TiO_2基量子点敏化太阳能电池光电转换性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能以其取用不尽、绿色清洁的特点成为解决当前能源和环境问题的理想新能源。量子点敏化太阳能电池作为一种极具潜力的新型太阳能电池正处于高速发展阶段。本论文结合材料合成与器件制作,通过Ti02基量子点敏化太阳能电池光电转换性能研究,探讨影响电池性能的关键因素并在电池制作过程中进行有针对性的优化,旨在提高量子点敏化太阳能电池的光电转换效率,主要研究内容和结果在第3-5章中进行论述;另外,红外下转材料能够减小太阳光谱与太阳能电池光谱响应之间的失配,在提高硅晶太阳能电池效率方面具有良好的应用前景。基于此,我们探索了两种具备一定应用潜力的新型红外下转换材料,相关工作在第6章中作具体阐述。
     论文的第1章为绪论部分,主要介绍了本研究的相关背景知识。首先,综述了太阳能电池的发展现状;其次,着重探讨了量子点敏化太阳能电池的独特优势、工作原理、器件结构及其研究进展;最后,总结了量子点敏化太阳能电池面临的主要问题和可能的解决方案。
     在第2章中,详细介绍了量子点敏化太阳能电池的制作过程和表征手段。制作过程包括光阳极、电解液、对电极的制作以及“三明治”电池结构的组装,其中,光阳极的制作又涉及Ti02浆料、光阳极薄膜的制备以及量子点的合成。表征手段主要分为形貌和结构表征、光谱特性表征和电化学性能表征。
     在第3章中,研究了阳离子前驱液对连续离子层吸附与反应(SILAR)法制备CdS量子点敏化太阳能电池的影响。SILAR是一种常用的在氧化物多孔膜上原位沉积合成量子点的方法。研究发现,阳离子前驱液的选择对量子点在光阳极薄膜上的沉积情况乃至最终的太阳能电池性能存在重要影响。在CdS量子点制备过程中,与常用的Cd(NO3)2目比,采用Cd(CH3COO)2阳离子前驱液作为镉源时,量子点在Ti02薄膜上的沉积速率更快;且制作而成的量子点敏化太阳能电池效率更高(在SILAR敏化次数均为12,光电转换效率高达2.15%,比Cd(NO3)2作为镉源的情形高出约40%)。深入研究表明,阳离子前驱液pH值在很大程度上决定了量子点的沉积速率及其在光阳极薄膜上的沉积量;pH值越高,浸没其中的Ti02表面带负电荷越多,对前驱液中带正电荷的镉离子吸引驱动力越大,造成CdS沉积速率更快。另外,对于CdS量子点敏化Ti02薄膜,量子点负载量的增大会伴随CdS吸收边的红移,这种在多数文献中并未明确提及的反常红移现象在实验中被观测到。它拓展了光谱吸收和光电流响应范围,对量子点敏化太阳能电池光电转换效率的提升十分有利。该工作对于量子点制备过程中前驱液的选择和调制具有重要的指导意义,能够借以改善量子点在光阳极薄膜上的有效负载,提升量子点敏化太阳能电池性能。
     在第4章中,深入系统地研究了Ti02多孔微球在CdS/CdSe量子点共敏化太阳能电池中的应用。光阳极薄膜作为量子点敏化太阳能电池中十分关键的组成部分,其结构特征对电池性能具有直接影响。通过共沉淀与溶剂热相结合的方法合成了亚微米级锐钛矿相Ti02多孔球。这种多孔微球是由许多纳米级Ti02晶粒团聚在一起构成的,其所具备的优异光散射能力能够增强光阳极的光捕获,且巨大的比表面积可以保证量子点的充分负载。在溶剂热处理过程中添加不同量的氨水刻蚀处理能够调控多孔微球的比表面积、孔隙率和孔径尺寸,改善微球结构特征,显著提升量子点敏化太阳能电池性能。最终,基于Ti02多孔微球光阳极结构的CdS/CdSe量子点共敏化太阳能电池获得了4.05%的光电转换效率,证实所合成的多孔微球是一种理想的敏化太阳能电池光阳极薄膜材料。在此基础上,我们联合使用Ti02多孔微球与纳米颗粒,对光阳极结构作进一步优化设计。纳米颗粒对相邻多孔微球之间空隙的填充使光阳极薄膜的可利用比表面积最大化,同时改善了光阳极中的电荷传输。优化设计的Double-layer和Mixture结构尽可能地实现了对光阳极结构量子点负载量大、光散射能力强、电荷传输高效和电解液注入快速的要求。电化学性能测试表明,与简单的单层Ti02多孔微球和纳米颗粒薄膜相比,基于Double-layer和Mixture光阳极结构的量子点敏化太阳能电池性能得到进一步提升,光电转换效率分别达到4.33%和4.65%。该工作关于Ti02多孔微球在量子点敏化太阳能电池中应用的系统研究对光阳极结构优化具有重要的借鉴意义。
