高温超导磁储能磁体电磁热力综合设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今超导磁体技术在医疗、交通、能源、军事、科学研究等领域正发挥着不可替代的作用。在电力系统中,大功率有功、无功调节和大规模储能的需求共同推动了超导磁储能技术的发展。高温超导材料的使用,更是大幅提高超导磁储能系统的性能。作为系统中最为核心的部件,储能磁体是超导磁体的典型代表,其设计需要综合应用电磁、低温、力学等多个领域的关键技术。本文针对高温超导磁储能磁体的电磁热力综合设计方法进行了研究,主要完成了如下工作:
     1.测量并总结了主流新型带材的电磁各向异性、临界电流-温度特性和临界应力/应变特性,以此为依据,制定了不同型号超导带材在磁体设计中的使用规则,提出通过构建混合磁体提高磁体储能量的方法。
     2.提出了高温超导磁体多物理场解耦和耦合分析的一般思路,即以电磁设计为核心,以磁场计算结果为纽带,以危险区域为主要优化对象的电磁热力综合分析。
     3.在超导磁体电磁设计中,提出并通过实验验证了一种新的超导磁体临界电流计算方法——“磁场矢量分析法”。基于这种方法完成了150kJ/100kW高温超导磁储能混合磁体的概念设计
     4.在低温系统设计中,讨论了超导磁体的主要热负荷及抑制方式,完成了150kJ/100kW高温超导磁储能磁体低温系统的概念设计;提出了超导磁体储能稳定性的分析方法,并用这种方法对150kJ/100kW超导磁储能方案在极限工况和低负荷工况下的稳定性进行了分析。
     5.在超导磁体力学计算中,分析了热应力对于超导磁体加工及运行的影响,提出了超导磁体加工工艺的指导建议;分别采用应变法和应力法对150kJ/100kW超导磁储能磁体方案的结构稳定性进行了分析,确定了磁体最易受损的危险区域。
In nowdays, superconducting magnet technology plays an irreplaceable role in healthcare, transportation, energy, military, frontier science and technology and other fields. Inthe power system, the demands for high-power active and reactive power regulation andlarge-scale energy storage promote the development of superconducting magnetic energystorage (SMES) technology while the use of high-temperature superconducting materialsisimprove the performance of SMES system significantly. As the most central parts of thesystem, the SMES magnet is a typical representative of the superconducting magnet; itsdesign requires a comprehensive application of key technologies of electromagnetic,low-temperature, mechanical and other fields.
     Focusing on electromagnetic, thermal and mechanical design method forhigh-temperature SMES magnets, this articl mainly completes the following tasks:
     1. Measured and summed up electromagnetic anisotropy, critical current-temperaturecharacteristics and critical stress/strain characteristics of the mainstream typeo ofhigh-temperature superconducting (HTS) tapes, according to which, rules of employingdifferent types of HTS tapes in design of magnet are maked and method of improvingmagnets storage energy by constructing hybrid magnes is proposed.
     2. Proposed a general idea of decoupled and coupled analysis of multi-physics of HTSmagnet, which is a comprehensive optimization method with electromagnetic design ascore content, the magnetic field data as link and danger zones as main improvements.
     3. In electromagnetic design of the superconducting magnet part, a newsuperconducting magnet critical current calculation method–“magnetic field vectoranalysis method” is proposed and verified by experiment.
     4. In cryogenic system design part, Main types of heat load and its suppression methodof the superconducting magnet are discussed and the conceptual design of150kJ/100kWhigh-temperature SMES magnet cryogenic system is completed. A method of analysis ofthe thermal stability of the superconducting magnetis is proposed, What is more, stability ofthe150kJ/100kW SMES scheme in extreme conditions and low load conditions areanalysed with this method.
     5. In superconducting magnet mechanical calculations part, impact of thermal stress onprocessing and operation of superconducting magnet is analysed, superconductingmagnets process guidance is recommended; strain method and stress method are emloyedon the structural stability analysis of the150kJ/100kW SMES magnet scheme todetermine the danger zone of the magnets which are the most easily damaged.
