L型Ca~(2+)通道CaV1.3在Cajal间质细胞表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     Cajal间质细胞(interstitial cell of Cajal,ICC)被公认为胃肠道慢波的起搏细胞。ICC起搏机制的研究是目前ICC研究的一大热点,其中钙离子(Ca~(2+))贯穿ICC起搏活动的全过程, ICC钙瞬变(calcium transient)快速上升期中钙星(calcium sparklet)的形成通道是争论的焦点。用膜片钳方法记录到单个ICC最大的Ca~(2+)流是通过L-Ca~(2+)通道形成,而二氢吡啶类Ca~(2+)通道拮抗剂并不改变ICC慢波曲线。其他细胞的研究表明, CaV1.3是一类对二氢吡啶类相对不敏感的L-Ca~(2+)通道。我们推测,L-Ca~(2+)通道CaV1.3可能在ICC中表达,并且参与了ICC起搏活动。
     目的
     1.建立稳定的ICC分离,培养方法。
     2.明确L-Ca~(2+)通道CaV1.3在ICC的表达情况,探讨L-Ca~(2+)通道CaV1.3与ICC起搏功能的关系。
     方法
     分为两大部分:
     第一部分:ICC培养和鉴定ICC培养:取出生1-2d正常的BALB/c小鼠小肠,置于1.0mg/mlⅡ型胶原酶消化,过200目筛网去除大块组织,密度梯度离心法筛选细胞,接种至铺有鼠尾胶原的培养瓶,37℃,5%CO2条件下,M199培养基中培养。
     ICC鉴定:RT-PCR技术检测ICC特异性标志c-kit mRNA的表达情况;免疫荧光检测c-kit蛋白的表达和定位;流式细胞术检测ICC纯度;c-kit蛋白和EdU免疫荧光双染检测ICC增殖情况。第二部分:L-Ca~(2+)通道CaV1.3在ICC的表达和肌张力变化的关系
     L-Ca~(2+)通道CaV1.3表达:RT-PCR技术检测CaV1.3 mRNA的表达情况;免疫荧光双染检测c-kit蛋白和CaV1.3蛋白在ICC的定位。取出生0d,7d,14d和成年BALB/c小鼠小肠,进行c-kit蛋白和CaV1.3蛋白免疫组化染色,检测不同发育期两种蛋白的共表达变化情况。同时检测对各个时间段的小肠的肌张力,探讨肌张力的变化和CaV1.3蛋白的关系。
     结果
     第一部分:ICC培养和鉴定
     培养的ICC贴壁细胞多角形,核大,细胞突起形成网状连接。ICC存活10d以上,可见细胞数量的增多。RT-PCR和免疫荧光技术检测到ICC特异性标志c-kit mRNA和c-kit蛋白的表达。流式细胞术所得ICC纯度为81.97%。EdU染色结果显示EdU与c-kit阳性细胞共表达。第二部分:L-Ca~(2+)通道CaV1.3在ICC的表达和肌张力变化的关系
     RT-PCR检测到CaV1.3 mRNA在培养细胞中表达;免疫荧光双染显示c-kit蛋白和CaV1.3蛋白在ICC细胞共表达。出生0d,7d,14dBALB/c小鼠小肠的c-kit蛋白和CaV1.3蛋白免疫组化染色结果显示,两种蛋白共表达数量逐渐增加,出生14d时已接近成年小鼠小肠免疫组化结果。各个时间段小肠肌张力测定结果表明,出生0d,7d,14d小肠收缩曲线逐渐趋于规整,出生14d时已接近成年小鼠小肠收缩曲线结果。CaV1.3表达量和小肠收缩曲线呈正相关。
     结论
     1.运用Ⅱ型胶原酶消化-密度梯度离心法,我们建立了稳定的ICC培养方法,获得了相对纯化的单一细胞,为ICC进一步的基础研究奠定了坚实的基础。
     2.体外培养的ICC具有增殖能力。
     3. L-Ca~(2+)通道CaV1.3在ICC细胞膜大量表达,与ICC起搏功能存在正相关性。
Background
     The interstitial cell of Cajal (ICC) is found in the gastrointestinal tract and serveed as a pacemaker, in which create the basal electrical rhythm. Abnormality of ICC pacemaker functions lead to gastrointestinal motility disorder, such as chronic intestinal pseudo-obstruction (CIP), diabetic gastroparesis and so on. Ca2+ exists throughout the whole pacemaker time. The channels of calcium sparklet formation are the point at issue in fast-rise phase of calcium transient. In patch clamp recordings of single human intestinal ICC, the largest Ca2+ current is a Ca2+ current carried by L-type Ca2+ channel. Previous studies have suggested pacemaker activity in ICC is associated with robust Ca2+ entry events that are resistant to block by dihydropyridines. And L-type CaV1.3 Ca2+ channel is relatively insensitive to dihydropyridines. We suppose that L-type CaV1.3 Ca2+ channel expressed in ICC, and may be functionally important for the pacemaker activity in ICC, maybe inducing the formation of calcium sparklet.
