare our results and results of GFZ and UCAR. A lot of statistic and validation of data are done in this thesis. Results show that our arithmetic has high precision.
     3. The factors that affect the precision of atmospheric inversion are discussed in-depth. There are three types of error source in atmospheric occultation included of satellite measurements errors, GPS receiver measurements errors and the errors from the method of inversion. We analyze the error sources using simulative method. And the characteristics in atmospheric inversion are discussed. The effects of The Earth’s oblateness and ionosphere on the retrieval are analyzed. Results show that: local curvature calibration and ionosphere calibration are very important for GPS occultation inversion of high precision. Ionospheric residual influence is the main reason of restricting the retrieval precision from 30 km to 60 km also, and it is necessary to develop new ionosphere calibration method for atmosphere inversion of higher precision. In addition, we analyze effect of the orbit error, velocity error, clock error and shift and observation error of phase of carrier wave on inversion.
     4. The multipath propagation that affects the inversion in the lower atmosphere is studied. To solve this problem, the sliding-spectral method has been studied. Sliding-spectral method is applied to COSMIC radio occultation event data. Through the comparative analysis of our results and that of UCAR, it can be concluded that sliding-spectral method can reduce the effect of multipath propagation of lower atmosphere, and can retrieve the atmospheric parameters more accurately.
     5. The COSMIC atmospheric radio occultation data is compared with global radiosondes. The comparison shows that the atmospheric temperature profiles are consistent with radiosondes. The mean difference of temperature between radio occultation and radiosonde is less than 1K from 10km to 30km.
     6. The mountain-based GPS radio occultation is studied. Using the data from the mountain-based observation experiment at Mt Wuling in Hebei Province during August 1-29, 2005, the profiles below the height of receiver are retrieved successfully. We compared the refractivity of the altitude in which the receiver is located with the result of automatic weather station. The result illustrates a good agreement in mountain-based GPS occultation and automatic weather station. Mountain-based occultation has potential applications for lower atmosphere sounding.
引文
1. Aikin A. C., Hedin A. E., Kendig D. J., et al. Thermospheric molecular oxygen measurements using the ultraviolet spectrometer on the Solar Maximum Mission spacecraft. 1993, 98(A10): 17,607~17,614, 10.1029/93JA01468
    2. Aoyama Y., Shoji Y. Mountaintop and airborne GPS observations, and effects of turbulence on RO signals. Colloquium on atmospheric remote sensing using the global positioning system, Boulder, Colorado, 20 June ~ 2 July, 2004
    3. Atreya S. K., Donahue T. M., Michael B. McElroy. Jupiter's Ionosphere: Prospects for Pioneer 10, Science, 1974, 184: 154~156.
    4. Barlier F., Berger C., Falin J. L., et al. A thermospheric model based on satellite drag data. Ann. Geophys., 1978, 34: 9~24
    5. Benzon H. H., Nielsen A. S., et al. An atmospheric wave optics propagator——theory and application. Scientific Report 03-01, 2003, Danish Meteorological Institute
    6. Beyerle G., Gorbunov M. E., Ao C. O. Simulation studies of GPS radio occultation measurements. Radio Science, 2003, 38: 1084, doi:10.1029/2002RS002800
    7. Beyerle G. Simulating GPS occultation event. Scientific Report 05-09, 2005, Danish Meteorological Institute.
    8. Broadfoot A. L., Kumar S., Belton M. J. S., et al. Mercury's Atmosphere from Mariner 10: Preliminary Results, Science, 1974, 185: 166~169
    9. Budden K. G., The propagation of radio waves, Cambridge: Cambridge University Press, 1985.
    10. Buonsanto M. J., Pohlman L. M. Climatology of neutral exospheric temperature above Millstone Hill. J.Geophys. Res., 1998, 103: 23,381~23,392
    11. Escudero A., Schlesier A. C., Rius A., et al. Ionospheric tomography using ?rsted GPS measurements - Preliminary results, Physics and Chemistry of the Earth Parta-Solid Earth and Geodesy, 2001, 26(3): 173~176.