引文
[1] Kiyoshi Tsukasa, Choi Seyong, Matsumoto Shinji. HTS-NMR: Present Status and Future Plan.IEEE Trans Appl Supercond.2010,20(3):714-717
    [2] Y. Shimomura, W. Spears. Review of the ITER Project. IEEE Trans Appl Supercond.2004,14(2):1369-1375
    [3] Miller JR, et al. A design for the superconducting outsert of a45-T hybrid magnet system usingcable-in-conduit conductors. IEEE Trans Appl Supercond.1993,3(1):71-77
    [4] B. Gamble. Full Power Test of a36.5MW HTS Propulsion Motor. IEEE Trans Appl Supercond.2011,21(3):1083-1088
    [5] A. V. Zlobin, N. Andreev, G. Apollinari, et al. Development and Test of a Single-Aperture11TNb3Sn Demonstrator Dipole for LHC Upgrades. IEEE Trans Appl Supercond.2013,23(3):4000904
    [6] Mohd. Hasan Ali, Bin Wu, Roger A. Dougal. An Overview of SMES Applications in Power andEnergy Systems. IEEE Transactions on Sustainable Energy.2010,1(1):38-47
    [7]韩翀,李艳,余江,等.超导电力磁储能系统研究进展(一)——超导储能装置.电力系统自动化.2001,12:63-67
    [8] J. Kozak, M. Majka, S. Kozak, et al. Performance of SMES System With HTS Magnet. IEEETrans Appl Supercond.2010,20(3):1348-1351
    [9] C. J. Hawley, S. A. Gower, et al. Design and Preliminary Results of a Prototype HTS SMESDevice. IEEE Trans Appl Supercond.2005,15(2):1899-1902
    [10] Weijia Yuan, W. Xian, M. Ainslie, et al. Design and Test of a Superconducting Magnetic EnergyStorage (SMES) Coil. IEEE Trans Appl Supercond.2010,20(3):1379-1382
    [11]冯瑞华.国外超导材料技术研究政策和方向.低温与超导,2008,36(8):22-30
    [12] S.S. Kalsi, D. Aized, B. Connor, et al. HTS SMES Magnet Design and Test Results. IEEE TransAppl Supercond.1997,7(2):971-976
    [13] S. Nagaya, N. Hirano, K. Shikimachi, et al. Development of MJ-Class HTS SMES for BridgingInstantaneous Voltage Dips. IEEE Trans Appl Supercond.2004,14(2):770-773
    [14] Koji Shikimachi, Tsutomu Tamada, Mitsuhito Naruse, et al. Unit Coil Development for Y-SMES.IEEE Trans Appl Supercond.2011,21(3):1348-1351
    [15] Ataru Ichinose, Hirofumi Kasahara, Hisayoshi Sakak, et al. Research and Development ofHigh-Tc SMES. IEEE Trans Appl Supercond.2005,15(2):1947-1950
    [16] Koji Shikimachi, Naoki Hirano, Shigeo Nagaya, et al. System Coordination of2GJ Class YBCOSMES for Power System Control. IEEE Trans Appl Supercond.2009,19,(3):2012-2015
    [17] Kwangmin Kim, A-Rong Kim, Jin-Geun Kim, et al. Analysis of Operational Loss Characteristicsof10kJ Class Toroid-Type SMES. IEEE Trans Appl Supercond.2011,21(3):1340-1343
    [18] A.R. Kim, G.H. Kim, K.M. Kim, et al. Operational characteristic analysis of conduction coolingHTS SMES for Real Time Digital Simulator based power quality enhancement simulation.Physica C,470,1695–1702, May2010
    [19] A-Rong Kim, Gyeong-Hun Kim, Kwang-Min Kim, et al. Design and Manufacturing of a SMESModel Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation. IEEETrans Appl Supercond.2010,20(3):1339-1342
    [20] A.Rong Kim, Sang-Yong Kim, Kwang-Min Kim, et al. Performance Analysis of a Toroid-TypeHTS SMES Adopted for Frequency Stabilization. IEEE Trans Appl Supercond.2011,21(3):1367-1370
    [21] Kwang-min Kim, A-Rong Kim, Minwon Park, et al. Design and manufacture of a toroidal-typeSMES for combination with real-time digital simulator (RTDS). Cryogenics,51, pp.272-277, Jun.2011
    [22] K.M. Kim, A.R. Kim, J.G. Kim, et al. Heat characteristic analysis of a conduction coolingtoroidal-type SMES magnet. Physica C,470, pp.1711–1716, May2010
