转位蛋白(18KDa)配体化合物AC-5216及其衍生物YL-IPA08抗创伤后应激性障碍药效学及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     创伤后应激障碍(Post-traumatic stress disorder, PTSD)属于焦虑症的特殊类型,指个体面临异常强烈精神应激后延迟发生的精神障碍。其临床表现多样化,主要包括创伤经历再体验、警觉增高致易激惹、回避行为和情感麻木等症状。现今PTSD具有发病率和患病率高,慢性病程,疗效差等特点。
     PTSD的发病机制较复杂。从神经生物学角度分析,涉及神经递质水平异常,下丘脑-垂体-肾上腺(Hypothalamic-pituitary-adrena, HPA)轴负反馈抑制增强,神经可塑性和神经类固醇调节异常。这些神经内分泌通路的失调可致使大脑结构和功能上的不正常从而引发一系列症状,例如闯入性再体验(闪回)和过度警觉。
     目前临床上缺乏PTSD特异性治疗药物。抗抑郁药五羟色胺(Serotonin,5-HT)重摄取抑制剂(Selective serotonin reuptake inhibitors, SSRIs)是治疗PTSD的首选药物,美国食品和药品管理局批准的仅有帕罗西汀和舍曲林,属于扩大适应症。但该类药物起效率不高(约60%),起效延迟(2-6周),并存在如胃肠道、性功能障碍等毒副反应。部分苯二氮卓类抗焦虑药也可用于来治疗PTSD。如咪达唑仑可破坏条件性惊恐记忆,达到PTSD行为的疗效。但该类药物存在依赖性和副作用大等缺点。因此,系统研究PTSD的新靶标新药物具有重要的民用和军事价值。
     转位蛋白18KDa (Translocator protein, TSPO)广泛分布于中枢和外周组织细胞线粒体外膜上。TSPO在脑内主要存在于胶质细胞,与配体结合可转运胆固醇进入线粒体膜内,促进神经类固醇合成。神经类固醇参与情绪和应激反应调节,对抑郁、焦虑等应激相关性精神系统疾病的治疗具有潜在价值。TSPO配体AC-5216(目前处于Ⅱ期临床阶段),在动物模型和临床治疗上具有抗焦虑,抗抑郁和抗惊恐疗效,而且没有肌松、镇静、戒断、耐受症状、损伤认知等安定样副反应作用。其作用机制是促进胆固醇跨膜并转运进入磷脂膜,增加孕烯醇酮及下游神经类固醇(e.g.孕酮、四氢孕酮等)合成。神经类固醇通过γ-氨基丁酸A受体(Gamma amino-butyric acid type A receptor, GABAA)受体上的神经类固醇作用位点增强GABA传导功能,改变神经元兴奋性,抑制海马-下丘脑-垂体-肾上腺(hippocampal-hypothalamic-pituitary-adrenal, HHPA)轴功能,调节情绪和应激反应。这些研究表明TSPO可作为PTSD治疗潜在靶标。
     然而,AC-5216具有难溶于水和结构优化空间较大的不足,因此生物利用度受到限制。据此,北京军事医学科学院毒物药物研究所药物化学研究室根据AC-5216的分子机构进行优化并定向合成系列水溶性衍生物,筛选证实新结构化合物YL-IPA08。YL-IPA08较之于AC-5216与TSPO结合亲和力更高,选择性更强,并已申请中国专利和美、日、欧盟国际专利。前期试验证实,YL-IPA08通过调节神经类固醇的合成具有抗焦虑和抗抑郁作用。尽管TSPO配体化合物AC-5216和YL-IPA08在抗应激性疾病中疗效显著,然而其在抗PTSD作用和机制中仍未见报道。针对此科学问题开展研究,阐明TSPO配体化合物抗PTSD作用和机制具有新颖性及应用价值。
     目前,多种模型应用于PTSD研究,其中包括时间依赖性敏化模型,短暂电击模型,单程延长应激模型,天敌模型和社交孤立模型。在本研究中应用小鼠短暂电击模型和大鼠时间依赖性敏化模型。短暂电击模型可体现临床上PTSD病态,如惊恐和焦虑行为。而时间依赖性敏化模型则具有表观有效性(模拟临床精神疾病状态),结构有效性(得到现今精神病理学理论支持),预测有效性(能预测临床前药物对PTSD患者的疗效)这几个特点。因此,以上这两个模型对研究在PTSD的药理学和生物学领域具有重要作用。
     综上分析,本研究应用AC-5216和YL-IPA08作用于短暂电击模型和时间依赖性敏化模型探讨TSPO配体药物在PTSD治疗中行为药效和机制。
     方法:
     (1)AC-5216和YL-IPA08对TSPO和中枢苯二氮卓受体(Central-type benzodiazepine receptor, CBR)的结合亲和力和对神经类固醇的水平调节
     放射性竞争配体结合试验研究AC-5216和YL-IPA08对大鼠小脑神经胶质细胞线粒体外膜TSPO和CBR结合亲和力。体外培养的星形胶质细胞系,通过酶联免疫吸附法(Enzyme-Linked ImmunoSorbent Assay, ELISA)测定给予AC-5216和YL-IPA08对细胞孕烯醇酮和孕酮含量,研究两者对神经类固醇如孕烯醇酮和孕酮的水平调节。
     (2)通过PTSD动物模型研究AC-5216与YL-IPA08的行为药效作用
     在小鼠短暂电击模型中,模型组小鼠在幽闭电击箱中接受2天各15次间断的、不可逃避的足底电击(0.8mA,间隔10s,持续10s)。正常对照组同样置于幽闭电击箱中,但不给予电击。训练完成之后的第2天开始给药,分为正常对照组,模型对照组,阳性对照药物舍曲林(15mg/kg p.o.)组,AC-5216组(0.03,0.1,0.3,1mg/kg p.o.)/YL-IPA08组(0.03,0.1,0.3,1,3mg/kg p.o.),1次/天。实验动物分别在电击后在相同的造模环境下进行环境重现实验,检测小鼠的僵住时间百分比。开场试验检测动物的自发活动。高架十字迷宫试验和爬梯试验,检测AC-5216和YL-IPA08抗PTSD行为药效。在时间依赖敏化模型中,大鼠造模(固定2h后,进行强迫游泳20min,恢复15min,暴露于麻醉乙醚中直至失去知觉。7天之后再次进行20min强迫游泳(方法如前)),正常对照组不给予任何刺激。训练完成之后的第2天开始给药,分为正常对照组,模型对照组,阳性对照药物舍曲林(15mg/kg p.o.)组,AC-5216组(0.03,0.1,0.3,1mg/kgp.o.)/YL-IPA08组(0.03,0.1,0.3,1,3mg/kg p.o.),1次/天。实验动物分别在造模后进行开场试验检测动物自发活动,环境重现实验和高架十字迷宫,检测AC-5216和YL-IPA08抗PTSD行为药效。
     (3)研究AC-5216与YL-IPA08抗PTSD作用机制
     根据AC-5216和YL-IPA08时间依赖性敏化模型中的最大效应剂量,采用TSPO配体PK11195拮抗AC-5216和YL-IPA08在时间依赖性敏化模型中的抗PTSD行为药效,观察AC-5216和YL-IPA08抗PTSD的行为药效是否通过TSPO所介导。提取PTSD动物模型(时间依赖性敏化模型)中大脑前额皮层,海马体和血样本,通过蛋白质免疫印迹研究AC-5216与YL-IPA08抗PTSD作用与大脑前额皮层和海马体TSPO表达相关性;通过放射性竞争配体结合试验研究AC-5216与YL-IPA08抗PTSD作用与大脑前额皮层,海马体和血小板中TSPO受体活性相关性;ELISA检测AC-5216与YL-IPA08抗PTSD作用与大脑前额皮层,海马体和血样本中孕酮和四氢孕酮的调节水平相关性;高效液相电化学色谱法分析AC-5216与YL-IPA08抗PTSD作用与前额皮层和海马体中5-HT,二羟苯乙酸(dihydroxy-phenyl acetic acid, DOPAC),多巴胺(dopamine, DA),5-羟吲哚乙酸(5-hydroxyindoleacetic acid,5-HIAA)和去甲肾上腺素(norepinephrine, NE)单胺递质水平变化的相关性。
     (4)统计分析
     结果采用SPSS13.0软件进行统计,各组计量数据均以平均值士标准误(Mean±S.E.M.)表示。体重结果采用重复性测量方差分析检测。结果多组间比较采用单因素方差分析(One-way ANOVA)进行分析,方差齐性时,组间两两比较采用LSD-t法;若方差不齐,将采用Welch法进行分析,多重比较采用Dunnett's T3法。P<0.05表示差异具有统计学意义。
     结果:
     (1)AC-5216和YL-IPA08对TSPO和CBR的亲和力和对神经类固醇的水平调节
     放射性竞争配体结合试验结果显示AC-5216在大鼠小脑组织TSPO和CBR亲和结合力ICs0分别为0.65士0.02nM和67.4±6.82nM; YL-IPA08则分别为0.23士0.04nM和706.18±10.18nM,提示与AC-5216相比,YL-IPA08与TSPO结合具有更高的亲和力和选择性,且与CBR几乎没有结合。ELISA结果显示AC-5216(1,2μM)(F=7.892, P=0.004)和YL-IPA08(1,2μM)(F=101.5,P=0.000)作用于星形胶质细胞2h后,培养液中孕烯醇酮水平均显著上调;同法检测AC-5216(1,2μM)(F=98.37, P=0.000)和YL-IPA08(1,2μM)(F=52.91, P=0.000)作用4h后,培养液中孕烯醇酮水平均显著上调;AC-5216(0.5,1,2μM)(F=22.41,P=0.000)和YL-IPA08(0.5,1,2μM)(F=23.97,P=0.000)作用2h后,培养液中孕酮水平均显著上调,同法检测AC-5216(0.5,1,2pM)(F=37.99, P=0.000)和YL-IPA08(0.5,1,2pM)(F=22.16, P=0.000)作用4h后,培养液中孕酮水平均显著上调。
     (2) PTSD动物模型(小鼠短暂电击模型和时间依赖性敏化模型)研究AC-5216与YL-IPA08抗PTSD的行为药效
     小鼠短暂电击模型结果显示,长期给予AC-5216(0.03,0.1,0.3,1mg/kg p.o.)(F=1.181,P=0.328,跨格数;F=1.025,P=0.418,站立次数;F=0.323,P=0.922,粪便颗粒数)和YL-IPA08(0.03,0.1,0.3,1,3mg/kg p.o.)(F=1.890, P=0.084,跨格数;F=0.342,P=0.932,站立次数;F=0.277,P=0.961,粪便颗粒数)均不影响实验小鼠以上指标,实验结果提示AC-5216和YL-IPA08均不影响实验动物自发活动和排便量。同时,在试验过程中AC-5216和YL-IPA08不影响小鼠体重变化(F=0.206, P=1.000, AC-5216; F=0.176, P=1.000, YL-IPA08).环境重现试验显示,与舍曲林(15mg/kg p.o.)一致, AC-5216(0.1,0.3mg/kg p.o.)(F=6.602,P=0.000)与YL-IPA08(0.3,1mg/kg p.o.)(F=7.554, P=0.000)在实验第十天能显著降低小鼠僵住时间;同样,AC-5216(0.1,0.3mg/kg p.o.)(F=11.87, P=0.000)与YL-IPA08(0.1,0.3,1mg/kg p.o.)(F=6.904, P=0.000)在实验第十七天也能显著降低小鼠僵住时间。实验结果提示AC-5216与YL-IPA08能显著抗PTSD引起的僵住行为作用。高架十字迷宫结果显示AC-5216(0.3mg/kg p.o.)(F=3.513, P=0.005)和YL-IPA08(1mg/kg p.o.)(F=2.318,P=0.035)能逆转电击小鼠在开臂停留的时间减少. AC-5216(0.1,0.3mg/kg p.o.)(F=2.462, P=0.033)和YL-IPA08(1mg/kg p.o.)(F=2.643,P=0.018)能逆转电击小鼠在开臂停留的次数减少。爬梯试验结果显示AC-5216(F=0.836, P=0.547)和YL-IPA08(F=0.827, P=0.568)不影响实验动物的爬梯数。该模型能降低小鼠的抬头数,AC-5216(0.1,0.3mg/kg p.o.)(F=4.504,P=0.002)和YL-IPA08(0.3,1mg/kg p.o.)(F=2.166, P=0.047)能逆转小鼠抬头数的减少。高架十字迷宫试验与爬梯试验结果提示AC-5216(0.1,0.3mg/kg p.o.)和YL-IPA08(1mg/kg p.o.)具有抗PTSD作用。