    12. Eshleman Von R. Jupiter's Atmosphere: Problems and Potential of Radio Occultation, Science, 1975, 189: 876~878
    13. Fischbach F. F. A satellite method for pressure and temperature below 24 km. Bulletin of American Meteorological Society, 1965, 46: 528~532
    14. Fjeldbo G., Eshleman V. R. The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data, Planet Space Sci., 1968, 16: 1035~1059
    15. Fjeldbo G., Eshleman V. R. The atmosphere of Venus as studied with the Mariner 5 dual radio- frequency occultation experiment, Radio Sci., 1969, 4: 879~897
    16. Fjeldbo G. F., Kliore A. J., Eshleman V. R. The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J., 1971, 76: 123~140
    17. Foelsche U., Kirchengast G., Gobiet A. et al. The CHAMPCLIM project: An overview, in Earth observation with CHAMP: Results from Three Years in Orbit, edited by Reigber C., Schwintzer P. Lühr H., and Wickert J., 2005, 615~620, Springer Verlag
    18. Fong C. J., Yen N., Chu V., et al. Mission results from FORMOSAT-3/COSMIC constellation for global climate monitoring. Geophysical Research Abstract, 2007, 9, 06062
    19. García-Fernández M., Hernandez-Pajares M., Juan J. M., et al. Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data, Gps Solutions, 2005, 9(2): 105~110.
    20. Gobiet A. and G. Kirchengast. Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility, Journal of Geophysical Research-Atmospheres, 2004, 109(D24).
    21. Goncharenko L. P., Salah J. E. Climatology and variability of the semidiurnal tide in the lower thermosphere over Millstone Hill. J.Geophys. Res., 1998, 103: 20,715~20,726
    22. Gorbunov M. E., Sokolovskiy S. V., Bengtson L. Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity. Tech Rep.211, Max Plank Inst. For Meteorol., Hamburg, Germany, 1996
    23. Gorbunov M. E., Gurvich A S, Algorithms of inversion of Microlab-1 Satellite data including effects of multipath propagation. Int. J. Remote Sensing, 1998a, 19: 2283~2300
    24. Gorbunov M. E., Gurvich A. S. Microlab-1 experiment: multipath effects in the lower troposphere. J. Geophys. Res., 1998b, 103(D12): 819~826
    25. Gorbunov M. E. Radioholographic methods for processing radio occultation data in multipath regions, Danish Meteorological Institute Scientific Report (Copenhagen), 01-02, 2001.
    26. Gorbunov M. E. Radioholographic analysis of radio occultation data in multipath zones. Radio Sci., 2002a, 37(1), 10.1029/2000RS002577
    27. Gorbunov M. E. Canonical transform method for processing radio occultation data in the lower troposphere, Radio Sci., 2002b, 37(5), 10.1029/2000RS002592
    28. Gorbunov M. E., Kornblueh L. Analysis and validation of Challenging Minisatellite Payload (CHAMP) radio occultation data. Journal of Geophysical Research, 2003, 108(D18), 4584, doi:10.1029/2002JD003175
    29. Hajj G. A., Romans L. J., Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 1998, 33(1): 175~190,.
    30. Hajj G. A., Lee L. C., Pi X. Q., et al. COSMIC GPS ionospheric sensing and space weather, Terrestrial Atmospheric and Oceanic Sciences, 2000, 11(1): 235~272.
    31. Hajj G. A., Ao C. O., Iijima B. A., et al., CHAMP and SAC-C atmospheric occultation results and intercomparisons. Journal of Geophysical Research-Atmospheres, 2004, 109(D6).
    32. Han S. C., x Shum B. A., Jekeli C., et al. Improved estimation of terrestrial water storage changes from GRACE, Geophysical Research Letters, 2005, 32(7).