    [23] Ji Hoon Kim, Woo-Seok Kim, Song-Yop Hah, et al. Characteristic Test of HTS Pancake CoilModules for Small-Sized SMES. IEEE Trans Appl Supercond.2005,15(2):1919-1922
    [24] J.H. Bae, S.H. Kim, H.J. Kim, et al. Design, fabrication and evaluation of a conduction cooledHTS magnet for SMES. Physica C,469, pp.1794–1798, May2009
    [25] Woo-Seok Kim, Sang-Yeop Kwak, Ji-Kwang Lee, et al. Design of HTS Magnets for a600kJSMES. IEEE Trans Appl Supercond.2006,16(2):620-623
    [26] Myung-Jin Park, Sang-Yeop Kwak, Woo-Seok Kim, et al. Analysis of magnetic field distributionand AC losses of a600kJ SMES. Cryogenics,47, pp.391–396,2007
    [27] Jae-Hyeong Choi, Dong-Soon Kwag, Hyeon-Gweon Cheon, et al. The Electrical InsulationDesign of600kJ Conduction Cooled HTS SMES. IEEE Trans Appl Supercond.2008,18(2):1394-1397
    [28] Myung-Jin Park, Sang-Yeop Kwak, Woo-Seok Kim, et al. Stress Analysis of HTS Magnet for a600kJ SMES. IEEE Trans Appl Supercond.2007,17(2):1994-1997
    [29] Sangyeop Kwak, Myungjin Park, Wooseok Kim, et al. The Optimal Design of600kJ SMESMagnet Based on Stress and Magnetic Field Analysis IEEE Trans Appl Supercond.2008,18(2):713-716
    [30] P. Tixador, B. Bellin, M. Deleglise, et al. Design and First Tests of a800kJ HTS SMES. IEEETrans Appl Supercond.2007,17(2),1967-1970
    [31] P. Tixador, M. Deleglise, A. Badel, et al. First Tests of a800kJ HTS SMES. IEEE Trans ApplSupercond.2008,18(2):774-778
    [32] P. Tixador, B. Bellin, M. Deleglise, et al. Design of a800kJ HTS SMES. IEEE Trans ApplSupercond.2005,15(2):1907-1910
    [33] Jiahui Zhu, Qiang Cheng, Bin Yang, et al. Experimental Research on Dynamic Voltage SagCompensation Using2G HTS SMES. IEEE Trans Appl Supercond.2011,21(3):2126-2129
    [34] Jiahui Zhu, Ming Qiu, Bin Wei, et al. Design, dynamic simulation and construction of a hybridHTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinesepower grid. Elsevier Ltd. Energy, Available online10November2012
    [35] Jiahui Zhu, Xuzheng Bao, Bin Yang, et al. Dynamic Simulation Test Research on PowerFluctuation Compensation Using hybrid SMES of YBCO and BSCCO Tapes. IEEE Trans ApplSupercond.2012,22(3):5700404
    [36]林良真,肖立业.超导电力技术.科学导报,2008,1:53-58
    [37] Jiahui Zhu, Qiang Cheng, Bin Yang, et al. Experimental Research on Dynamic Voltage SagCompensation Using2G HTS SMES. IEEE Trans Appl Supercond.2011,21(3):2126-2129
    [38] Jiahui Zhu, Ming Qiu, Bin Wei, et al. Design, dynamic simulation and construction of a hybridHTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinesepower grid. Elsevier Ltd. Energy, Available online10November2012
    [39] Jiahui Zhu, Xuzheng Bao, Bin Yang, et al. Dynamic Simulation Test Research on PowerFluctuation Compensation Using hybrid SMES of YBCO and BSCCO Tapes. IEEE Trans ApplSupercond.2012,22(3):5700404
    [40] D. Baumann. Energy conservation and environmental benefits that may be realized fromsuperconducting magnetic energy storage. IEEE Trans Appl Supercond.1992,7(2):253–259
    [41] C. H. Hsu W. J. Lee. Superconducting magnetic energy storage for power system applications.IEEE Trans Appl Supercond.1992,29(5):990–996
    [42] W. E. Buckles, M. A. Daugherty, B. R.Weber, et al. The SSD: A commercial application ofmagnetic energy storage. IEEE Trans Appl Supercond.1993,3(1):328–331
    [43] X. D. Xue, K. W. E. Cheng, D. Sutanto. Power system applications of superconducting magneticenergy storage systems. IEEE Ind. Applications Conf.2005.2005,2:1524–1529.