     大鼠时间依赖敏化模型结果显示,该模型不影响实验大鼠跨格数,站立次数和粪便颗粒数,长期给予AC-5216(0.03,0.1,0.3,1mg/kg p.o.)(F=0.735,P=0.623,跨格数;F=0.245,P=0.959,站立次数;F=0.388,P=0.884,粪便颗粒数)和YL-IPA08(0.03,0.1,0.3,1,3mg/kg p.o.)(F=1.176, P=0.327,跨格数;F=0.514,P=0.821,站立次数;F=0.479,P=0.847,粪便颗粒数)均不影响实验大鼠以上指标,实验结果提示该模型与AC-5216和YL-IPA08均不影响实验动物自发活动。同时,在试验过程中各处理组不影响大鼠体重变化(F=0.141,P=1.000,AC-5216; F=0.433, P0.000, YL-IPA08),电击显著延长大鼠的僵住时间,AC-5216(0.1,0.3mg/kg p.o.)(F=3.913, P=0.002)与YL-IPA08(0.3,1mg/kg p.o.)(F=33.77,P=0.000)能显著降低大鼠PTSD僵住时间,实验结果提示AC-5216与YL-IPA08能显著抗TDS大鼠PTSD僵住行为。高架十字迷宫结果显示AC-5216(F=0.216,P=0.968)与YL-IPA08(F=1.090, P=0.379)不影响实验动物的入臂时间,同时,AC-5216(F=1.281,P=0.298)与YL-IPA08(F=1.533,P=0.171)不影响实验动物的入臂次数。该模型能降低大鼠在开臂停留的时间与次数,AC-5216(0.1,0.3mg/kg p.o.)(F=2.423, P=0.036)和YL-IPA08(0.1,0.3mg/kg p.o.)(F=3.491,P=0.003)能逆转大鼠在开臂停留的时间减少。AC-5216(0.1,0.3mg/kg p.o.)(F=2.378,P=0.039)和YL-IPA08(0.1,0.3mg/kg p.o.)(F=3.916, P=0.001)能逆转大鼠在开臂停留的次数减少。高架十字迷宫试验结果提示舍曲林(15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.)和YL-IPA08(0.1,0.3mg/kg p.o.)具有抗PTSD作用。
     (3)研究AC-5216与YL-IPA08的抗PTSD作用机制
     TSPO拮抗剂PK11195(1,3mg/kg i.p.)拮抗AC-5216和YL-IPA08在时间依赖性敏化模型中抗PTSD行为药效研究。结果显示,PK11195拮抗AC-5216(F=0.352,P=0.954,跨格数;F=0.552,P=0.832,站立次数;F=0.206,P=0.993,粪便颗粒数)和YL-IPA08(F=0.263,P=0.982,跨格数;F=0.449,P=0.904,站立次数;F=0.155,P=0.998,粪便颗粒数)的行为药效的同时不影响实验大鼠跨格数,站立次数和粪便颗粒数。实验结果提示,PK11195拮抗作用不影响实验动物自发活动。惊恐环境重现试验显示,PK11195(3mg/kg i.p.)可拮抗AC-5216(0.3mg/kg p.o.)(F=4.552, P=0.000)与YL-IPA08(0.3mg/kg p.o.)(F=5.738,P=0.000)降低大鼠PTSD僵住时间的作用,而PK11195自身不影响大鼠僵住时间。PK11195(3mg/kgi.p.)能拮抗AC-5216(0.3mg/kg p.o.)和YL-IPA08(0.3mg/kgp.o.)逆转大鼠在开臂停留的时间(F=2.128, P=0.035, AC-5216; F=2.097, P=0.038, YL-IPA08)与次数(F=2.252, P=0.026, AC-5216; F=2.442,P=.016, YL-IPA08)的下降,而PK11195(1,3mg/kg p.o.)自身不影响大鼠在开臂停留的时间(F=0.244,P=0.987, AC-5216; F=0.310,P=0.970, YL-IPA08)与次数(F=0.702,P=0.705,AC-5216; F=0.898, P=0.531, YL-IPA08)。实验结果提示AC-5216与YL-IPA08抗PTSD作用是通过TSPO所介导的。
     蛋白质分子印迹结果显示,与正常对照组对比,模型组TSPO的表达水平显著下降,AC-5216(0.3mg/kg p.o.)(F=150.2, P=0.000,前额皮层;F=11.45,P=0.006,海马体)和YL-IPA08(0.3mg/kg p.o.)(F=18.69, P=0.002,前额皮层;F=12.66,P=0.005,海马体)能显著上调前额皮层和海马体TSPO表达。实验结果提示AC-5216和YL-IPA08抗PTSD作用与上调前额皮层和海马体TSPO表达相关。
     放射性竞争配体结合试验结果显示,与正常对照组对比,模型组TSPO的受体活性显著下降,AC-5216(0.3mg/kg p.o.)(F=15.63, P=0.0042,前额皮层;F=7.454,P=0.0236,海马体;F=6.825,P=0.0285,血小板)和YL-IPA08(0.3mg/kgp.o.)(F=11.99,P=0.0080,前额皮层;F=13.68,P=0.0058,海马体;F=11.24,P=0.0093,血小板)能显著上调前额皮层,海马体和血小板TSPO受体活性。实验结果提示AC-5216和YL-IPA08抗PTSD作用与上调前额皮层,海马体和血小板中TSPO受体活性相关。
     ELISA检测AC-5216和YL-IPA08抗PTSD作用与孕酮和四氢孕酮水平调节相关性。结果显示,在前额皮层,海马体和血清中,模型组孕酮和四氢孕酮含量显著下降。AC-5216(0.3,1mg/kg p.o.)和YL-IPA08(0.3,1mg/kg p.o.)能显著上调前额皮层(F=2.687, P=0.030, AC-5216; F=2.550, P=0.039, YL-IPA08),海马体(F=3.478, P=0.010, AC-5216; F=3.131, P=0.017, YL-IPA08)和血清(F=3.002,P=0.021, AC-5216; F=3.321, P=0.011, YL-IPA08)中四氢孕酮含量,但与前额皮层(F=3.985,P=0.003, AC-5216; F=2.802, P=0.022, YL-IPA08),海马体(F=3.171,P=0.012, AC-5216; F=2.379,P=0.045, YL-IPA08)和血清(F=2.722,P=0.025,AC-5216; F=2.925, P=0.018, YL-IPA08)中孕酮的调节水平无关。同法检测得PK11195(3mg/kg i.p.)可拮抗AC-5216(0.3mg/kg p.o.)(F=2.439, P=0.039,前额皮层;F=2.296,P=0.048,海马体;F=3.035,P=0.013,血清)和YL-IPA08(0.3mg/kgp.o.)(F=2.830,P=-0.018,前额皮层;F=3.587,P=0.005,海马体;F=3.318,P=0.007,血清)对四氢孕酮水平的上调,实验结果提示AC-5216和YL-IPA08抗PTSD作用与调节四氢孕酮水平上调有关,而这种调节是通过TSPO所介导的。
     高效液相电化学法检测AC-5216和YL-IPA08抗PTSD作用与单胺递质水平调节相关性。结果显示TDS模型组中5-HT水平下调,与舍曲林(15mg/kg p.o.)一致,AC-5216(1mg/kg p.o.)能逆转5-HT(F=3.663,P=0.007,前额皮层;F=2.473,P=0.046,海马体)水平下调。而对DOPAC(F=0.163,P=0.985,前额皮层;F=0.414,P=0.864,海马体),DA(F=0.604, P=0.725,前额皮层;F=0.591,P=0.735,海马体),5-HIAA(F=0.890, P=0.513,前额皮层;F=0.520,P=0.789,海马体)和NE(F=0.181,P=0.980,前额皮层;F=0.674,P=0.671,海马体)的水平无显著性影响;与舍曲林(15mg/kg p.o.)一致,YL-IPA08(1mg/kg p.o.)能逆转5-HT (F=2.457, P=0.045,前额皮层;F=2.605,P=0.034,海马体)水平下调。而对DOPAC(F=0.277, P=0.944,前额皮层;F=0.384,P=0.884,海马体),DA(F=0.157, P=0.986,前额皮层;F=0.474,P=0.823,海马体),5-HIAA(F=0.212, P=0.971,前额皮层;F=0.678,P=0.668,海马体)和NE(F=0.199, P=0.975,前额皮层;F=0.534,P=0.779,海马体)水平无显著性影响。试验结果提示AC-5216和YL-IPA08在TDS模型上的抗PTSD作用与上调5-HT水平有关。
     结论:
     YL-IPA08和AC-5216与TSPO均有高亲和力结合,而与CBR低亲和;YL-IPA08比AC-5216具有更高的配体亲和力和选择性,且易溶于水;YL-IPA08和AC-5216可上调星形胶质细胞中神经类固醇,如孕烯醇酮和孕酮的含量;首次发现TSPO配体YL-IPA08和AC-5216具有抗PTSD行为活性,且在抗PTSD有效剂量下显著升高前额皮层,海马和血清中四氢孕酮水平,上述作用可被TSPO拮抗剂完全阻断,提示TSPO及其下游的四氢孕酮介导了AC-5216和YL-IPA08的抗PTSD行为活性;5-HT可能也间接参与了AC-5216和YL-IPA08的抗PTSD作用。
Objective:
     Post-traumatic stress disorder (PTSD) is a serious anxiety, which is the mental disorder that is associated with individual. The PTSD symptoms are various, including traumatic experience, avoidance behavior, and emotional numbing. PTSD is considered to be high incidence and prevalence, chronic and poor effect with great trauma care and concern.
     The etiology and pathogenesis of PTSD is complicated. The disorder is involved the abnormal neurotransmitters levels, the enhancement of the hypothalamic pitutary adrenal (HPA) axis in the negative feedkack inhibition and the abnormal of neural plasticity and neurosteroidogenesis. These dysregulation of the neuroendocrine pathways may result in the abnormal of brain structure and function and cause a series of symptoms, such as excessive vigilance and the intrusion, and experience (flashback).