     Objective
     1. Establish a stable method of ICC isolation and cell culture
     2. Identify the expression of L-type CaV1.3 Ca2+ channel in ICC, and the relation between L-type CaV1.3 Ca2+ channel and pacemaker activity.
     Methods
     Part 1: Cell culture and identification
     Cell culture: small intestine muscle pieces from BALB/c mice (1-2 d old) were incubated in solution containing 1.0mg/ml collagenase (type II). After passing through the sieve (size: #200), all cell suspension was layered on the surface of a 200 g/L Ficoll density cushion. The cell band located at the interface was plated into dishes with collagen-coated bottoms. The cells resuspended with M199 medium were maintained in 50% CO2 at 37℃.
     Cell identification: reverse-transcriptase PCR (RT-PCR) was used to detect expression of c-kit mRNA; immunofluorescent staining was used to identify cell location of c-kit; flow cytometry was used to determine purity of cultured ICC; double-immunofluorescent staining was performed to detect ability of proliferation in vitro.
     Part 2: Expression of L-type CaV1.3 Ca~(2+) channel in ICC
     Expression of CaV1.3: RT-PCR was used to detect expression of CaV1.3 mRNA; double-immunofluorescent staining was used to detect cell location of c-kit and CaV1.3 in cultured ICC. Small intestine muscle pieces from BALB/c mice (postnatal day 0, 7, 14 and adult) were used in this study. Double-immunofluorescent staining was used to detect cell location of c-kit and CaV1.3. Spontaneous contractile activity was recorded to determine the functional changes of small intestine.
     Result
     Part 1: Cell culture and identification
     The cultured adhesive cells were multangular with large nuclei in the centre and a network was formed by cytoplasmic processes. Cells were alive for more than 10 days, with an increase in the number. C-kit mRNA and protein were detected in cultured ICC by methods of RT-PCR and immunofluorescent staining. The purity was 81.97% using flow cytometry. Result of EdU staining directly showed that there was coexpression of EdU and c-kit protein.
     Part 2: Expression of L-type CaV1.3 Ca~(2+) channel in ICC
     CaV1.3 mRNA was detected in cultured cells. C-kit and CaV1.3 proteins coexpressed in ICC cell membrane. Double-immunofluorescent staining of the four growth periods showed that coexpression of the two proteins increased gradually in intensity and the intensity of coexpression from P14 was close to that from adult. The contraction curves became more regular with the processing of growth. Frequency and range of curve from P14 were nearly the same as that from adult.
     Conclusions
     1. Using Collagenase - Ficoll method, we established a stable ICC cell culture method, which lays a solid foundation for the basic and clinical research in ICC.
     2. ICC cultured in vitro had the ability to proliferate.
     3. L-type CaV1.3 Ca~(2+) channel was abundantly expressed in cell membrane of ICC, and there was a correlation between L-type CaV1.3 Ca~(2+) channel and ICC pacemaker activity.
引文
1. He CL, Burgart L, Wang L, Pemberton J, Young-Fadok T, Szurszewski J,Farrugia G. Decreased interstitial cell of Cajal volume in patients with slow transit constipation. Gastroenterology 2000; 118: 14–21.
    2. Feldstein AE, Miller SM, El-Youssef M, Rodeberg D, Lindor NM, Burgart LJ, Szurszewski JH, Farrugia G. Chronic intestinal pseudoobstruction associated with altered interstitial cells of Cajal networks. J Pediatr Gastroenterol Nutr 2003; 36: 492– 497.