    [44] W. V. Torre, S. Eckroad. Improving power delivery through the application of superconductingmagnetic energy storage (SMES). Proc. IEEE Power Engineering Society Winter Meeting.2001:81–87.
    [45] P. E. Richens, H. Jones. A Detailed Study of the Design, Construction and Cryo-Operation of anHTS Magnet. IEEE Trans Appl Supercond.2002,12(1):1741-1746
    [46] W. T. Norris. Calculation of hysteresis losses in hard superconductors carrying ac: isolatedconductors and edges of thin sheets. Phys.D.1970,3:489-507
    [47] Bean C P. Magnetization of hard superconductors. Physical Review Letters.1962,8(6):250-253
    [48] Marijn Pieter Oomen. AC loss in superconducting tapes and cables. Ph. D thesis. UniversiteitTwente.2000
    [49] Doan N Nguyen, Stephen P Ashworth, Jeffrey O Willis. A new finite-element method simulationmodel for computing AC loss in roll assisted biaxially textured substrate YBCO tapes. IOPSupercond. Sci. Technol.2010,23:1-5
    [50]戴陶珍.传导冷却高温超导储能磁体的电磁热综合分析.博士学位论文.华中科技大学.2006.3
    [51] S. Noguchi, A. Ishiyama, S. Akita. An optimal configuration design method for SMEScoils. IEEETrans Appl Supercond.2005,15(2):1927-1930
    [52] S. Nagaya, N. Hirano, K. Shikimachi. Development of MJ-Class HTS SMES for BridgingInstantaneous Voltage Dips. IEEE Trans Appl Supercond.2004,14(2):770-773
    [53]张博,余运佳,王秋良.制冷机传导冷却固氮保护的高温超导磁体系统的研究进展.低温与超导,2004,32(4):15-18
    [54] M. Sugano, K. Shikimachi, N. Hirano. Simultaneously bending and tensile strain effect on criticalcurrent in YBCO coated conductors. Physica C.2007,463–465:742-746
    [55] T. Kuroda, K. Itoh, K. Katagiri. Bending strain effect on critical current of Bi-2223superconductor tapes—report of international round-robin-test. Physica C.2005,425:111-120
    [56] H. Kitgguchi, K. Itoh, H. Kumakura. Strain and fatigue tests of Bi-2223/Ag superconducting tapes.Physica C.2001,357-360:1193-1196
    [57] Zhaoyang Lu, Yanfa He, Shizhong Yang. Effects of axial tensile and bending strains on thecritical current of Bi-2223superconducting tapes. Physica C.2000,337:150-153
    [58] H. Matsubayashi, Y. Mukai, T. Arai. Critical current of laminated and non-laminated BSCCOsuperconducting composite tape under bending strain. Physica C.2009,469:1488-1491
    [59] Alexey Semenova, Constantin Tretiatchenko, Vassily Svetchnikov. Model of reversible straindependences of critical current in YBCO-based coated conductors and epitaxial PLD films.Physics Procedia.2012,36:716-721
    [60] Eyssa, Y.M. Plastic stress analysis of pulse and resistive magnets.1996,32(4):2526-2529
    [61]彭涛,李亮.脉冲磁体中电磁与温度场耦合的有限元分析.原子能科学技术.2010,44(6):471-474
    [62] P.Y. Lee, B.L. Hou, C.J. Pan. R&D of the key components for ITER magnet supports. FusionEngineering and Design.2010,85(7-9):1603–1607
    [63] F. Jiao, Y. Tang, J. Li, et al. A conceptual design of high-temperature superconductingisochronous cyclotron magnet. Physica C.2011,471:1419-1423