    33. Haselgrove J., The Hamilton ray path equations. J. Atmos. Terr. Phys., 1963, 25: 397~399
    34. Hardy K. R., Hajj G. A. Kursinski E. R. Accuracies of atmospheric profiles obtained from GPS occultations. International Journal of Satellite Communications, 1994, 12: 463~473
    35. Healy S. Jupp A. M., Marquardt C. Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 2005, 32, L03804, doi: 10.1029/2004GL020806
    36. Hedin A. E., Reber C. A., Newton G. P., et al. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. I - N2 density and temperature. J. geophys. Res., 1977a,82:2139~2147
    37. Hedin A. E., Reber C. A., Newton G. P., et al. A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS. II– Composition. J. geophys. Res., 1977b, 82: 2,148~2,156
    38. Hedin A. E. A revised thermospheric model based on mass spectrometer and incoherent scatter data:MSIS-83. J. geophys. Res., 1983, 88(A12): 10,170~10,088
    39. Hedin A. E. MSIS-86 thermospheric model. J. geophys. Res., 1987, 92: 4649~4662
    40. Hedin A. E., High altitude atmospheric modeling. NASA Tech. Memo, 1988,100707
    41. Hedin A. E. Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. geophys. Res., 1991, 96(A2): 1159~1172
    42. Hinson D P, Flasar F M, Schinder A J K P J, et al. Jupiter’s ionsphere: Results from the first Galileo radio occultation experiment. Geophys. Res. Lett., 1997, 24(17): 2107~2110
    43. Hinson D P, Twicken J D, Karayel E T. Jupiter’s ionsphere: New results from the first Voyager 2 radio occultation measurements. J. Geophys. Res., 1998, 103(A5): 9505~9520
    44. Hocke K. Inversion of GPS meteorology data, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 1997, 15(4):443~450.
    45. Hocke K A, Pavelyev A G, Yakovlev O I, et al. Radio occultation data analysis by the radioholographic method. J. Atmos. Sol. Terr. Phys., 1999, 61(15): 1169~1171
    46. Howard H. T., Tyler G. L., Esposito P. B., et al., Mercury: Results on Mass, Radius, Ionosphere, and Atmosphere from Mariner 10 Dual-Frequency Radio Signals, Science, 1974, 185: 179~180
    47. Hu X., Wu X. C., Gong X. Y., et al. An introduction of mountain-based GPS radio occultation experiments in China, Advances in Space Research, 2008, In Press
    48. H?eg P., Hauchcorne A., Kirchengast G., et al. Derivation of atmospheric properties using a radio occultation technique, Sci. Rep., 1996, 95-4, Danish Meteorol. Inst., Copenhagen
    49. Jacchia L. Revised static models of the thermosphere and thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Observatory Spevial Rep. 1971,332
    50. Jakowski N., Wehrenpfenning A., Heise S., et al. GPS radio occultation measurements of the ionosphere from CHAMP: Early results, Geophys. Res. Lett., 2002, 29(10), doi: 10.1029/2002RS002763
    51. Jensen A. S, Lohmann M S, Benzon H H, et al. Full spectrum inversion of radio occultation signals. Radio Sci., 2003, 38(3), doi:10.1029/2002RS002763
    52. Kirchengast G, Hafner J, Poetzi W. The CIRA86aQ_UoG model: An extension of the CIRA-86 monthly tables including humidity tables and a Fortran95 global moist air climatology model. IMG/UoG technical report for ESA/ESEC-No.8/1999, IMG/UoG, Graz, Austria, 1999
    53. Kliore A., Dan L. Cain, Gerald S. Levy , et al. Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere, Science,1965, 149: 1243~1248.
    54. Kliore Arvydas, Gerald S. Levy, Dan L. Cain, et al. Atmosphere and Ionosphere of Venus from the Mariner V S-Band Radio Occultation Measurement, Science, 1967, 158: 1683~1688.
    55. Kliore A., Fjeldbo G., Seidel B. L., and S. I. Rasool Mariners 6 and 7: RadioOccultation Measurements of the Atmosphere of Mars, Science, 1969, 166: 1393~1397.
    56. Kliore Arvydas, Dan L. Cain, Gunnar Fjeldbo, et al., Preliminary Results on the Atmospheres of Io and Jupiter from the Pioneer 10 S-Band Occultation Experimen, Science, 1974, 183: 323~324.