    3. Kenny SE, Vanderwinden JM, Rintala RJ, Connell MG, Lloyd DA, Vanderhaegen JJ, De Laet MH. Delayed maturation of the interstitial cells of Cajal: a new diagnosis for transient neonatal pseudoobstruction. Report of two cases. J Pediatr Surg 1998; 33: 94–98.
    4. Forster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW.Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg 2005; 9: 102–108.
    5. Iwasaki H, Kajimura M, Osawa S, Kanaoka S, Furuta T, Ikuma M,Hishida A. A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J Gastroenterol 2006; 41: 1076–1087.
    6. C J Streutker, J D Huizinga, et al.Interstitial cells of Cajal in health and disease.Part I:normal ICC structure and function with associated motility disorders. Histopathology 2007; 50:176-189.
    7. Hyun-Tai Lee,Grant W Hennig,et al.The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology 2007; 132: 1852-1865.
    8. Shinsuke Nakayama, Shunichi Kajioka, et al.Calcium-associated mechanisms ingut pacemakers activity. J Cell Mol Med 2007; 11: 958-968.
    9. Rizzito R, Pozzan T.Microdimains of intracellular Ca~(2+) molecular determinants and functional consequences. Physiol Rev 2006; 86: 369-408.
    10.Gianrico F. Editorials: Ca~(2+) handling in human interstitial cells if Cajal. Gastroenterology 2007; 2057.
    11.M Hanani, H R Freund. Interstitial cells of Cajal-their role in pacing and signal transmission in the digestive system. Acta Physiologica. 2008; 170(3): 177-190.
    12.Hirst GDS, Beckett EAH, Sanders KM, Ward SM.Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum. J Physiol 2002; 540: 1003–12.
    13.Hagiwara K, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 1988; 395: 233–53.
    14.Ward SM, Sanders KM. Dependence of electrical slow waves of canine colonic smooth muscle on calcium gradient. J Physiol 1992; 455: 307–19.
    15.Ward SM, Sanders KM. Upstroke component of electrical slow waves in canine colonic smooth muscle due to nifedipine-resistant calcium current. J Physiol 1992; 455: 321–37.
    16.Lee H-T, Henning GW, Fleming NW, Keef KD, Spencer NJ, Ward SM, Sanders KM, Smith TK. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology2007; 132: 1852–1865.
    17.Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterol 2005; 129: 1504–17.
    18.Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemakeractivity of interstitial cells of Cajal in the gastrointestinal tract. J Smooth Muscle Res 2006; 42: 1–7.
    19.Dickens EJ, Hirst GDS, Tomita T. Identification of rhythmically active cells in guinea-pig stomach. J Physiol 1999; 514: 515–31.
    20.Huang SM, Nakayama S, Iino S, Tomita T. Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. Am J Physiol 1999; 276: G518–28.
    21.Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G. Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol GI and Liver 2003; 285: G1111–G1121.
    22.Rich A, Farrugia G, Sarr MG, Szurszewski JH. Calcium currents in freshly dispersed circular smooth muscle and interstitial cells of Cajal from human jejunum. Digestive Dis Sci 1998; 43: 1591.
    23.Boddy G, Willis A, Galante G, Daniel EE. Sodium-, chloride-, and mibefradil-sensitive calcium channels in intestinal pacing in wild-type and W/WVmice. Can J Physiol Pharmacol 2006; 84: 589–99.
    24.Fujita A, Takeguchi T, Saitoh N, Hanai J, Hata F.Expression of Ca~(2+)-activated K+channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol 2001; 281: C1727–33.
    25.Anne E, William J. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 2000; 279: C529-539.
    26.Rich A, Miller SM. Local presentation of Steel factor increases expression of c-kit immunoreactive interstitial cells of Cajal in culture. Am J Physiol Gastrointest Liver Physiol 1999; 277: G313-320.
    27.Huizinga JD, Robinson TL, Thomsen L. The search for the origin of rhythmicity in intestinal contraction: from tissue to single cells. Neurogastroenterol Motil 2000;12: 3-9.
    28.Ordog T, Redelman D. Purification of interstitial cells of Cajal by fluorescence-activated cell sorting. Am J Physiol 2004; 286: C448-456.