     在第5章中,基于金属硫化物窄带隙量子点(PbS和Ag2S),制作了较为高效稳定的可见至近红外波段光谱响应的量子点敏化太阳能电池。PbS、Ag2S等量子点通过尺寸调节能够轻易实现吸收波长向近红外区域的拓展,有望极大提升敏化太阳能电池的光电转换效率。电化学性能测试表明,PbS和Ag2S的良好光吸收对光生电流的增大贡献显著;而CdS量子点的协同作用能有效改善电池性能,不仅很好地解决了PbS、Ag2S在多硫电解液中稳定性差的问题,同时也明显增大了开路电压,提升了太阳能电池效率。特别地,利用Pb2+和Cd2+混合阳离子前驱液同时敏化所制备的高质量(Pb,Cd)S光电极能够获得高达2.66%的光电转换效率。可以预期,如果在后续工作中作进一步优化,必将获得更为高效的敏化太阳能电池,发挥出全光谱响应电池设计的巨大潜力。
     在第6章中,简要介绍了红外下转换材料的研究背景和研究进展,并在此基础上,重点报道了CaNb2O6:Yb3+和YNbO4:Bi3+,Yb3+两种新型红外下转换材料。采用高温固相法分别制备了不同Yb3+掺杂浓度的粉末样品。物相分析表明样品结晶性能良好,掺杂并未造成晶格结构的改变和破坏。利用激发光谱、发射光谱和发光衰减曲线细致地研究了材料的发光性质。光谱分析和寿命测量证实在这两种材料中分别存在由[NbO6]7-口Bi3+向Yb3+的能量传递,并用合作能量传递过程对其作了合理解释。也就是说,下转换材料能够将所吸收的一个高能紫外光子转换为两个低能近红外光子。CaNb2O6:Yb3+在紫外光区域250~300nm波段内存在基质的宽带吸收;而YNbO4:Bi3+,Yb3+更是因为Bi3+的引入将光吸收拓展至250~350nm,使得对太阳光的利用率更高。由于Yb3+的近红外发射正好与硅晶太阳能电池的峰值响应相匹配,这两种材料中的红外下转换现象在提高硅晶太阳能电池效率方面具有潜在的应用价值。然而,在高掺杂浓度下,材料中存在严重的浓度猝灭,这在很大程度上制约了下转换材料中的实际能量转换效率。例如,在Yb3+掺杂浓度为16%时,CaNb2O6:Yb3+和YNbO4:Bi3+,Yb3+中的理论量子效率分别为164%和147%;而在考虑yb3+的浓度猝灭效应后,量子效率分别下降为142%和120%。浓度猝灭效应的抑制对于红外下转换材料的实际应用至关重要。
Solar power is becoming an ideal choice to tackle the current energy crisis and environmental problems since it is an unfailing and green clean energy resource. As a new type of solar cell possessing great potential and broad prospects, quantum dot-sensitized solar cell (QDSC) is at a stage of rapid development. Based on the material synthesis and device fabrication, we studied the photovoltaic performance of TiO2based QDSCs in this thesis. The critical factors that affect the cell performance have been explored aiming to optimize the cell fabrication process and further improve the power conversion efficiency of QDSC. The main contents and results on QDSC are presented in Chapter3,4and5. In addition, near-infrared downconversion materials have good application prospects in boosting the efficiency of silicon solar cell by minimizing the spectrum mismatch between the solar spectrum and the response curve of silicon semiconductor. We developed two novel near-infrared downconversion materials which express potential application in silicon solar cell. The relevant work is discussed in Chapter6.