    57. Kliore Arvydas, Gunnar Fjeldbo, Boris L. Seidel, et al., Atmosphere of Jupiter from the Pioneer 11 S-Band Occultation Experiment: Preliminary Results, Science, 1975, 188: 474~476
    58. Kuo Y. H., X. Zou, S. J. Chen, et al., A GPS/MET sounding through an intense upper-level front, Bulletin of the American Meteorological Society, 1998, 79(4): 617~626.
    59. Kuo Y. H., Sokolovskiy S, Anthes R A, et al. Assimilation of GPS radio occultation data for Numerical weather prediction. Special issue of Terrestrial, Atmospheric and Oceanic Science, 2000, 11(1): 157~186
    60. Kuo Y. H., Wee T. K., Bromwich D. H. Potential impact of COSMIC GPS radio occultation data on regional weather analysis and prediction over the Antarctic. Radio Occultation Science Workshop, NCAR Foothills Laboratory, Boulder, Colorado, August 21~23, 2002.
    61. Kuo Y. H., Wee T. K., Sokolovskiy S., et al. Inversion and error estimation of GPS occultation data. Journal of the Meteorological Society of Japan, 2004, 82(1B): 507~531
    62. Kuo Y. H., Schreiner W. S., Wang J. et al. Comparison of GPS Radio occultation soundings with radiosondes. Geophys. Res. Lett., 2004, subm
    63. Kursinski, E. R., G. A. Hajj, J. T. Schofield, et al., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research-Atmospheres, 1997, 102(D19): 23,429~23,465.
    64. Larsen G. B., S. Syndergaard, P. Hoeg, et al., Single frequency processing of ?rsted GPS radio occultation measurements, Gps Solutions, 2005, 9(2): 144~155.
    65. Lauritsen K. B., Lohmann M. S. Unfolding of radio occultation multipath behavior using phase models. Danish Meteorological Institute Scientific Report(Copenhagen, Denmark), 2002, 02-11
    66. Lin C. H., J. Y. Li, T. W. Fang, et al., Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophysical Research Letters, 2007b, 34(19).
    67. Lindal G. F., Hotz H. B., Sweetnam D. N., et al., Viking Radio Occultation Measurements of the Atmosphere and Topography of Mars; Data Acquired During the First Martian Year of Tracking. J. Geophys. Res., 1979, 84: 8443~8456
    68. Lindal G. F., Hotz H. B., Sweetnam D. N., et al. The atmosphere of Jupiter:An analysis of the Voyager radio occultation measurements.Journal of Geophysical Research, 1981, 86: 8721~8727.
    69. Lindal G. F., G. E. Wood, H. B. Hotz, et al., The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements, Icarus, 1983, 53: 348~363
    70. Lindal G. F., Sweetnam D. N., Eshleman V. R. The Atmosphere of Saturn: An Analysis of the Voyager Radio Occultation Measurements. Astronom. J., 1985, 90: 1136~1146
    71. Lindal G F, Lyons J R, Sweetnam D N, et al. The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2. J. Geophys. Res., 1987, 92(A13): 14,987~15,001
    72. Lindal G. F., Lyons J. R., Sweetnam D. N. et al. The Atmosphere of Neptune: Results of Radio Occultation Measurements with Voyager 2. Geophys. Res. Lett., 1990, 17: 1733~1736
    73. Lindal, G. F., Atmosphere of Neptune, Astronom. J., 1992, 103: 967~982
    74. Liou Y. A., A. G. Pavelyev, J. Wickert, et al., Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: a methodological review, GPS Solutions, 2005, 9(2): 122~143.
    75. Liou Y. A., A. G. Pavelyev, S. F. Liu, et al., FORMOS AT-3/COSMIC GPS radio occultation mission: Preliminary results, Ieee Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3813~3826.