     PTSD is lack of specific drugs treatment in clinic. In general, antidepressants selective serotonin reuptake inhibitors (SSRIs) are the first choice for treatment of PTSD, such as paroxetine and sertraline. But effective rate is not high (about60%). The onset latency will last from2-6weeks. Also, there are side-effects including sexual dysfunction, gastrointestinal tract, and suicide. Other anxiolyic drugs were used in the treatment of PTSD. Benzodiazepine, such as midazolam, can destroy the conditioned fear memory. But the drugs also have low efficiency. Therefore, it is important to explore the new target and treatment of PTSD.
     The translocator protein18KDa (TSPO) is distributed on the outer membrane of mitochondria in the central and peripheral tissue. TSPO transports the cholesterol into the mitochondrial membrane to promote the biosynthesis of neurosteroids. It had been found that TSPO is associated with mood and stress response. This target has potential value in the treatment of anxiety, depression and other stress-related psychiatric disorders. Reports have shown that TSPO is closely associated with PTSD. The TSPO ligand, such as AC-5216, has obvious antidepressant, anxiolytic and anti-panic effect in animal models without sedation, muscle relaxation tolerance and withdrawal symptoms. The mechanism may be that transport cholesterol into membrane phospholipids, which increased pregnenolone formation and its downstream neurosteroids, including progesterone and allopregnenolone. Neurosteroids enhanced the function of gamma amino-butyric acid type A receptor (GABAA) through GABAA receptors on the excitatory neurons, which inhibit the hippocampal hypothalamic pituitary adrenal (HHPA) axis function and regulation of emotion and stress response. It is indicated that TSPO can be used as a potential therapeutic target for PTSD.
     However, AC-5216is difficult to dissolve in water. Based on this situation, we synthesis its derivative YL-IPA08. It had been reported that YL-IPA08have higher affinity to TSPO than AC-5216and have antidepressant and anxiolytic effects by regulating neurosteroids synthesis. Also, we had applied the patent in this area. Although the anti-stress effect of AC-5216and YL-IPA08is obvious, there are few studies on anti-PTSD. It is important to clarify whether TSPO ligands have great value on anti-PTSD effect.
     The animal models (e.g. time-dependent sensitization (TDS) and inescapable electric foot shock, single prolonged stress (SPS), exposure to a predators, and social isolation) have been well established to resemble the clinical features of PTSD. The inescapable electric foot shock model and the TDS model were selected in the present study. The inescapable electric foot shock model based on the concept that animals exposed to foot shocks can represent pathophysiological process and core symptomatology of PTSD, including the freezing and anxiety-like behavior. Previous studies showed that animals experiencing a traumatic event, such as multiple foot shocks, rapidly form a strong phobia while a relatively mild aversive experience occurs. This phenomenon may correspond to the emergence of phobias in PTSD patients. In addition, the TDS model has proven to resemble the clinical condition with accurate face, construct, and predictive validity. Thus, both PTSD models represent important phenomenological and biological correlates of PTSD.
     In the present study, AC-5216and YL-IPA08were applied in inescapable electric foot shock model and TDS model to explore the anti-PTSD effect and mechanism of TSPO ligands.
     Methods:
     (1) The affinity of AC-5216and YL-IPA08to TSPO and the regulation of both the compounds on neurosteroids
     We cultured the astrocytes that were treated with AC-5216and YL-IPA08(0.05,1,2μM)2h and4h and measured pregnenolone and progesterone in culture medium by enzyme linked immunosorbent assay (ELISA).
     (2) The anti-PTSD effects of AC-5216and YL-IPA08in behaviral tests
     We explored the anti-PTSD effects of AC-5216and YL-IPA08by inescapable footshock model and TDS model. Briefly, after a5-min adaptation period, the mice were exposed to a total of15intermittent inescapable electric foot shocks (intensity:0.8mA, interval:10s, and duration:10s) delivered through the grid floor by an isolated shock generator. Control animals were placed in the same chamber for10min in the absence of electric foot shocks. Sertraline (15mg/kg p.o.), AC-5216(0.03,0.1,0.3, and1mg/kg p.o.) and YL-IPA08(0.03,0.1,0.3,1, and3mg/kg p.o.) were given once per day from3to17d.
     All the animals were exposed to reminders of the situation for5min on days5,10, and17without foot shocks, to measure the duration of contextual freezing behavior. This was achieved by placing the experimental animals in the same chamber where the foot shocks were delivered. In addition, we explore the spontaneous locoactivity by open field test and the PTSD behavior by the elevated plus maze test and the staircase test.