     Chapter1is the introduction to the study and primarily introduces the related research background and basic knowledge. Firstly, the solar cell development is summarized; Secondly, the unique advantages, working principle, device structure and development progress of QDSC are emphasized and reviewed, respectively; Thirdly, the critical problems that QDSC faced and the corresponding possible solutions are discussed.
     In Chapter2, the details of fabrication process and characterization methods for QDSC are given. The cell-making process mainly includes the preparation of photoanode, electrolyte and counter electrode, and the assembly of them into a typical "sandwich" cell structure. Moreover, the fabrication of photoanode involves the making of TiO2paste, photoanode film and quantum dot (QD). The characterization covers morphology and structure characterization, optical property characterization, and electrochemical performance characterization.
     In Chapter3, the influence of cationic precursors on CdS QDSC prepared by successive ionin layer adsorption and reaction (SILAR) has been carefully studied. It is well known that SILAR is the most extensively used method for in situ growth of QDs onto porous oxide films for QDSC application. The present work demonstrates that cationic precursors have noticeable influences on the assembly of QDs on photoanode films by SILAR, and furthermore the final QDSC performance. A careful comparison of two cationic precursors, cadmium nitrate (Cd(NO3)2) and cadmium acetate (Cd(CH3COO)2), for the preparation of CdS QDSCs by SILAR showed that, compared to the commonly used Cd(NO3)2, Cd(CH3COO)2provided a significantly higher deposition rate of CdS QDs on TiO2films. A QDSC fabricated using Cd(CH3COO)2as the Cd2+precursor exhibited a power conversion efficiency as high as2.15%, achieving nearly40%enhancement compared to that obtained using Cd(NO3)2, under the same number (i.e.,12) of SILAR cycles. Further studies revealed that the pH value of the precursor solution was likely to determine the deposition rate and, consequently, to affect the amount of QDs loaded on the photoanode film; a higher pH value made the TiO2surface more negatively charged for the film dipped in the precursor and, thus, led to a higher driving force for the adsorption of Cd2+ions and a higher QD deposition rate. In addition, an increased amount of QDs loaded on the TiO2film was found to be accompanied by an increasing degree of red shift of the absorption edge. Such an apparent anomalous red shift phenomenon, not explicitly mentioned in most of the literatures, was observed for CdS QD-deposied TiO2films in our study. It expanded the optical absorption and photocurrent spectra of QDSC and benefited the enhancement of the cell performance. The present work in this chapter will be of guiding significance to the selection of precursor for the prepation of QDs and the improvement of the cell performance through the effective loading of QDs on the photoanode films.
     In Chapter4, systematic and in-depth study on mesoporous TiO2beads for CdS/CdSe QDSC application has been carried out. The photoanode is a very important component of QDSC, and its structure feature directly impacts the cell performance. The submicrometer-sized anatase TiO2beads were prepared from a combined precipitation and solvothermal process. Such mesoporous beads consist of large amount of packed nano-sized TiO2nanocrystallites, and possess excellent light scattering ability to enhance the light harvesting and high surface area to ensure sufficient QD loading. The addition of different amount of ammonia during the solvothermal treatment process could adjust the surface area, porosity and pore size of the beads, and the optimization of the beads structure led to significant improvement of the cell performance. A power conversion efficiency up to4.05%was achieved for a CdS/CdSe QDSC based on the photoanode composed of TiO2mesoporous beads. Therefore, the as-prepared mesoporous TiO2beads were considered to be promising materials for photoanode films in sensitized solar cells. On the basis of the study on the beads, further effort has been made to optimize the photoanode configuration for QDSC through the combined use of mesoporous TiO2beads and nanoparticles. The incorporation of individually dispersed TiO2nanoparticles into the large voids between submicrometer-sized beads would maximize the accessible surface area for QD loading, and improve the charge transfer in the photoanode. The developed double-layer and mixture configurations tried to reach the requirements of high QD loading, strong light scattering, efficient electron transport and quick electrolyte diffusion for the photoanode. Photovoltaic characteristics revealed that the photoanodes of double-layer and mixture configurations really delivered further improvements in the cell performance (4.33%and4.65%), compared with the simple single-layer beads or photoanode films. The present work in this chapter has an important referential significance for the follow-up study on the photoanode configuration optimization.