    76. Liu H., Anderson J., Kuo Y H., et al. Mission results fromFORMOSAT-3/COSMIC constellation for global climate monitoring. American Geophysical Union, Fall Meeting 2006
    77. Marcos F.A., Hedin A. E., Liu J., et al. Operational satellite drag model standards. AIAA 95-0551, 33nd Aerospace Science Meeting &Exhibit, Reno, NV, 1995
    78. Marouf E A, Tyler G L, Rosen P A. Profiling Saturn rings by radio occultation. Icarus, 1986, 68: 120~166
    79. Meincke M D, Inversion methods for atmospheric profiling with GPS occultations. Danish Meteorological Institute Scientific Report (Copenhagen), 1999, 99-11
    80. Melbourne W., Davis E., Duncan C., et al. The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Jet Propulsion Laboraroty Pasadena, California, 1994: Publication 94-18, 147pp
    81. Melendez-Alvira D. J., Picone J. M., Zhou O. A., et al. Histograms of Arecibo World Days measurements and linear-H fits between 1985 and 1995. NRL Memo. Rep. 1998, NRL/MR/7640-98-831
    82. Mortensen M D, Hoeg P, Inversion of GPS occultation measurements using Fresnel diffraction theory, Geophys. Res. L., 1998, 25(13): 2441~2444
    83. Mostert S., Koekemoer J. A., The science and engineering payloads and experiments on sunsat. 48th Congress of the International Astronautical Federation, October 6-10, Turin, Italy(Paper IAF-97-IAA.11.1.04)
    84. Newman M., Schubert G., Kliore A., et al., Zonal Winds in the Middle Atmosphere of Venus from Pioneer Venus Radio Occultation Data. Journal of Atmospheric Sciences, 1984, 41(12): 1901~1913
    85. Ratnam M. V., Tsuda T., Jacobi C., et al. Enhancement of gravity wave activity observed during a major southern hemisphere stratospheric warming by CHAMP/GPS measurements. Geophys. Res. Lett., 2004, 31(L16101), doi: 10.1029/2004GL019789
    86. Pavelyev A G. On the feasibility of radioholographic investigations of wave fields near the Earth’s radio shadow zone on the satellite-to-satellite path. J. Commun. Technol. Electron., 1998, 43(8): 875~879
    87. Picone J. M., Hedin A. E., Drob D. P., et al. Enhanced empirical models of the thermosphere. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2000,25( 5-6):537~542
    88. Picone J. M., Hedin A. E., Drob D. P., et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. geophys. Res., 2002,107(A12):1468,doi:10.1029/2002JA009430
    89. Rius A., G. Ruffini, A. Romeo, Analysis of ionospheric electron density distribution from GPS/MET occultations, IEEE Trans. Geosci. & Remote Sensing, 36, 383~394, 1998.
    90. Rocken C., R. Anthes, M. Exner, et al., Analysis and validation of GPS/MET data in the neutral atmosphere, Journal of Geophysical Research-Atmospheres, 1997, 102(D25), 29,849~29,866.
    91. Schmidt T., Wickert J., Beyerle G., et al. Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. Journal of Geophysical Research, 2004, 109(D13105), doi:10.1029/2004JD004566
    92. Schmidt T., S. Heise, J. Wickert, et al., GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters, Atmospheric Chemistry and Physics, 2005, 5: 1473~1488.
    93. Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, et al., Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Science, 1999, 34(4): 949~966.
    94. Schreiner W., C. Rocken, S. Sokolovskiy, et al., Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission, Geophysical Research Letters, 2007, 34(4).
    95. Sokolovskiy S V. Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci., 2001, 36(3): 441~458
    96. Sokolovskiy S. V., C. Rocken, D. H. Lenschow, et al., Observing the moist troposphere with radio occultation signals from COSMIC, Geophysical Research Letters, 2007, 34(18).
    97. Steiner A. K., G. Kirchengast and H. P. Ladreiter, Inversion, error analysis, andvalidation of GPS/MET occultation data, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 1999, 17(1): 122~138.
    98. Straus P. R., Ionospheric climatology derived from GPS occultation observations made by the ionospheric occultation experiment, Advances in Space Research, 2007, 39(5): 793~802.