    29.ChunXue L, BaoHua L. Dissociation,culture and morphologic changes of interstitial cells of Cajal in vitro. World J Gastroenterology 2005; 11: 2838-2840.
    30.Qin H, Sun Y, Benveniste EN, et al. The transcription factor SP1, SP3 and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells [J]. J Biol Chem 1999; 274(41) :29130~29137.
    31.Kito Y, Suzuki H. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J Physiol 2003; 553: 803–18.
    32.Dickens EJ, Hirst GDS, Tomita T. Identification of rhythmically active cells in guinea-pig stomach. J Physiol 1999; 514: 515–31.
    33.Hirst GDS, Beckett EAH, Sanders KM, Ward SM.Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum. J Physiol 2002; 540: 1003–12.
    34. Hirst GDS, Ward SM. Interstitial cells: involvement in rhythmicity and neural control of gut smooth muscle. J Physiol 2003; 550:337-346.
    35.Huang SM, Nakayama S, Iino S, Tomita T. Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. Am J Physiol 1999; 276: G518–28.
    36.Yoneda S, Takano H, Takaki M, Suzuki H. Properties of spontaneously active cells distributed in the submu-cosal layer of mouse proximal colon. J Physiol 2002; 542: 887–97.
    37. Hagiwara K, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol1988; 395: 233–53.
    38. G Farrugia. Interstitial cells of Cajal in health and disease. Neurogastroenterology & Motility. 2008;20(s1): 54-63.
    39. Edwards FR, Hirst GDS, Suzuki H. Unitary nature of regenerative potentials recorded from circular muscle of guinea-pig antrum. J Physiol 1999; 519: 235–50.
    40.Adam S Wallace, Alan J Burns. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 2005; 319: 367-382.
    41.E E Daniel. Communication between interstitial cells of Cajal and gastrointestinal muscle. Neurogastroenterol Motil 2004; 16:118-122.
    1. Tokutomi N, Maeda H, Tokutomi Y, Sato D, Sugita M,Nishikawa S, Nishikawa S, Nakao J, Imamura T,Nishi K. Rhythmic Cl– current and physiological roles of the intestinal c-kit-positive cells. Pflügers Arch.1995; 431: 169–77.
    2. Huizinga JD, Zhu Y, Ye J, Molleman A. High-conductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterol. 2002; 123: 1627–36.
    3. E E Daniel, I Berezin. Interstitial cells of Cajal: are they major players in contro of gastrointestinal motility? Neurogastroenterology & motility. 2008; 4(1): 1-24.
    4. Hofmann F, Biel M, Flockerzi V. Molecular basis for Ca~(2+)channel diversity. Annu Rev Physiol. 1994; 17: 399–418.
    5. Tomita T. Electrical activity (spikes and slow waves) in gastrointestinal smooth muscle. In: Bülbring E, Brading AF, Jones AW, Tomita T, editors. Smooth Muscle: An Assessment of Current Knowledge. London: Edward Arnold; 1981. pp. 127–56.
    6. Dickens EJ, Hirst GDS, Tomita T. Identification of rhythmically active cells in guinea-pig stomach. J Physiol. 1999; 514: 515–31.
    7. Huang SM, Nakayama S, Iino S, Tomita T. Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. Am J Physiol. 1999; 276: G518–28.
    8. Golenhofen K, Lammel E. Selective suppression of some components of spontaneous activity in various types of smooth muscle by iproveratril (verapamil).Pflügers Arch. 1972; 331: 231–43.
    9. Hirst GDS, Beckett EAH, Sanders KM, Ward SM.Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal togeneration of slow waves in mouse gastric antrum. J Physiol. 2002; 540: 1003–12.
    10. Yoneda S, Takano H, Takaki M, Suzuki H. Properties of spontaneously active cells distributed in the submu-cosal layer of mouse proximal colon. J Physiol. 2002; 542: 887–97.
    11. Hagiwara K, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 1988; 395: 233–53.
    12. Suzuki H, Hirst GDS. Regenerative potentials evoked in circular smooth muscle of the antral region of guinea-pig stomach. J Physiol. 1999; 517: 563–73.
    13. Edwards FR, Hirst GDS, Suzuki H. Unitary nature of regenerative potentials recorded from circular muscle of guinea-pig antrum. J Physiol. 1999; 519: 235–50.