     In the TDS model, each rat was placed in a perspex restrainer for2h, with the tail-gate adjusted to keep the rat well contained without impairing limb circulation. Thereafter, rats were individually placed in a clear acrylic cylinder to perform a20-min forced swim. Following the15-min recuperation, rats were then exposed to ether vapors until loss of consciousness and were then removed. The animals were undisturbed for7days. Seven days after the initial stressor, the rats were exposed to a 'restress'session consisting of a20-min swim in clear acrylic cylinders. The control group rats were remained in a room adjacent to the TDS rats for the duration of TDS and were handled twice for several minutes. Sertraline (15mg/kg p.o.), AC-5216(0.03,0.1,0.3, and1mg/kg p.o.) and YL-IPA08(0.03,0.1,0.3,1, and3mg/kg p.o.) were given once per day from the second day. We explore the spontaneous locoactivity by open field test and the PTSD behavior by the contextual fear paradigm and the elevated plus maze test.
     (3) The anti-PTSD mechanism of AC-5216and YL-IPA08
     We explored the effects of TSPO receptor antagonist PK11195in the TDS model. The prefrontal cortex and hippocampus and blood samples were removed from the TDS model to explore the anti-PTSD mechanism of AC-5216and YL-IPA08. The expression changes of TSPO in prefrontal cortex and hippocampus were measured by western blotting; the activity of TSPO in prefrontal cortex, hippocampus and platelet were measured by binding assay; the progsterone and allopregnenolone in prefrontal cortex and hippocampus and blood samples was detect by ELISA; changes of monoamine levels (DOPAC (dihydroxy-phenyl acetic acid), DA (dopamine),5-HIAA (5-hydroxyindoleacetic acid), NE (norepinephrine)) in prefrontal cortex and hippocampus were analysis by high-performance liquid chromatography with electrochemical detection.
     (4) Statical analysis
     Unless otherwise specified, statistical analysis was performed using SPSS13.0. All data were presented as the means±S.E.M. The statistical significance of experimental observations was determined by one-way analysis of variance (ANOVA). The body weight was determined by repeated measure analysis. The statical significances between two groups were analyzed by LSD t-test or Welch analysis followed by Dunnett's T3test. For all tests, differences with P<0.05were considered significant.
     Results:
     (1) The affinity of AC-5216and YL-IPA08to TSPO and the regulation of both the compounds on neurosteroids
     Binding assay showed that affinity IC50of AC-5216in TSPO and CBR of the outer mitochondrial membrane of glial cells were0.65±0.02nM and67.4±6.82nM, respectively; affinity IC50of YL-IPA08in TSPO and CBR of the outer mitochondrial membrane of glial cells were0.23±0.04nM and706.18±10.18nM. The results indicated that AC-5216and YL-IPA08have high affinity to TSPO, but low affinity to CBR in the mitochondrial outer membrane of glial cells. We determine the concentration of pregnenolone and progesterone that treated by AC-5216(0.5,1,2μM) and YL-IPA08(0.5,1,2μM) in astrocytes in the culture by ELISA. The result showed that after2h treatment of AC-5216and YL-IPA08, pregnenolone (F=7.892, P=0.004, AC-5216; F=101.5, P=0.000, YL-IPA08) and progesterone (F=22.41, P=0.000, AC-5216; F=23.97,P=0.000, YL-IPA08) levels were significantly increased. After4h treatment of AC-5216and YL-IPA08, pregnenolone (F=98.37, P=0.000, AC-5216; F=52.91, P=0.000, YL-IPA08) and progesterone (F=37.99,P=0.000, AC-5216; F=22.16,P=0.000, YL-IPA08) levels were significantly increased. The results suggested that pregnenolone and progesterone levels were upregulated by AC-5216and YL-IPA08.
     (2) The anti-PTSD effects of AC-5216and YL-IPA08in behaviral test
     The footshock model in mice showed that AC-5216(0.03,0.1,0.3,1mg/kg p.o.) and YL-IPA08(0.03,0.1,0.3,1,3mg/kg p.o.) does not affect the number of crossings (F=1.181, P=0.328, AC-5216; F=1.890, P=0.084, YL-IPA08), rears (F=1.025, P=0.418, AC-5216; F=0.342, P=0.932, YL-IPA08) and fecal pellets (F=0.323, P=0.922, AC-5216; F=0.277, P=0.961, YL-IPA08). It is indicated that AC-5216and YL-IPA08do not affect the locomotor activity in mice.The body weight was not affected by AC-5216(F=0.206, P=1.000) and YL-IPA08(F=0.176, P=1.000).
     The footshock significantly increased the freezing time, sertraline (15mg/kg p.o.) significantly reduce the freezing time, AC-5216and YL-IPA08do not reduce the freezing time on the5th day (F=2.618, P=0.025, AC-5216; F=4.592, P=0.000, YL-IPA08); on the10th day (F=6.602, P=0.000, AC-5216; F=6.456, P=0.000), YL-IPA08), sertraline (15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.) and YL-IPA08(0.3,1mg/kg p.o.) significantly reduce the freezing time; on the17th day (F=11.868, P=0.000, AC-5216; F=6.904,.P=0.000, YL-IPA08), sertraline (15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.) and YL-IPA08(0.1,0.3,1mg/kg p.o.) significantly reduce the freezing time. The results suggested that the fear induced by PTSD was allivated by AC-5216and YL-IPA08in mice. The elevated plus maze test showed that total time spent in (F=0.929,P=0.779, AC-5216; F=1.868, P=0.088, YL-IPA08) and the entries into (F=0.532, P=0.490, AC-5216; F=0.570, P=0.778, YL-IPA08) the arms were not different between the groups. The time spent in (F=3.513, P=0.005, AC-5216; F=2.318,P=0.035, YL-IPA08) and the entries into (F=2.462, P0.033, AC-5216; F=2.643,P=0.018, YL-IPA08) the open arms was reduced in the model group, but both of the parameters were reversed by sertraline (15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.) and YL-IPA08(1mg/kg p.o.). The staircase test showed that there were no differences among the groups in steps climbing (F=0.836, P=0.547, AC-5216; F=0.827, P=0.568, YL-IPA08). The model can reduce the number of rears (F=4.504, P=0.002, AC-5216; F=2.166,P=0.047, YL-IPA08), but the reduction can be reversed by sertraline (15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.) and YL-IPA08(0.3,1mg/kg p.o.). The elevated plus maze test and staircase test results suggest sertraline (15mg/kg p.o.), AC-5216(0.1,0.3,1mg/kg p.o.) and YL-IPA08(1mg/kg p.o.) has the anti-PTSD effect. The results suggested that PTSD was allivated by AC-5216and YL-IPA08in rats.
     The effect of AC-5216and YL-IPA08in the TDS model showed that AC-5216(0.03,0.1,0.3,1mg/kg p.o.) and YL-IPA08(0.03,0.1,0.3,1, and3mg/kg p.o.) does not affect the number of crossings (F=0.735, P=0.623, AC-5216; F=1.176, P=0.327, YL-IPA08), rears (F=0.245, P=0.959, AC-5216; F=0.514, P=0.821, YL-IPA08) and fecal pellets (F=0.388, P=0.884, AC-5216; F=0.479, P=0.847, YL-IPA08). It is indicated that AC-5216and YL-IPA08do not affect the locomotor activity in rats. AC-5216(F=0.141,P=1.000) and YL-IPA08(F=0.433,P=1.000) also do not affect the body weight in rats. Contextual fear paradigm showed that the model group significantly increased the freezing time, sertraline (15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.)(F=3.913, P=0.002) and YL-IPA08(0.1,0.3mg/kg p.o.)(F=33.77, P=0.000) significantly reduce the freezing time. The results suggested that the fear induced by PTSD can be allivated by AC-5216and YL-IPA08in rats. The elevated plus maze test showed that total time spent in (F=1.281, P=0.298, AC-5216; F=1.090, P=0.379, YL-IPA08) and the entries into (F=0.216,P=0.986, AC-5216; F=1.533, P=0.171, YL-IP08) the arms were not different between the groups. The time spent in (F=2.423, P=0.036, AC-5216; F=3.491, P=0.003, YL-IPA08) and the entries into (F=2.378, P=0.039, AC-5216; F=3.916,P=0.001, YL-IPA08) the open arms was reduced in the model group, but both of the parameters were reversed by sertraline (15mg/kg p.o.), AC-5216(0.1,0.3mg/kg p.o.) and YL-IPA08(0.1,0.3mg/kg p.o.). The results suggested that the PTSD behaviors were allivated by AC-5216and YL-IPA08in rats.