    99. Syndergaard S. Modeling the impact of the Earth’s oblateness on the retrieval of temperature and pressure profiles from limb sounding. J.Atmos. Sol Terr. Phys., 1998, 60(2): 171~180
    100.Syndergaard S. Retrieval analysis and methodologies in atmospheric limb sounding using the GNSS radio occultation technique.Scientific Report 99-6, Danish Meteorological Institute, Copenhagen, Denmark.1999
    101.Syndergaard S. On the ionosphere calibration in GPS radio occultation measurements. Radio Sciences, 2000, 35: 865~885
    102.Tyler G. L., Sweetnam D. N., Anderson J. D., et al. Voyager Radio Science Observations of Neptune and Triton, Science, 1989, 246: 1466~1473
    103.von Engeln, A., S. Buhler, G. Kirchengast, et al., Temperature profile retrieval from surface to mesopause by combining GNSS radio occultation and passive microwave limb sounder data, Geophysical Research Letters, 2001, 28(5): 775-778
    104.Wang D. Y., et al. Cross-validation of MIPAS/ENVISAT and GPS-RO/CHAMP temperature profiles. J. Geophys. Res., 2004, 109, doi: 10.1029/2004JD004963
    105.Wang K. Y. and S. C. Lin, First continuous GPS soundings of temperature structure over Antarctic winter from FORMOSAT-3/COSMIC constellation, Geophysical Research Letters, 2007, 34(12).
    106.Ware R., M. Exner, D. Feng, et al., GPS sounding of the atmosphere from low earth orbit: Preliminary results, Bulletin of the American Meteorological Society, 1996, 77(1), 19~40.
    107.Wickert J., C. Reigber, G. Beyerle, et al., Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophysical Research Letters, 2001, 28(17): 3263~3266.
    108.Wickert J., G. Beyerle, G. A. Hajj, et al., GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space-based single difference technique, Geophys. Res. L., 29, 10.1029/2001GL013982, 2002.
    109.Wickert J., Pavelyev A., Liou Y. A., et al. Amplitude variations in the GPS signals as a possible indicator of the ionospheric structures. Geophys. Res. Lett., 2004, 31: 124801, doi: 10.1029/2004GL020607
    110.Wickert J., G. Beyerle, R. Konig, et al., GPS radio occultation with CHAMP and GRACE: A first look at a new and promising satellite configuration for global atmospheric sounding, Annales Geophysicae, 2005, 23(3): 653~658.
    111.Wood A. T., Jr., R. B. Wattson, et al, Venus: Estimates of the Surface Temperature and Pressure from Radio and Radar Measurements, Science, 1968, 162: 114~116.
    112.Yan H., D. Huang, C. Huang, Sequential atmospheric profiles near a fixed location derived from GPS-LEO occultation measurements, Geophys. Res. L., 1999, 26(4): 451~453
    113.Yunck T. P., C. H. Liu and R. Ware, A history of GPS sounding, Terrestrial Atmospheric and Oceanic Sciences, 2000, 11(1): 1~20.
    114.Zeng Z., X. Hu, X.-J. Zhang, Applying artificial neural network to the short-time prediction of electron density structure using GPS occultation data, Geophys. Res. Let., 2002, 29(3).
    115.Zuffada C, Hajj G, Kursinski E R. A novel approach to atmospheric profiling with a montain-based or airborne GPS receiver. J. Geophys. Res., 1999, 104(D20): 24,435~24,447
    116.曹云昌,胡雄,符养,等.山基和地基GPS联合探测大气折射率廓线的试验研究.高技术通讯,2008,18(8):857~862
    117.陈俊勇.世纪之交的GPS展望.卫星应用简报,1998,22
    118.杜晓勇,王景青,薛震刚,等. GNSS掩星电离层观测的模拟试验,解放军理工大学学报(自然科学版),2002,3(1):71~74.
    119.范磊,符养,杜晓勇,等.雾灵山山基掩星观测反演误差分析.武汉大学学报·信息科学版,2008,33(1):89~92
    120.宫晓艳,胡雄,吴小成,等.大气掩星反演误差特性初步分析,地球物理学报,2007,50(4):1017~1029.
    121.宫晓艳,胡雄,吴小成等,雾灵山GPS掩星观测事件统计分析,应用气象学报,2008,19(3).
    122.宫晓艳,胡雄,吴小成.山基GPS掩星与自动气象站观测结果比较.地球物理学进展,2008,23(5): 1480~1486
    123.郭鹏.无线电掩星技术与CHAMP掩星资料反演[博士论文].中国科学院研究生院(上海天文台),2006.