    14. Chen H, Redelman D, Ro S, Ward SM, ?rd?g T,Sanders KM. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol. 2007; 292:C497–507.
    15. Ward SM, Sanders KM. Dependence of electrical slow waves of canine colonic smooth muscle on calcium gradient. J Physiol. 1992; 455: 307–19.
    16. Ward SM, Sanders KM. Upstroke component of electrical slow waves in canine colonic smooth muscle due to nifedipine-resistant calcium current. J Physiol. 1992; 455: 321–37.
    17. Hotta A, Okada N, Suzuki H. Mibefradil-sensitive component involved in the plateau potential in submucosal interstitial cells of the murine proximal colon.Biochem Biophys Res Commun. 2007; 353: 170–6.
    18. Kim YC, Koh SD, Sanders KM. Voltage-dependent inward currents of interstitial cells of Cajal from murine colon and small intestine. J Physiol. 2002;541: 797–810
    19. Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ,Szurszewski JH, Sarr MG, Farrugia G. Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol. 2003; 285, G1111–21.
    20. Boddy G, Willis A, Galante G, Daniel EE. Sodium-, chloride-, and mibefradil-sensitive calcium channels in intestinal pacing in wild-type and W/WVmice. Can J Physiol Pharmacol. 2006; 84: 589–99.
    21. Thomsen L, Robinson TL, Lee JCF, Farraway LA,Hughes MJG, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current.Nat Med. 1998; 4: 848–51.
    22. G Hutchings, Olivia Williams, D Cretoiu. Myometrial interstitial cells and the coordination of myometrial contractility. J Cellular Molecular Medicine. 2009; 13(10): 4268-4282.
    23. Nakayama S, Torihashi S. Spontaneous rhythmicity in cultured cell clusters isolated from mouse small intestine. Jpn J Physiol. 2002; 52: 217–27.
    24. Goto K, Matsuoka S, Noma A. Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol.2004; 559: 411–22.
    25. Epperson A, Hatton WJ, Callaghan B, Doherty P,Walker RL, Sanders KM, Ward SM, Horowitz B.Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol. 2000; 279: C529–39.
    26. Liu H-N, Ohya S, Furuzono S, Wang J, Imaizumi Y,Nakayama S. Co-contribution of IP3R and Ca~(2+)influx pathways to pacemaker Ca~(2+)activity in stomach ICC. J Biol Rhythm. 2005; 20: 15–26.
    27. Torihashi S, Fujimoto T, Trost C, Nakayama S. Calcium oscillation linked to pacemaking of interstitial cells of Cajal. J Biol Chem. 2002; 277: 19191–7.
    28. Montell C. Mg2+homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol. 2003; 13: R799–801.
    29. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG. TRPM6 forms the Mg2+influx channel involved in intestinal and renal Mg2+absorption. J Biol Chem. 2004; 279: 19–25.
    30. Nadler MJS, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Strokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability.Nature. 2001; 411: 590–5.
    31. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterol. 2005; 129: 1504–17.
    32. Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. J Smooth Muscle Res. 2006; 42: 1–7.
    33.Schmitz C, Perraud AL, Johnson CO, Inabe K,Smith MK, Penner R, Kurosaki T, Fleig A,Scharenberg AM. Regulation of vertebrate cellular Mg2+homeostasis by TRPM7. Cell. 2003; 114: 191–200.
    34. Nakayama S, Nomura H, Smith LM, Clark JF, Uetani T, Matsubara T. Mechanisms for monovalent cation-dependent depletion of intracellular Mg2+: Na+-independent Mg2+pathways in guinea-pig smooth muscle.J Physiol. 2003; 551: 843–53.
    35. Nakayama S, Clark JF. Smooth muscle and NMR review: An overview of smooth muscle metabolism.Mol Cell Biochem. 2003; 244: 17–30.
    36. Hamaguchi Y, Uetani T, Tatematsu Y, Amano T,Matsubara T, Murohara T, Nakayama S. Properties of Na+-independent passive Mg2+influx in pig caroidartery. Jpn J Physiol. 2004: 54, S122 (228).
    37. He Y, Yao G, Savoia C, Touyz RM. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells:role of angiotensin II. Circ Res. 2005; 96: 207–15.