     In Chapter5, efficient and stable QDSCs with broad spectral response covering the visible and near-infrared region have been developed based on the metal sulfide QDs with narrow bandgap (PbS and Ag2S). Based on the quantum size effect, the light absorption of PbS and Ag2S can be readily extended into near-infrared region, and the QDSC employing these kinds of QDs are hopefully to greatly boost the power conversion efficiency. Photovoltaic characteristics revealed that the strong and broad absorption of PbS and Ag2S contributed much to the photocurrent. The synergy effect of CdS QD vastly improved the power conversion efficiency and minimized the problem of unstable performance of PbS and Ag2S QDSCs with polysulfide electrolyte. Particularly, the high-quality (Pb,Cd)S photoanode prepared by the cationic precursor containing Pb2+and Cd2+delivered a power conversion efficiency up to2.66%. It is expected that the QDSC with better performance will be deveolped through further optimization of the cell-making process in succedent work based on the panchromatic sensitized solar cell design.
     In Chapter6, two novel near-infrared downconversion materials of CaNb2O6:Yb3+and YNbO4:Bi3+,Yb3+have been reported. Powder samples of two materials with different Yb3+doping concentration were prepared by high-temperature solid-state reaction. X-ray diffraction analyses showed that the samples presented good crystallization, and the introduction of doped ions didn't change or destroy the crystal structure. The luminescent properties of the materials were carefully studied through the measurements of excitation spectrum, emission spectrum and decay curve. Spectroscopic analysis and lifetime calculation revealed that there exists energy transfer from [NbO6]7-and Bi3+to Yb3+in CaNb2O6:Yb3+and YNbO4:Bi3+,Yb3+, respectively, and cooperative energy transfer was proposed to rationalize the downconversion process. That is, the downconversion material absorbs a high-energy UV photon and then converts it into two low-energy near-infrared photons. CaNb2O6:Yb3+exhibited broadband UV absorption of [NbO6]7-groups in the region of250~300nm; while YNbO4:Bi3+,Yb3+extended the absorption range to250~350nm due to the introduction of Bi3+ions and achieved a higher solar energy utilization rate. As the near-infrared emission (~1000nm) of Yb3+ion matches well with the response peak of silicon solar cell, the two downconversion materials present potential application in boosting the power conversion efficiency of silicon solar cell. However, concentration quenching is a serious existing problem in downconversion materials and largely restricts the actual energy conversion efficiency, especially at high Yb3+doping concentration. For instance, at the doping concentration of16%, CaNb2O6:Yb3+and YNbO4:Bi3+,Yb3+exhibited theoretical quantum efficiencies of164%and147%, respectively, and the values dropped to142%and120%after taking the concentration quenching of Yb3+into account. The inbibition of concentration quenching is of great importance for practical application of near-infrared downconversion materials in silicon solar cell.
引文
[1]M. Gr(a|")tzel, Nature 414 (2001) 338-344.
    [2]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovolt:Res. Appl. 20 (2012) 12-20.
    [3]A. Marti, G. L. Araujo, Sol. Energy Mater. Sol. Cells 43 (1996) 203-222.
    [4]B. Oregan, M. Gratzel, Nature 353 (1991) 737-740.
    [5]A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science 334 (2011) 629-634.
    [6]R. T. Ross, A. J. Nozik, J. Appl. Phys.53 (1982) 3813-3818.
    [7]A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Langmuir 14 (1998) 3153-3156.
    [8]A. J. Nozik, Physica E 14 (2002) 115-120.
    [9]B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. F. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, ACS Nano 2 (2008) 2206-2212.
    [10]D. J. Norris, M. G. Bawendi, Phys. Rev. B 53 (1996) 16338-16346.
    [11]R. D. Schaller, M. Sykora, J. M. Pietryga, V. I. Klimov, Nano Lett.6 (2006) 424-429.