    [64]唐斯密,吴钢,王惠龄.直接冷却的高温超导磁体热稳定性有限元仿真.低温与超导.2006,34(6):446-451
    [65]刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2006.11-14
    [66] http://www.ansys.com/
    [67]王刚,安琳. COMSOL Multiphysics工程实践与理论仿真[M].北京:电子工业出版社,2012.1-3
    [68] http://www.comsol.com/
    [69] H. Iwasaki, S. Inaba, K Sugioka, et al. Superconducting anisotropy in the Y-based systemsubstituted for the Y, Ba and Cu sites. Physica C.1997,290:113-121
    [70] E.F. Talantsev, N.M. Strickland, P. Hoefakker. Critical current anisotropy for second generationHTS wires. Current Applied Physics.2008,8:388–390
    [71]王银顺,赵祥,许熙.高温超导带材的临界电流各向异性的实验研究.低温物理学报.2003,25:238-242
    [72] Jiahui Zhu, Qiang Cheng, Bin Yang, et al. Experimental Research on Dynamic Voltage SagCompensation Using2G HTS SMES. IEEE Trans Appl Supercond.2011,21(3):2126-2131
    [73]王惠龄,汪京荣.超导应用低温技术[M].北京:国防工业出版社,2008.19-20
    [74] So Noguchi,Hideo Yamashita. An Optimization Method for Design of SMES Coils UsingYBCO Tape. IEEE Trans Appl Supercond.2003,13(2):1856-1859
    [75] Pitel J,Kováˇc P. Influence of an axial current density stepping on the critical currents andmagnetic field of cylindrical magnets wound with Bi(2223) Ag anisotropic tapes-theoreticalanalysis. Physica C.1998,305:26-34
    [76] Kang M,Lee K,Cha G, et al. Design Method of a High Field HTS Magnet Consisting ofPancake Windings Having Different Current in Each Pancake Winding. IEEE Trans ApplSupercond.2008,18:1537-1540
    [77] Li Ren, Yuejin Tang and Jingdong Li, et al. Conduction-Cooled YBCO HTS Current Lead forSMES Application. IEEE Trans Appl Supercond.2010,20(3):1737-1740
    [78] Jingye Zhang, Shaotao Dai and Zikai Wang, et al. The Electromagnetic Analysis and StructuralDesign of a1MJ HTS Magnet for SMES. IEEE Trans Appl Supercond.2011,21(3):1344-1347
    [79] A.R. Kim, G.H. Kim, K.M. Kim, et al. Operational characteristic analysis of conduction coolingHTS SMES for Real Time Digital Simulator based power quality enhancement simulation.Physica C.2010,470:1695–1702
    [80] Koji Shikimachi, Naoki Hirano, Shigeo Nagaya, et al. System Coordination of2GJ Class YBCOSMES for Power System Control. IEEE Trans Appl Supercond.2009,19(3):1012-1018
    [81] N. Tanaka, K. Tsuboi, H. Tsutsui, et al. Design considerations for SMES systems applied toHVDC links. Power Electronics and Applications. EPE '09.13th European Conference on.2009:1-10
    [82] S. Noguchi, A. Ishiyama, S. Akita. An optimal configuration design method for HTS-SMES coils.IEEE Trans Appl Supercond.2005,15(2):1927–193
    [83] S. Noguchi, H. Yamashita, A. Ishiyama. An optimization method for design of SMES coils usingYBCO tape. IEEE Trans Appl Supercond.2003,13(2):1856–1859
    [84] J. Shi, Y. Tang, Y. Zhou. Development of a conduction-cooled HTS SMES. IEEE Trans ApplSupercond.2007,17(3):3846–3852
    [85] J. Zhu, W. Yuanb, and T. A. Coombs. Simulation and experiment ofa YBCO SMES prototype involtage sag compensation. Physica C.2011,471(5-6):199–204