    38. Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T, Callera GE. Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol.2006; 290: R73–8.
    39. Nakayama S, Chihara S, Clark JF, Huang SM,Horiuchi T, Tomita T. Consequences of metabolic inhibition in smooth muscle isolated from guinea-pig stomach. J Physiol. 1997; 505: 229–40.
    40. Kito Y, Suzuki H. Effects of temperature on pacemaker potentials in the mouse small intestine. Pflügers Arch. 2007; 454: 263–75.
    41. Nakamura E, Kito Y, Hashitani H, Suzuki H.Metabolic component of the temperature-sensitivity of slow waves recorded from gastric muscle of the guinea-pig. J Smooth Muscle Res. 2006; 42: 33–48.
    42. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G.ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium. 2007; 42: 427–38.
    43. Suzuki H, Kito Y, Hashitani H, Nakamura E. Factors modifying the frequency of spontaneous activity in gastric muscle. J Physiol. 2006; 576: 667–74.
    44. Nakayama S, Ohya S, Liu HN, Watanabe T,Furuzono S, Wang J, Nishizawa Y, Aoyama M,Murase N, Matsubara T, Ito Y, Imaizumi Y, Kajioka S.Sulphonylurea receptors differently modulate ICC pacemaker Ca~(2+)activity and smooth muscle contractility. J Cell Sci. 2005; 118: 4163–73.
    45. Choi S, Yeum CH, Chang IY, You HJ, Park JS, Jeong HS, So I, Kim KW, Jun JY. Activating of ATP-dependent K+channels comprised of K (ir) 6.2 and SUR2B by PGE2 through EP2 receptor in cultured interstitial cells of Cajal from murine small intestine. Cell Physiol Biochem. 2006; 18: 187–98.
    46. Aickin CC, Brading AF. Measurement of intracellular chloridein guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes.J Physiol.1982; 326: 139–54.
    47. Aickin CC, Brading AF. Towards an estimate of chloride permeability in the smooth muscle of guinea-pig vas deferens. J Physiol. 1983; 336: 179–97.
    48. Kito Y, Suzuki H. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal dis- tributed in the mouse small intestine. J Physiol. 2003; 553: 803–18.
    49. Zhu Y, Mucci A, Huizinga JD. Inwardly rectifying chloride channel activity in intestinal pacemaker cells. Am J Physiol. 2005: 288: G809–21.
    50. Koh SD, Jun JY, Kim TW, Sanders KM. A Ca~(2+)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol. 2002; 540: 803–14.
    51. Fujita A, Takeguchi T, Saitoh N, Hanai J, Hata F.Expression of Ca~(2+)-activated K+channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol. 2001; 281: C1727–33.
    52. Publicover NG, Horowitz NN, Sanders KM. Calcium oscillations in freshly dispersed and cultured interstitial cells from canine colon Am J Physiol. 1992; 262: C589–97.
    53. Yamazawa T, Iino M. Simultaneous imaging of Ca~(2+) signals in interstitial cells of Cajal and longitudinal smooth muscle cells during rhythmic activity in mouseileum. J Physiol. 2002; 538: 823–35.
    54. Rich A, Hanani M, Ermilov LG, Malysz J, Belzer V, Szurszewski JH, Farrugia G. Physiological study of interstitial cells of Cajal identified by vital stainingNeurogastroenterol Mot. 2002; 14: 189–96.
    55. Hennig GW, Hirst GD, Park KJ, Smith CB, Sanders KM, Ward SM, Smith TK. Propagation of pacemaker activity in the guinea-pig antrum. J Physiol. 2004; 556: 585–99.
    56. Liu HN, Ohya S, Wang J, Imaizumi Y, Nakayama S. Involvement of ryanodine receptors in pacemaker Ca~(2+)oscillation in murine gastric ICC. Biochem Biophys Res Commun. 2005; 328: 640–6.
    57. Park KJ, Hennig GW, Lee HT, Spencer NJ, Ward SM, Smith TK, Sanders KM. Spatial and temporal mapping of pacemaker activity in interstitial cells of Cajal in mouse ileum in situ. Am J Physiol. 2006; 290: C1411–27.
    58. van Helden DF, Imtiaz MS. Ca~(2+)phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol.2003; 548: 271–96.