    [12]A. J. Nozik, Chem. Phys. Lett.457 (2008) 3-11.
    [13]R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, A. L. Efros, Nano Lett.5 (2005) 865-871.
    [14]J. B. Sambur, T. Novet, B. A. Parkinson, Science 330 (2010) 63-66.
    [15]O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. B. Gao, A. J. Nozik, M. C. Beard, Science 334 (2011) 1530-1533.
    [16]P. V. Kamat, J. Phys. Chem. C 112 (2008) 18737-18753.
    [17]The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral.85 (2000) 543-556.
    [18]R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem.98 (1994) 3183-3188.
    [19]H. P. Shen, X. J. Jiao, D. Oron, J. B. Li, H. Lin, J. Power Sources 240 (2013) 8-13.
    [20]P. K. Santra, P. V. Kamat, J. Am. Chem. Soc.134 (2012) 2508-2511.
    [21]Z. X. Pan, K. Zhao, J. Wang, H. Zhang, Y. Y. Feng, X. H. Zhong, ACS Nano 7 (2013) 5215-5222.
    [22]J. J. Tian, R. Gao, Q. F. Zhang, S. G Zhang, Y. W. Li, J. L. Lan, X. H. Qu, G. Z. Cao, J. Phys. Chem. C 116(2012) 18655-18662.
    [23]M. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews, Q. Wang, J. Mater. Chem.22 (2012) 16235-16242.
    [24]W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc.130 (2008) 1124-1125.
    [25]J. H. Bang, P. V. Kamat, Adv. Funct. Mater.20 (2010) 1970-1976.
    [26]Q. X. Zhang, G. P. Chen, Y. Y. Yang, X. Shen, Y. D. Zhang, C. H. Li, R. C. Yu, Y. H. Luo, D. M. Li, Q. B. Meng, Phys. Chem. Chem. Phys.14 (2012) 6479-6486.
    [27]I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res.42 (2009) 1848-1857.
    [28]J. Zhang, C. C Tang, J. H. Bang, Electrochem. Commun.12 (2010) 1124-1128.
    [29]G. Zhu, L. K. Pan, T. Xu, Q. F. Zhao, Z. Sun, J. Alloys Compd.509 (2011) 7814-7818.
    [30]J. J. Tian, Q. F. Zhang, E. Uchaker, R. Gao, X. H. Qu, S. G. Zhang, G. Z. Cao, Energy Environ. Sci.6 (2013) 3542-3547.
    [31]Y. Tachibana, K. Umekita, Y. Otsuka, S. Kuwabata, J. Phys. D:Appl.Phys.41 (2008) 102002.
    [32]J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D. R. Jung, B. Park, J. Power Sources 196(2011)10526-10531.
    [33]G. Zhu, F. F. Su, T. Lv, L. K. Pan, Z. Sun, Nanoscale Res. Lett.5 (2010) 1749-1754.
    [34]H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G Park, Adv. Mater.20 (2008) 195-199.
    [35]Y. Z. Zheng, T. Xia, Q. Hou, D. T. Wang, W. L. Zhou, J. F. Chen, Chem. Mater.22 (2010) 928-934.
    [36]Y. C. Park, E. H Kong, Y. J. Chang, B. G. Kum, H. M. Jang, Electrochim. Acta 56 (2011) 7371-7376.
    [37]Q. X. Zhang, X. Z. Guo, X. M. Huang, S. Q. Huang, D. M. Li, Y. H. Luo, Q. Shen, T. Toyoda, Q. B. Meng, Phys. Chem. Chem. Phys.13 (2011) 4659-4667.
    [38]A. Henglein, Chem. Rev.89 (1989) 1861-1873.
    [39]P. Alivisatos, J. Phys. Chem.100 (1996) 13226-13239.
    [40]P. V. Kamat, Chem. Rev.93 (1993) 267-300.
    [41]C. H. Chang, Y. L. Lee, Appl. Phys. Lett.91 (2007) 053503.
    [42]A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, J. Am. Chem. Soc.130 (2008) 4007-4015.
    [43]M. Samadpour, A. Irajizad, N. Taghavinia, M. Molaei, J. Phys. D:Appl. Phys.44 (2011) 045103.