     (3) The anti-PTSD mechanism of AC-5216and YL-IPA08The effect of AC-5216and YL-IPA08was antagonized by PK11195in the on the time dependent sensitization model. The results showed that PK11195(1,3mg/kg i.p.) does not affect the number of crossings (F=0.352, P=0.954, AC-5216; F=0.263, P=0.982, YL-IPA08), rears (F=0.552, P=0.832AC-5216; F=0.449, P=0.904, YL-IPA08) and fecal pellets (F=0.206, P=0.993, AC-5216; F=0.155, P=0.998, YL-IPA08). It is indicated that PK11195(1,3mg/kg, i.p.) did not affect the locomotor activity. Contextual fear paradigm showed that the reduction of the freezing time by AC-5216(0.3mg/kg p.o.)(F=4.552, P=0.000) and YL-IPA08(0.3mg/kg p.o.)(F=5.738, P=0.000) were antagonized by PK11195(3mg/kg, i.p.) and the elevated plus maze test showed that total time spent in (F=0.244, P=0.987, AC-5216; F=0.310, P=0.970, YL-IPA08) and the entries into (F=0.702, P=0.705, AC-5216; F=0.898, P=0.531, YL-IPA08) the arms were not different between the groups. The time (F=2.128, P=0.035, AC-5216; F=2.097, P=0.038, YL-IPA08) spent in and the entries (F=2.252, P=0.026, AC-5216; F=2.442, P=0.016, YL-IPA08) into the open arms was increased by AC-5216(0.3mg/kg p.o.) and YL-IPA08(0.3mg/kg p.o.), which were antagonized by PK11195(3mg/kg, i.p.). The results suggested that AC-5216and YL-IPA08allivated PTSD by TSPO.
     Western blot showed that the expression of TSPO is down-regulated in the prefrontal cortex and hippocampus of the TDS group. The down-regulated TSPO is reversed by administration of AC-5216(0.3mg/kg p.o.)(F=150.2, P=0.000, prefrontal cortex; F=11.45, P=0.006, hippocampus) and YL-IPA08(0.3mg/kg p.o.)(F=18.69, P=0.002, prefrontal cortex; F=12.66, P=0.005, hippocampus). It is indicated that the anti-PTSD effect of AC-5216and YL-IPA08is associated with up-regulation of TSPO expression.
     Binding assay showed that the activity of TSPO receptor is down-regulated in the prefrontal cortex, hippocampus and platelet of the TDS group. The down-regulated TSPO receptor activcty is reversed by administration of AC-5216(0.3mg/kg p.o.)(F=15.63, P=0.0042, prefrontal cortex; F=7.454, P=0.0236, hippocampus; F=6.825, P=0.0285, platelet) and YL-IPA08(0.3mg/kg p.o.)(F=11.99, P=0.0080, prefrontal cortex; F=13.68,P=0.0058, hippocampus; F=11.24, P=0.0093, platelet). It is indicated that the anti-PTSD effect of AC-5216and YL-IPA08is associated with up-regulation of TSPO receptor activity.
     ELISA showed that progesterone and allopregnenolone was reduced in the prefrontal cortex, hippocampus and serum in the TDS model group. However, AC-5216(0.3,1mg/kg p.o.) and YL-IPA08(0.3,1mg/kg p.o.) reversed the down-regulation of allopregnenolone in the prefrontal cortex (F=2.687,P=0.030, AC-5216; F=2.550, P=0.039, YL-IPA08), hippocampus (F=3.478, P=0.010, AC-5216; F=3.131, P=0.017, YL-IPA08) and serum (F=3.002, P=0.021, AC-5216; F=3.321,P=0.011, YL-IPA08), but not the progesterone in the prefrontal cortex (F=3.985, P=0.003, AC-5216; F=2.802,P=0.022, YL-IPA08), hippocampus (F=3.171, P=0.012, AC-5216; F=2.379, P=0.045, YL-IPA08) and serum (F=2.722, P=0.025, AC-5216; F=2.925, P=0.018, YL-IPA08). It also found that the effect of AC-5216and YL-IPA08were antagonized by PK11195(3mg/kg, i.p.) in the prefrontal cortex (F=2.439, P=0.039, AC-5216; F=2.830, P=0.018, YL-IPA08), hippocampus (F=2.296, P=0.048; F=3.587, P=0.005, YL-IPA08) and serum (F=3.035, P=0.013, AC-5216; F=3.318,P=0.007, YL-IPA08) of allopregnenolone. The result indicated that the anti-PTSD effect of AC-5216and YL-IPA08was associated with up-regulation of allopregnenolone.
     HPLC-ECD showed that5-HT was reduced in the TDS model group, sertraline (15mg/kg p.o.), AC-5216(1mg/kg p.o.) can reverse the down-regulation of5-HT (F=3.663, P=0.007, prefrontal cortex; F=2.473, P=0.046, hippocampus), but no effect on DOPAC (F=0.163, P=0.985, prefrontal cortex; F=0.414, P=0.864, hippocampus), DA (F=0.604, P=0.725, prefrontal cortex; F=0.591, P=0.735, hippocampus),5-HIAA (F=0.890, P=0.513, prefrontal cortex; F=0.520, P=0.789, hippocampus) and NE (F=0.181, P=0.980, prefrontal cortex; F=0.674, P=0.671, hippocampus). YL-IPA08(1mg/kg p.o.) can reverse the down-regulation of5-HT (F=2.457, P=0.045, prefrontal cortex; F=2.605, P=0.034, hippocampus), but no effect on DOPAC (F=0.277, P=0.944, prefrontal cortex; F=0.384, P=0.884, hippocampus), DA (F=0.157, P=0.986, prefrontal cortex; F=0.474, P=0.823, hippocampus),5-HIAA (F=0.199, P=0.975, prefrontal cortex; F=0.678, P=0.668, hippocampus) and NE (F=0.317, P=0.924, prefrontal cortex; F=0.534, P=0.779, hippocampus). It is indicated that anti-PTSD effects of AC-5216and YL-IPA08was associated with the up-regulation of5-HT.
     Conclusion:
     AC-5216and YL-IPA08have high affinity to TSPO, but low affinity to CBR. In addition, YL-IPA08has higher affinity to TSPO than AC-5216and dissolved in water. Neurosteriods levels were pregulated by AC-5216and YL-IPA08. AC-5216and YL-IPA08have anti-PTSD effect. The anti-PTSD effect of AC-5216and YL-IPA08was associated with up-regulation of allopregnenolone and the regulation was mediated by TSPO. The anti-PTSD effects of AC-5216and YL-IPA08was associated with the up-regulation of5-HT.
引文
[1]Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding[J]. Proc Natl Acad Sci U S A, 1977,74(9):3805-3809.
    [2]仇志坤,徐江平,李云峰.转位蛋白18 kDa:未来治疗神经精神疾病的新靶点[J].中国药理学与毒理学杂志,2012,26(3):368-373.
    [3]Trapani G, Laquintana V, Denora N, Trapani A, Lopedota A, Latrofa A, et al. Structure-activity relationships and effects on neuroactive steroid synthesis in a series of 2-phenylimidazo [1,2-a] pyridineacetamide peripheral benzodiazepine receptors ligands[J]. J Med Chem,2005,48(1):292-305.
    [4]Braestrup C, Albrechtsen R, Squires RF. High densities of benzodiazepine receptors in human cortical areas[J]. Nature,1977,269(5630):702-704.
    [5]Krueger KE, Papadopoulos V. Mitochondrial benzodiazepine receptors and theregulation of steroid biosynthesis[J]. Annu Rev Pharmacol Toxicol,1992,32: 211-237.
    [6]Lacapere JJ, PapadopoulosV. Peripheral-type benzodiazepine receptor:structure and function of a cholesterol binding protein in steroid and bile acid biosynthesis[J]. Steroids,2003,68(7-8):569-585.
    [7]Kondo D, Saegusa H, Yabe R, Takasaki I, Kurihara T, Zong S, et al. Peripheral-type benzodiazepine receptor antagonist is effective in relieving neuropathic pain in mice[J]. J pharmacol Sci,2009,110(1):55-63.
    [8]Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa):new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function[J]. Trends Pharmacol Sci,2006,27(8):402-409.
    [9]Lacapere JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor:structure and function of a cholesterol binding protein in steroid and bile acid biosynthesis[J]. Steroids,2003,68(7-8):569-585.
    [10]Azarashvili T, Krestinina O, Yurkov I, Evtodienko Y, Reiser G. High-affinity peripheral benzodiazepine receptor ligand, PK11195, regulates protein phosphorylation in rat brain mitochondria under control of Ca2+[J]. J Neurochem, 2005,94(4):1054-1062.
    [11]Hong SH, Choi HB, Kim SU, McLarnon JG. Mitochondrial ligand inhibits store-operated calcium influx and COX-2 production in human microglia[J]. J Neurosci Res,2006,83(7):1293-1298.
    [12]Wilms H, Claasen J, R6hl C, Sievers J, Deuschl G, Lucius R. Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro[J]. Neurobiol Dis,2003,14(3): 417-424.
    [13]Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Gamier M, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis[J]. Steroids,1997,62(1):21-28.
    [14]Lacor P, Gandolfo P, Tonon MC, et al. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration:a role for PBR in neurosteroidogenesis[J]. Brain Res,1999,815(1):70-80.
    [15]Michaluk L, Guidotti A, Krueger KE. Molecular characterization and mitochondrial density of a recognition site for peripheral-type benzodiazepine ligands[J]. Mol Pharmacol,1988,34(3):272-278.
    [16]Verma A, Nye JS, Snyder SH. Porphyrins are endogenous ligands for the mitochondrial (peripheraltype) benzodiazepine receptor[J]. Proc Natl Acad Sci USA,1987,84(8):2256-2260.