    124.胡雄,曾桢,张训械等.大气GPS掩星观测反演方法.地球物理学报,2005,48(4):768~774
    125.胡雄,刘说安,宫晓艳等. COSMIC大气掩星开环数据反演方法.地球物理学报,2008(in press)
    126.胡雄,张训械,吴小成,等.山基GPS掩星观测实验及其反演原理,地球物理学报,2006,49(1),22~27.
    127.黄栋,GPS无线电掩星技术监测地球大气[博士论文],中国科学院研究生院(上海天文台) ,2000
    128.蒋虎,黄珹. LEO卫星轨道误差对无线电掩星反演大气参数的影响. 2001,21(3):253~258
    129.蒋虎, GPS无线电掩星技术反演地球大气参数中若干问题的研究[博士论文],中国科学院研究生院(上海天文台),2002.
    130.刘大杰,施一民,过静珺,全球定位系统(GPS)的原理与数据处理,上海:同济大学出版社,1996.
    131.刘敏,郭鹏.对称模式下的CHAMP弯曲角掩星数据同化.中国科学院上海天文台年刊,2005,1:39~47.
    132.刘敏,郭鹏. GPS/LEO掩星观测的变分同化技术.天文学进展,2006,24(1):27~42
    133.刘志权,方宗义,徐建平等.探测大气参数的GPS/MET方法.气象科技,1996,146(2):1~7
    134.李洪涛,许国昌,薛鸿印等,GPS应用程序设计,北京:科学出版社,2000.
    135.盛峥,方涵先,刘磊等. GPS掩星折射率的一维变分同化,解放军理工大学学报(自然科学版),2006,7(1):80~83
    136.王鑫,吕达仁. GPS无线电掩星技术反演大气参数方法对比.地球物理学报,2007,50(2):346~353
    137.王鑫,吕达仁.利用GPS掩星数据分析青藏高原对流层顶结构变化.自然科学进展,2007,17(7):913~919
    138.王也英,杜晓勇,符养等.掩星接收机误差对大气温度反演精度影响仿真研究.气象学报,2008,66(1):101~110
    139.吴小成,胡雄,宫晓艳,等.三维模式约束的电离层掩星反演方法,地球物理学报,2008,51(3).
    140.吴小成,胡雄,宫晓艳.雾灵山山基掩星折射率与探空气球折射率比较.地球物理学进展,2008,23(4):1149~1155
    141.吴小成.电离层无线电掩星技术研究[博士论文],中国科学院研究生院(空间科学与应用研究中心),2008
    142.徐天河,杨元喜. CHAMP卫星快速科学轨道数据的使用及精度评定.大地测量与地球动力学,2004,24(1):81~84
    143.徐晓华,利用GNSS无线电掩星技术探测地球大气的研究[博士论文],武汉大学,2003.
    144.肖宏波.电离层层析成像及掩星反演方法[硕士论文],西安电子科技大学,2007.
    145.严豪健,郭鹏,张贵霞,等.上海天文台GPS掩星技术研究现状.中国科学院上海天文台年刊,2003,24:39~47
    146.岳迎春,赵雪莲,陈春明. GPS掩星技术反演气象要素的误差分析.全球定位系统,2007,21~25
    147.曾桢,胡雄,张训械,等.无线电掩星和激光雷达观测结果比较.空间科学学报,2001,21(2):165~171.
    148.曾桢,地球大气无线电掩星观测技术研究[博士论文],中国科学院研究生院(武汉物理与数学研究所),2003.
    149.张训械, P.Hoeg, G.B.Larsen,等.奥斯特/GPS掩星与地面雷达联合观测电离层电子密度的初步结果.全球定位系统,2000,25(3):1~5.
    150.张训械,曾桢,胡雄,等.山基无线电掩星模拟.电波科学学报,2004,19(5),530~536.
    151.张贵霞. GPS掩星振幅反演的若干问题研究[博士论文],中国科学院研究生院(上海天文台),2004.
    152.周义炎,吴云,乔学军,等. GPS掩星技术和电离层反演,大地测量与地球动力学,2005,25(2):29~35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700