    59. Imtiaz MS, Katnik CP, Smith DW, van Helden DF. Role of voltage-dependent modulation of store Ca~(2+) release in synchronization of Ca~(2+)oscillations. Biophys J. 2006; 90: 1–23.
    60. Lee HT, Hennig GW, Fleming NW, Keef KD, Spencer NJ, Ward S Sanders KM, Smith TK. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine.Gastroenterol. 2007; 132: 1852–65.
    61. Kajioka S, Nakayama S, Asano H, Brading AF. Involvement of ryanodine receptors in muscarinic receptor-mediated membrane current oscillation in urinary bladder smooth muscle. Am J Physiol. 2005; 288:C100–8.
    62. Aoyama M,Yamada A, Wang J, Ohya S, Furuzono S,Goto T, Hotta S, Ito Y, Matsubara T, Shimokata K,Chen SRW, Imaizumi Y, Nakayama S. Requirement of ryanodine receptors for pacemaker Ca~(2+)activity in ICC and HEK293 cells. JCell Sci. 2004; 117: 2813–25.
    63. Burnstock G, Lavin S. Interstitial cells of Cajal and purinergic signaling. Autonom Neurosci. 2002; 97:68–72.
    64. Iino S, Ward SM, Sanders KM. Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J Physiol. 2004; 556:521–30.
    65. Choi S, Park do Y, Yeum CH, Chang IY, You HJ, Park CG, Kim MY, Kong ID, So I, Kim KW, Jun JY.Bradykinin modulates pacemaker currents through bradykinin B2 receptors in cultured interstitial cells of Cajal from the murine small intestine. Br J Pharmacol. 2006; 148: 918–26.
    66. Jun JY, Choi S, Chang IY, Yoon CK, Jeong HG, Kong ID, So I, Kim KW, You HJ. Deoxycholic acid inhibits pacemaker currents by activating ATP-dependent K+channels through prostaglandin E2 in interstitial cells of Cajal from the murine small intestine. Br J Pharmacol. 2005; 144: 242–51.
    67. Furuzono S, Nakayama S, Imaizumi Y. Purinergic modulation of pacemaker Ca~(2+)activity in interstitial cells of Cajal. Neuropharmacol. 2005; 48: 264–73.
    68. Suzuki H, Takano H, Yamamoto Y, Komuro T, Saito M, Kato K, Mikoshiba K. Properties of gastric smooth muscle obtained from mice which lack inositol trisphosphate receptor. J Physiol. 2000; 525: 105–11.
    69. Takano H, Imaeda K, Yamamoto Y, Kato K,Mikoshiba K, Suzuki H. Mechanical responses evoked by nerve stimulation in gastric muscles of mouse lacking inositol trisphosphate receptor. Autonom Neurosci. 2001; 87: 249–57.
    70. Ward SM, ?rd?g T, Koh SD, Abu Baker S, Jun JY, Amberg G, Monaghan K, Sanders KM. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol. 2000; 525: 355–61.
    71. Hirst GDS, Edwards FR. Generation of slow waves in the antral region of guinea-pig stomach– a stochastic process. J Physiol. 2001; 535: 165–80.
    72. Malysz J, Donnelly G, Huizinga JD. Regulation of slow wave frequency by IP3-sensitive calcium release in the murine small intestine. Am J Physiol. 2001; 280:G439–48.
    73. Ward SM, Baker SA, de Faoite A, Sanders KM.Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+uptake in canine colonic muscles.J Physiol. 2003; 549: 207–18.
    74. van Helden DF, Imtiaz MS, Nurgaliyeva K, vonder Weid PY, Dosen PJ. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol. 2000; 524: 245–65.
    75. Bootman MD, Collins TJ, Mackenzie H, Roderick HL, Berridge MJ, Peppiatt CM. 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+entry but an inconsistent inhibitor of InsP3-induced Ca2+release. FASEB J. 2002; 16:1145–1150.
    76. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle, Science. 1993; 262: 740-744.
    77. Bers DM. Excitation-contraction coupling and cardiac contractile Force.2nd ed. Netherlands: Kluwer Academic Publisher. 2001.
    78. Jiang D, Xiao B, Yang D. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). Proc Natl Acad Sci USA. 2004; 101: 13062-13067.