    [17]Kita A, Kohayakawa H, Kinoshita T, Ochi Y, Nakamichi K, Kurumiya S, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand[J]. Br J Pharmacol,2004,142(7):1059-1072.
    [18]Zhang LM, Zhao N, Guo WZ, Jin ZL, Qiu ZK, Chen HX, et al. Anidepressant-like and anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18kDa)[J]. Neuropharmacology,2013,22,pii: S0028-3908(13)00423-1.
    [19]Armario A. The hypothalamic-pituitary-adrenal axis:what can it tell us about stressors? [J]. CNS Neurol Disord Drug Targets,2006,5(5):485-501.
    [20]Kita A, Furukawa K. Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav,2008,89(2):171-178.
    [21]Casellas P, Galiegue S, Basile A S. Peripheral benzodiazepine receptors and mitochondrial function [J]. Neurochem Int,2002,40(6):475-486.
    [22]Chen MK, Guilarte, TR. Translocator protein 18 kDa (TSPO):molecular sensor of brain injury and repair[J]. Pharmacol Ther,2008,118 (1):1-17.
    [23]Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/-interaction amino acid sequence and consensus pattern[J]. Endocrinology,1998, 139(12):4991-4997.
    [24]Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor[J]. Mol Endocrinol,2005,19(3): 588-594.
    [25]Murail S, Robert JC, Coic YM, Neumann JM, Ostuni MA, Yao ZX, et al. Secondary and tertiary structures of the transmembrane domains of the translocator protein TSPO determined by NMR. Stabilization of the TSPO tertiary fold upon ligand binding[J]. Biochim Biophys Acta,2008,1778(6): 1375-1381.
    [26]Yehuda R, McFarlane A C, Psychother D. Conflict between current knowledge about posttraumatic stress disorder and its original conceptual basis[J]. Am J Psychiatry,1995,152(12):1705-1713.
    [27]Schutzwohl M, Maercker. Effects of varying diagnostic criteria for posttraumatic stress disorder are endorsing the concept of partial PTSD. Trauma Stress,1999, 12(1):155-165.
    [28]Bremner JD, Randall P. MRI-based measurement of hippocampus volume in patients with combat-related post traumatic stress disorder[J]. Am J Psychiatry, 1995,152:973-981.
    [29]Kessler RC, Berglund P, Demler O, et al. Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication[J]. Arch Gen Psychiat,2005,62(6):593-602.
    [30]Aemi A, Traber R. Low-dose cortisol for symptoms of post traumatic stress disorder[J]. Am J Psychiatry,2004,161(8):1488-1490.
    [31]Fareed A, Eilender P, Haber M, Bremner J, Whitfield N, Drexler K. Comorbid posttraumatic stress disorder and opiate addiction:a literature review[J]. J Addict Dis,2013,32(2):168-179.
    [32]Forneris CA, Gartlehner G, Brownley KA, Gaynes BN, Sonis J, Coker-Schwimmer E, et al. Interventions to prevent post-traumatic stress disorder:a systematic review[J]. Am J Prev Med,2013,44(6):635-650.
    [33]Feldner MT, Monson CM, Friedman MJ. A critical analysis of approaches to targeted PTSD prevention:current status and theoretically derived future directions[J]. Behav Modif,2007,31(1):80-116.
    [34]Bradley R, Greene J, Russ E. A multidimensional meta-analysis of psychotherapy for PTSD[J]. Am J Psychiatry,2005,162(2):214-227.
    [35]van Zuiden M, Geuze E, Willemen HL, Vermetten E, Maas M, Amarouchi K, et al. Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development:a prospective study [J]. Biol Psychiatry,2012, 15;71(4):309-316.
    [36]Shvil E, Rusch HL, Sullivan GM, Neria Y. Neural, psychophysiological, and behavioral markers of fear processing in PTSD:a review of the literature[J]. Curr Psychiatry Rep,2013,15(5):358.
    [37]Vermetten E, Vythilingam M, Southwick SM. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder[J]. Biol Psychiatry,2008,54(7):693-702.
    [38]Sofuoglu M, Rosenheck R, Petrakis I. Pharmacological treatment of comorbid PTSD and substance use disorder:recent progress[J]. Addict Behav,2014, 39(2):428-433.
    [39]Wozniak G, Toska A, Saridi M, Mouzas O. Serotonin reuptake inhibitor antidepressants (SSRIs) against atherosclerosis[J]. Med Sci Monit,2011, 17(9):RA205-214.
    [40]Rothbaum BO, Davidson JR, Stein DJ, Pedersen R, Musgnung J, Tian XW, et al. A pooled analysis of gender and trauma-type effects on responsiveness to treatment of PTSD with venlafaxine extended release or placebo[J]. Clin Psychiatry,2008,69(10):1529-1539.
    [41]Maldonado NM, Espejo PJ, Martijena ID, Molina VA. Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety:Influence of midazolam pretreatment[J]. Eur Neuropsychopharmacol,2014,24(2):262-270.
    [42]Li S, Murakami Y, Wang M, Maeda K, Matsumoto K. The effects of chronic valproate and diazepam in a mouse model of posttraumatic stress disorder[J]. Pharmacol Biochem Behav,2006,85(2):324-331.
    [43]Smith KS, Engin E, Meloni EG, Rudolph U. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice. Neuropharmacology,2012,63(2):250-258.
    [44]Pinna G, Costa E, Guidotti A. SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake[J]. Curr Opin Pharmacol,2009,9(1):24-30.
    [45]Pibiri F, Nelson M, Guidotti A, Costa E, Pinna G. Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear:A model relevant for posttraumatic stress disorder[J]. Proc Natl Acad Sci U S A, 2008,105(14):5567-5572.
    [46]Matsumoto K, Puia G, Dong E, Pinna G GABA(A) receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress:possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders[J]. Stress,2007,10(l):3-12.
    [47]Schule C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety[J]. Prog Neurobiol,2014,113:79-87.
    [48]Nothdurfter C, Baghai TC, Schule C, Rupprecht R. Translocator protein (18 kDa) (TSPO) as a therapeutic target for anxiety and neurologic disorders[J]. Eur Arch Psychiatry Clin Neurosci,2012,262 Suppl 2.S107-112.
    [49]Da Pozzo E, Costa B, Martini C. Translocator protein (TSPO) and neurosteroids: implications in psychiatric disorders[J]. Curr Mol Med,2012,12(4):426-442.
    [50]Costa B, Da Pozzo E, Martini C. Translocator protein as a promising target for novel anxiolytics[J]. Curr Top Med Chem 2012,12(4):270-285.
    [51]Fan J, Lindemann P, Feuilloley MG, Papadopoulos V. Structural and functional evolution of the translocator protein (18 kDa)[J]. Curr Mol Med,2012, 12(4):369-386.
    [52]Veenman L, Gavish M. The role of 18 kDa mitochondrial translocator protein (TSPO) in programmed cell death, and effects of steroids on TSPO expression[J]. Curr Mol Med,2012,12(4):398-412.
    [53]Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders:target for novel antidepressant or anxiolytic drugs?[J]. Neuroscience,2011,15,191:55-77.
    [54]Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V. Mitochondrial protein import and the genesis of steroidogenic mitochondria[J]. Mol Cell Endocrinol,2011,336(1-2):70-79.
    [55]Baisley SK, Cloninger CL, Bakshi VP. Fos expression following regimens of predator stress versus footshock that differentially affect prepulse inhibition in rats[J]. Physiol Behav,2011,104(5):796-803.
    [56]Siegmund A, Wotjak CT. A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear[J]. J Psychiatr Res,2007, 41(10):848-860.
    [57]Harvey BH, Naciti C, Brand L, Stein DJ. Endocrine, cognitive and hippocampal/cortical 5HT 1A/2A receptor changes evoked by a time-dependent sensitisation (TDS) stress model in rats[J]. Brain Res,2003,983(1-2):97-107.
    [58]Liberzon I, Krstov M, Young EA. Stress-restress:effects on ACTH and fast feedback[J]. Psychoneuroendocrinology,1997,22(6):443-453.
    [59]Faure J, Uys JD, Marais L, Stein DJ, Daniels WM. Early maternal separation alters the response to traumatization:resulting in increased levels of hippocampal neurotrophic factors[J]. Metab Brain Dis,2007,22(2):183-195.
    [60]Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD):evidence from an animal model[J]. Neuropsychiatr Dis Treat,2005,1(2):109-123.
    [61]Pamplona FA, Henes K, Micale V, Mauch CP, Takahashi RN, Wotjak CT. Prolonged fear incubation leads to generalized avoidance behavior in mice[J]. J Psychiatr Res,2011,45(3):354-360.
    [62]Pynoos RS, Ritzmann RF, Steinberg AM, Goenjian A, Prisecaru I. A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders[J]. Biol Psychiatry,1996,39(2):129-134.
    [63]Wang W, Liu Y, Zheng H, Wang HN, Jin X, Chen YC, et al. A modified single-prolonged stress model for post-traumatic stress disorder[J]. Neurosci Lett, 2008,441(2):237-441.
    [64]Olatunji BO, Ciesielski BG, Tolin DF. Fear and loathing:a meta-analytic review of the specificity of anger in PTSD[J]. Behav Ther 2010,41(1):93-105.