    [86] P. Tixador, M. Deleglise, A. Badel. First tests of a800kJ HTS SMES. IEEE Trans ApplSupercond.2008,18(2):774–778
    [87] S.T. Dai, Z.K. Wanga, D. Zhanga. Design, numerical analyses and test of a0.1MJ SMES withlow stray field. Cryogenics.2007,47(7-8):387–390
    [88] P. E. Richens, H. Jones. A detailed study of the design, construction and cryo-operation of anHTS magnet. IEEE Trans Appl Supercond.2002,12(1):1741–1746
    [89]吴钢.直接冷却高温超导磁储能磁体热稳定性分析与优化.博士学位论文.华中科技大学.2009.5
    [90] Guo Min Zhang, Liang Zhen Lin, Li Ye Xiao, et al. The angular dependence of AC losses inBSCCO/Ag tapes under AC magnetic fields and AC transport currents. Cryogenics,2003,43:25–29
    [91]张国民.高温超导带材及线圈的交流损耗.博士学位论文.中国科学院研究生院.2003.6
    [92] Doan N Nguyen1, Stephen P Ashworth1, Jeffrey O Willis. A new finite-element methodsimulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes.Superconductor Science and Technology.2010,2:1-5
    [93] Fengshun Jiao, Yuejin Tang, Jianzhong Dou, et al. The Conceptual Design of Hybrid HighTemperature Superconducting Magnet. IEEE Trans Appl Supercond.2012,22(3):4903005
    [94] J. Shi, Y. Tang. Development of a conduction-cooled HTS SMES. IEEE Trans Appl Supercond.2007,17(3):3846-3852
    [95] H. K. Yeom, S. J. Park. An Experimental Study of the Conduction Cooling System for the600kJHTS SMES. IEEE Trans Appl Supercond.2008,18(2):741-744P.
    [96] Tixador, M. Deleglise. First Tests of a800kJ HTS SMES. IEEE Trans Appl Supercond.2008,18(2):774-778
    [97] http://global-sei.com/super/hts_e/type_ht.html
    [98] S. Noguchi, H. Yamashita, A. Ishiyama. An optimization method for design of SMES coils usingYBCO tape. IEEE Trans Appl Supercond.2003,13(2):1856–1859
    [99] http://www.cryogenics.nist.gov/MPropsMAY/materialproperties.htm
    [100] http://global-sei.com/super/hts_e/type_h.html
    [101] S. Ochiai, N. Miyazaki, D. Doko. Damage evolution under bending and tensile stress and itsinfluence on critical current of Bi2223/Ag superconducting composite tape. Journal of NuclearMaterials.2004,329–333:1585–1589
    [102] J.K.F. Yau, N. Savvides, C.C. Sorrell. Influence of mechanical strain on critical current densityand microstructure of silver-sheathed Bi(Pb)2223superconducting tapes. Physica C.1996.266:223-229
    [103] T. Nakashima, S. Kobayashi, T. Kagiyama. Overview of the recent performance of DI-BSCCOwire. Cryogenics.2012,52:713–718
    [104] H.S. Shin, J.R.C. Dizon, R.K. Ko. Reversible tensile strain dependence of the critical current inYBCO coated conductor tapes. Physica C.2007,463–465:736–741
    [105] http://www.knowledgedoor.com/2/elements_handbook/linear_thermal_expansion_coefficient.html
    [106] http://www.springermaterials.com/docs/index.html
    [107] http://www.cryogenics.nist.gov/MPropsMAY/materialproperties.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700