    79. Cheng H, Lederer MR, Xiao RP, Gomez AM. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium. 1996; 20:127-140.
    80. Brochet DX, Yang D, Di MA, Lederer WJ. Ca2+ blinks: rapid nanoscopic storecalcium signaling. Pro Natl Acad Sci USA. 2005; 102: 3099-3104.
    81. Song LS, Pi YQ, Kim SJ. Impaired cellular Ca~(2+) handling in compensated canine left ventricular hypertrophy. Biophys J. 2005; 88: 135A-136A.
    82. Wier WG, Keurs HEDJ, Marban E. Ca~(2+) sparks and waves in intact ventricular muscle resolved by confocal imaging. Circ Res. 1997; 81: 462-469.
    83. Lakatta EG, Vino GT, Lyashkov A. The integration of spontaneous intracellular Ca~(2+) cycling and surface membrane ion channel activation entrains normal automaticity in cells of the heart’s pacemaker. Ann NY Acad Sci. 2006; 1080: 178-206.
    84. Yang HT, Tweedie D, Wang S, Guia A. The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc Natl Acad Sci USA. 2002; 99: 9225-9230.
    85. Baylor SM, Hollingwirth S, Chandler WK. Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog. J Gen Physiol. 2002; 120: 349-368.
    86. Burdyga T, Wray S. Action potential refractory period in ureter smooth muscle is set by Ca sparks and BK channels. Nature. 2005; 436: 559-562.
    87. ZhuGe R, DeCrescenzo V, Sorrentino V. Syntillas release Ca~(2+) at a site different from the microdomain where exocytosis occurs in mouse chromaffin cells. Biophys J. 2006; 90: 2027-2037.
    88. De Crescenzo V, ZhuGe R, Velazquez-Marrero C. Ca~(2+) syntillas, miniature Ca~(2+) release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca~(2+) influx. J Neurosci. 2004; 1226-1235.
    89. Demuro A, Parker I.“Optical patch-clamping”: single-channel recording by imaging Ca~(2+) flux through individual muscle acetylcholine receptor channels. JGen Physiol. 2005; 126:179-192.
    90. Demuro A, Parker I. Imaging single-channel calcium microdomains. Cell Calcium. 2006; 40:413-422.
    91. Wang SQ, Song LS, Lakatta EG. Ca~(2+) signalling between single L-type Ca~(2+) channels and ryanodine receptors in heart cells. Nature. 2001; 410:592-596.
    92. Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca~(2+) ]_i during excitation-contraction coupling in cardiac myocytes. Biophys J. 1994; 67:1942-1956.
    93. Lukyanenko V, Gyorke S. Ca~(2+) sparks and Ca~(2+) waves in saponin-permeabilized rat ventricular myocytes. J Physiol. 1999; 521 Pt 3: 575-585.
    94. Satoh H, Blatter LA, Bers DM. Effects of [Ca~(2+)]i, SR Ca~(2+) load, and rest on Ca~(2+) spark frequency in ventricular myocytes. Am J Physiol. 1997; 272: H657-H668.
    95. Lopez L, Shacklock PS, Balke CW, Wier WG. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science.1995; 268: 1042-1045.
    96. Lipp P, Niggli E. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes. J Physiol. 1998; 508: 801-809.
    97. Satoh H, Katoh H, Velez P, Fill M. Bay K 8644 increases resting Ca~(2+) spark frequency in ferret ventricular myocytes independent of Ca influx: contrast with caffeine and ryanodine effects. Circ Res. 1998; 83: 1192-1204.
    98. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA,Wilson GM. Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca~(2+) cycling. Circ Res. 2007; 100: 96-104.
    99. Dupont G. Theoretical insights into the mechanism of spiral Ca~(2+) wave initiation in Xenopus oocytes. Am J Physiol Cell Physiol. 1998; 275:C317-C322.
    100.Sobie EA, Song LS, Lederer WJ. Local recovery of Ca~(2+) release in rat ventricular myocytes. J Physiol. 2005; 565: 441-447.
    101.Dupont G, Pontes J, Goldbeter A. Modeling spiral Ca~(2+) waves in single cardiac cells: role of the spatial heterogeneity created by the nucleus. Am J Physiol Cell Physiol. 1996; 271: C1390-C1399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700