    [65]Teng EJ, Bailey SD, Chaison AD, Petersen NJ, Hamilton JD, Dunn NJ. Treating comorbid panic disorder in veterans with posttraumatic stress disorder[J]. J Consult Clin Psychol,2008,76(4):704-710.
    [66]van Minnen A, Hendriks L, Olff M. When do trauma experts choose exposure therapy for PTSD patients? A controlled study of therapist and patient factors[J]. Behav Res Ther,2010,48(4):312-320.
    [67]Hagenaars MA, van Minnen A, Hoogduin KA. Reliving and disorganization in posttraumatic stress disorder and panic disorder memories[J]. J Nerv Ment Dis, 2009,197(8):627-630.
    [68]Tiller J, Kyrios M, Bennett P. Post traumatic stress disorder [J]. Aust Fam Physician 1996,25(10):1569-1573.
    [69]Asmundson GJ, Bonin MF, Frombach IK, Norton GR. Evidence of a disposition toward fearfulness and vulnerability to posttraumatic stress in dysfunctional pain patients[J]. Behav ResTher,2000,38(8):801-812.
    [70]Zhang LM, Yao JZ, Li Y, Li K, Chen HX, Zhang YZ, et al. Anxiolytic effects of flavonoids in animal models of posttraumatic stress disorder[J]. Evid Based Complement Alternat Med,2012,2012:623753.
    [71]Ordian NE, Smolenskii IV, Pivina SG, Akulova VK. Distinctive features of the anxiety state development in experimental model of posttraumatic stress disorder in the prenatally stressed male rats[J]. Zh Vyssh Nerv Deiat Im I P Pavlova, 2013,63(2):280-289.
    [72]Zoellner LA, Pruitt LD, Farach FJ, Jun JJ. Understanding heterogeneity in ptsd: fear, dysphoria, and distress[J]. Depress Anxiety,2014,31(2):97-106.
    [73]Wang W, Liu Y, Zheng H, Wang HN, Jin X, Chen YC, et al. A modified single-prolonged stress model for post-traumatic stress disorder[J]. Neurosci Lett, 2008,441(2):237-241.
    [74]Wang HN, Peng Y, Tan QR, Wang HH, Chen YC, Zhang RG, et al. Free and Easy Wanderer Plus (FEWP), a polyherbal preparation, ameliorates PTSD-like behavior and cognitive impairments in stressed rats[J]. Prog Neuropsychopharmacol Biol Psychiatry,2009,33(8):1458-1463.
    [75]Costa B, Da Pozzo E, Chelli B, Simola N, Morelli M, Luisi M, et al. Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand:Stimulation of in vitro neurosteroid production affecting GABAA receptor activity[J]. Psychoneuroendocrinology,2011,36(4):463-472.
    [76]Da Settimo F, Simorini F, Taliani S, La Motta C, Marini AM, Salerno S, et al. Anxiolytic-like effects of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis[J]. Med Chem,2008,51(18):5798-5806.
    [77]Costa B, Pini S, Abelli M, Gabelloni P, Da Pozzo E, Chelli B, et al. Role of translocator protein (18 kDa) in adult separation anxiety and attachment style in patients with depression[J]. Curr Mol Med,2012,12(4):483-487.
    [78]Veenman L, Papadopoulos V, Gavish M. Channel-like functions of the 18-kDa translocator protein (TSPO):regulation of apoptosis and steroidogenesis as part of the host-defense response[J]. Curr Pharm Des,2007,13(23):2385-2405.
    [79]Agis-Balboa RC, Pinna G, Pibiri F, Kadriu B, Costa E, Guidotti A. Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice[J]. Proc Natl Acad Sci U S A,2007, 104(47):18736-18741.
    [80]Pinna G, Costa E, Guidotti A. Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids[J]. Proc Natl Acad Sci USA,2004,101(16):6222-6225.
    [81]Espallergues J, Mamiya T, Vallee M, Koseki T, Nabeshima T, Temsamani J, et al. The antidepressant-like effects of the 3β-hydroxysteroid dehydrogenase inhibitor trilostane in mice is related to changes in neuroactive steroid and monoamine levels[J]. Neuropharmacology,2012,62(1):492-502.
    [82]Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng W. A TSPO ligand is protective in a mouse model of multiple sclerosis[J]. EMBO Mol Med,2013,5(6):891-903.
    [83]Dell'Osso L, Da Pozzo E, Carmassi C, Trincavelli ML, Ciapparelli A, Martini C. Lifetime manic-hypomanic symptoms in post-traumatic stress disorder: relationship with the 18 kDa mitochondrial translocator protein density [J]. Psychiatry Res,2010,177(1-2):139-143.
    [84]Gavish M, Laor N, Bidder M, Fisher D, Fonia O, Muller U, et al. Altered platelet peripheral-type benzodiazepine receptor in posttraumatic stress disorder[J]. Neuropsychopharmacology,1996,14(3):181-186.
    [85]Pinna G. In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis[J]. Behav Pharmacol,2010, 21(5-6):438-450.
    [86]Nelson M, Pinna G. S-norfluoxetine microinfused into the basolateral amygdala increases allopregnanolone levels and reduces aggression in socially isolated mice[J]. Neuropharmacology,2011,60(7-8):1154-1159.
    [87]Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H. Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems[J]. Pharmacol Biochem Behav,2003,75(4):831-835.
    [88]Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V. Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis[J]. Endocrinology,2014,155(1):89-97.
    [89]Midzak A, Akula N, Lecanu L, Papadopoulos V. Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis[J]. J Biol Chem,2011,286(11):9875-9887.
    [90]Taliani S, Da Settimo F, Da Pozzo E, Chelli B, Martini C. Translocator protein ligands as promising therapeutic tools for anxiety disorders[J]. Curr Med Chem, 2009,16(26):3359-3380.
    [91]Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottschalk C, Charney D, et al. Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder[J]. Biol Psychiatry 2006,60(7):704-713.
    [92]Rasmusson AM, Vasek J, Lipschitz DS, Vojvoda D, Mustone ME, Shi Q, et al. An increased capacity for adrenal DHEA release is associated with decreased avoidance and negative mood symptoms in women with PTSD[J]. Neuropsychopharmacology,2004,29(8):1546-1557.
    [93]Antagonism of picrotoxin-induced changes in dopamine and serotonin metabolism by allopregnanolone and midazolam. Pharmacol Biochem Behav, 2002,72(4):987-991.
    [1]Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity[3H]diazepam binding[J]. Proc Natl Acad Sci U S A, 1977,74(9):3805-3809.
    [2]Braestrup C, Albrechtsen R, Squires RF. High densities of benzodiazepine receptors in human cortical areas[J]. Nature,1977,269(5630):702-704.
    [3]Zisterer DM, Williams DC. Peripheral-Type benzodiazepine receptors[J]. Gen Pharmacol,1997,29(3):305-314.
    [4]Krueger KE, Papadopoulos V. Mitochondrial benzodiazepine receptors and theregulation of steroid biosynthesis[J], Annu Rev Pharmacol Toxicol,1992,32: 211-237.
    [5]Trapani G, Laquintana V, Denora N, Trapani A, Lopedota A, Latrofa A, et al. Structure-activity relationships and effects on neuroactive steroid synthesis in a series of 2-phenylimidazo [1,2-a] pyridineacetamide peripheral benzodiazepine receptors ligands[J]. J Med Chem,2005,48(1):292-305.
    [6]Kondo D, Saegusa H, Yabe R, Takasaki I, Kurihara T, Zong S, et al. Peripheral-type benzodiazepine receptor antagonist is effective in relieving neuropathic pain in mice[J]. J pharmacol Sci,2009,110(1):55-63.
    [7]Lacapere JJ, PapadopoulosV. Peripheral-type benzodiazepine receptor:structure and function of a cholesterol binding protein in steroid and bile acid biosynthesis[J]. Steroids,2003,68(7-8):569-585.
    [8]Arlicot N, Katsifis A, Garreau L, Mattner F, Vergote J, Duval S, et al. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroninflammation in a rat model of microglial activation [J]. Eur J Nucl Med Mol Imaging,2008,35(12):2203-2211.
    [9]Girard C, Liu S, Cadepond F, Adams D, Lacroix C, Verleye M, et al. Etifoxine improves peripheral nerve regeneration and functional recovery [J]. Proc Natl Acad Sci USA,2008,105(51):20505-20510.
    [10]Da Settimo F, Simorini F, Taliani S, La Motta C, Marini AM, Salerno S, et al. Anxiolytic-like effects of N, N-dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis[J]. J Med Chem,2008,51(18):5798-5806.
    [11]Lacor P, Gandolfo P, Tonon MC, et al. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration:a role for PBR in neurosteroidogenesis[J]. Brain Res,1999,815(1):70-80.
    [12]Lacor P, Gandolfo P, Tonon MC, Brault E, Dalibert I, Schumacher M, et al. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration:a role for PBR in neurosteroidogenesis[J]. Brain Res,1999,815(1):70-80.
    [13]Michaluk L, Guidotti A, Krueger KE. Molecular characterization and mitochondrial density of a recognition site for peripheral-type benzodiazepine ligands[J]. Mol Pharmacol,1988,34(3):272-278.
    [14]Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa):new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function [J]. Trends Pharmacol Sci,2006,27(8):402-409.
    [15]Casellas P, Galiegue S, Basile A S. Peripheral benzodiazepine receptors and mitochondrial function [J]. Neurochem Int,2002,40(6):475-486.
    [16]Wilms H, Claasen J, Rohl C, Sievers J, Deuschl G, Lucius R. Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro[J]. Neurobiol Dis,2003,14(3): 417-424.
    [17]Murail S, Robert JC, Coic YM, Neumann JM, Ostuni MA, Yao ZX, et al. Secondary and tertiary structures of the trans membrane domains of the translocat or protein TSPO determined by NMR. Stabilization of the TSPO tertiary fold upon ligand binding[J]. Biochim Biophys Acta,2008,1778 (6): 1375-1381.
    [18]Lee DH, Kang SK, Lee RH, Ryu JM, Park HY, Choi HS, et al. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells[J]. J Cell Physiol,2004,198(1):91-99.
    [19]Lacapere JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor:structure and function of a cholesterol binding protein in steroid and bile acid biosynthesis[J]. Steroids,2003,68(7-8):569-585.
    [20]Azarashvili T, Krestinina O, Yurkov I, Evtodienko Y, Reiser G. High-affinity peripheral benzodiazepine receptor ligand, PK11195, regulates protein phosphorylation in rat brain mitochondria under control of Ca2+[J]. J Neurochem, 2005,94(4):1054-1062.
    [21]Hong SH, Choi HB, Kim SU, McLarnon JG. Mitochondrial ligand inhibits store-operated calcium influx and COX-2 production in human microglia[J]. J Neurosci Res,2006,83(7):1293-1298.
    [22]Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Gamier M, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis[J]. Steroids,1997,62(1):21-28.
    [23]Hardwick M, Fertikh D, Culty M, Li H, Vidic B, Papadopoulos V. Peripheral-type benzodiazepine receptor (PBR) in human breast cancencorrelation of breast cancer cell aggressive phenotype with PBR expression nuclear localization and PBR-mediated cell proliferation and nuclear transport of cholesterol [J]. Cancer Res,1999,59(4):831-842.
    [24]Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders[J]. Neuroscience,2006,138(3):749-756.
    [25]Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/ interaction amino acid sequence and consensus pattern[J]. Endocrinology,1998, 139(12):4991-4997.
    [26]Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor[J]. Mol Endocrinol,2005,19(3): 588-594.
    [27]Murail S, Robert JC, Coic YM, Neumann JM, Ostuni MA, Yao ZX, et al. Secondary and tertiary structures of the transmembrane domains of the translocator protein TSPO determined by NMR. Stabilization of the TSPO tertiary fold upon ligand binding[J]. Biochim Biophys Acta,2008,1778(6): 1375-1381.
    [28]Zhang Z, Chopp M, Powers C. Temporal profile of microglial response following transient (2h) middle cerebral artery occlusion[J]. Brain Res,1997, 744(2):189-198.
    [29]Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia:intrinsic immunoeffector cell of the brain[J]. Brain Res Brain Res Rev,1995,20:269-287.
    [30]Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease[J]. Int J Biochem Cell Biol,2005,32(2):289-305.
    [31]Lokensgard JR, Hu S, Hegg CC, Thayer SA, Gekker G, Peterson PK. Diazepam inhibits HIV-1 Tat-indued migration of human microglia[J]. J Neurovirol,2001, 17(5):481-486.
    [32]Karchewski, LA, Bloechlinger, Woolf CJ. Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons[J]. Eur J Neurosci,2004,20(3):671-683.
    [33]Chen MK, Guilarte TR. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination[J]. Toxicol Sci,2006,91(2):532-539.
    [34]Kuhlmann AC, Guilarte TR. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity[J]. J Neurochem,2000, 74(4):1694-1704.
    [35]Kuhlmann AC, Guilarte TR. The peripheral benzodiazepine receptor is a sensitive indicator of domoic acid neurotoxicity[J]. Brain Res,1997,751(2): 281-288.
    [36]Basile AS, Weissman BA, Skolnick P. Maximal electroshock increases the density of [3H] Ro5-4864 binding to mouse cerebral cortex[J]. Brain Res Bull, 1987,19(1):1-7.
    [37]Chen MK, Guilarte, TR. Translocator protein 18 kDa (TSPO):molecular sensor of brain injury and repair[J]. Pharmacol Ther,2008,118 (1):1-17.
    [38]Ryu JK, Choi HB, McLarnon JG.. Peripheral benzodiazepine receptor ligand PK 11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum[J]. Neurobiol Dis,2005,20(2):550-561.
    [39]Veiga S, Azcoitia I, Garcia-Segura LM. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity[J]. J Neurosci Res,2005,80(1):129-137.
    [40]Veiga S, Azcoitia I, Garcia-Segura LM. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity[J]. J Neurosci Res,2005,80(1):129-137.
    [41]Matsuoka Y, Picciano M, Malester B, LaFrancois J, Zehr C, Daeschner JM, et al. Inflammatory response to amyloidosis in a transgenic mouse model of Alzheimer's disease[J]. Am J Pathol,2001,158(4):1345-1354.
    [42]Verma A, Nye JS, Snyder SH. Porphyrins are endogenous ligands for the mitochondrial (peripheraltype) benzodiazepine receptor[J]. Proc Natl Acad Sci USA,1987,84(8):2256-2260.
    [43]Guidotti A, Toffano G, Costa E. An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain[J]. Nature,1978,275 (5680): 553-555.
    [44]do Rego JC, Orta MH, Leprince J, Tonon MC, Vaudry H, Costentin J.. Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide:evidence for an endozepinergic tone regulating food intake[J]. Neuropsychopharmacology,2007,32(7):1641-1648.
    [45]Veenman L, Levin E, Weisinger G, Leschiner S, Spanier I, Snyder SH, et al. Peripheral-type benzodiazepine receptor density and in vitri tumorigenicity of glioma cell lines[J]. Biochem Pharmacol,2004,68(4):689-698.
    [46]Ferzaz B, Brault E, Bourliaud G, et al. SSR180575 (7-chloro-N, N,5-trim-ethyl-4-oxo-3-phenl-3,5-dihydro-4H-pyridazino[4,5-b]indole-l-acetamide), a peripheral benzodiazepine receptor ligand, promotes neuronal survival and repair[J]. J Pharmacol Exp Ther,2002,301(3):1067-1078.
    [47]Ferzaz B, Brault E, Bourliaud G, Robert JP, Poughon G, Claustre Y, et al. The modulatory effects of the anxiolytic etifoxine on GABAa receptors are mediated by the beta subunit[J]. Neuropharmacology,2003,45(3):293-303.
    [48]Giatti S, Pesaresi M, Cavaletti G, Bianchi R, Carozzi V, Lombardi R, et al. Neuroprotective effects of a ligand of translocator protein-18 kDa (Ro5-4864) in experimental diabetic neuropathy [J]. Neuroscience,2009,164(2):520-529.
    [49]Soustiel JF, Zaaroor M, Vlodavsky E, Veenman L, Weizman A, Gavish M.. Neuroprotective effect of Ro5-4864 following brain injury[J]. Exp Neurol,2008, 214(2):201-208.
    [50]Kita A, Kohayakawa H, Kinoshita T, Ochi Y, Nakamichi K, Kurumiya S, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand[J]. Br J Pharmacol,2004,142(7):1059-1072.
    [51]Okuyama S, Chaki S, Yoshikawa R, Ogawa S, Suzuki Y, Okubo T, et al. Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA 1091 and DAA 1106[J]. Life Sci,1999,64(16):1455-1464.
    [52]Schlichter R, Rybalchenko V, Poisbeau P, Verleye M, Gillardin J. Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine[J]. Neuropharmacology,2000,39(9):1523-1535.
    [53]Kita A, Kinoshita T, Kohayakawa H, Furukawa K, Akaike A. Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand[J]. Prog Neuropsychopharmacol Biol Psychiatry,2009,33(6):1040-1045.
    [54]Parker, MA, Bazan, HE, Marcheselli V, et al. Platelet-activating factor induces permeability transition and cytochrome c release in isolated brain mitochondria[J]. J Neurosci Res,2002,69(1):39-50.
    [55]Obame FN, Zini R, Souktani R, el al. Peripheral benzodiazepine receptor-induced myocardial protection is mediated by inhibition of mitochondrial membrane permeabilization[J]. J Pharmacol Exp Ther,2007,323 (1):336-345.
    [56]Lah LH. The mitochondrial benzodiazepine receptor as a potential target protein for drug development:demonstration of functional significance with cell lines exhibiting differential expression of Bcl-2[J]. Toxicol Sci,2003,74(1):1-3.
    [57]Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor[J]. Mol Endocrinol,2005,19(3): 588-594.
    [58]Liu J, Rone MB, Papadopoulos V. Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis[J]. J Biol Chen, 2006,281(50):38879-38983.
    [59]Zheng, P. Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance[J]. Prog Neurobiol,2009,89(2): 134-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700