    [44]Z. S. Yang, H. T. Chang, Sol. Energy Mater. Sol. Cells 94 (2010) 2046-2051.
    [45]A. Braga, S. Gimenez, I. Concina, A. Vomiero, I. Mora-Sero, J. Phys. Chem. Lett.2 (2011) 454-460.
    [46]C. J. Raj, S. N. Karthick, S. Park, K. V. Hemalatha, S. K. Kim, K. Prabakar, H. J. Kim, J. Power Sources 248 (2014) 439-446.
    [47]J. J. Wu, R. C. Chang, D. W. Chen, C. T. Wu, Nanoscale 4 (2012) 1368-1372.
    [48]I. Hwang, K. Yong, ChemPhysChem 14 (2013) 364-368.
    [49]A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources 196 (2011) 6603-6608.
    [50]L. M. Peter, K. G. U. Wijayantha, D. J. Riley, J. P. Waggett, J. Phys. Chem. B 107 (2003) 8378-8381.
    [51]P. R. Yu, K. Zhu, A. G Norman, S. Ferrere, A. J. Frank, A. J. Nozik, J. Phys. Chem. B 110 (2006)25451-25454.
    [52]T. L. Li, H. Teng, J. Mater. Chem.20 (2010) 3656-3664.
    [53]T. L. Li, Y. L. Lee,H. Teng, Energy Environ. Sci.5 (2012) 5315-5324.
    [54]Y. L. Lee, Y. S. Lo, Adv. Funct.Mater.19 (2009) 604-609.
    [55]Z. Yang, Q. F. Zhang, J. T. Xi, K. Park, X. L. Xu, Z. Q. Liang, G. Z. Cao, Sci. Adv. Mater.4 (2012) 1013-1017.
    [56]J. J. Tian, Q. F. Zhang, L. L. Zhang, R. Gao, L. F. Shen, S. G Zhang, X. H. Qu, G Z. Cao, Nanoscale 5 (2013) 936-943.
    [57]J. J. Tian, Q. F. Zhang, E. Uchaker, Z. Q. Liang, R. Gao, X. H. Qu, S. G Zhang, G. Z. Cao, J. Mater. Chem. A 1 (2013) 6770-6775.
    [58]T. Shu, Z. Zhou, H. Wang, G Liu, P. Xiang, Y. Rong, H. Han, Y. Zhao, J. Mater. Chem.22 (2012) 10525-10529.
    [59]P. K. Santra, P. V. Kamat, J. Am. Chem. Soc.135 (2013) 877-885.
    [60]B. I. MacDonald, A. Martucci, S. Rubanov, S. E. Watkins, P. Mulvaney, J. J. Jasieniak, ACS Nano 6 (2012) 5995-6004.
    [61]S. Buhbut, S. Itzhakov, E. Tauber, M. Shalom, I. Hod, T. Geiger, Y. Garini, D. Oron, A. Zaban, ACS Nano 4 (2010) 1293-1298.
    [62]I. Mora-Sero, T. Dittrich, A. S. Susha, A. L. Rogach, J. Bisquert, Thin Solid Films 516 (2008) 6994-6998.
    [63]M. Shalom, J. Albero, Z. Tachan, E. Martinez-Ferrero, A. Zaban, E. Palomares, J. Phys. Chem. Lett.1 (2010) 1134-1138.
    [64]J. Tang, E. H. Sargent, Adv. Mater.23 (2011) 12-29.
    [65]N. Guijarro, J. M. Campina, Q. Shen, T. Toyoda, T. Lana-Villarreal, R. G6mez, Phys. Chem. Chem. Phys.13 (2011) 12024-12032.
    [66]M. Shalom, S. Dor, S. R(u|")hle, L. Grinis, A. Zaban, J. Phys. Chem. C 113 (2009) 3895-3898.
    [67]S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev.107 (2007) 1324-1338.
    [68]P. Brown, P. V. Kamat, J. Am. Chem. Soc.130 (2008) 8890-8891.
    [69]O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Riihle, D. Cahen, G. Hodes, J. Photochem. Photobiol. A-Chem.181 (2006) 306-313.
    [70]X. M. Huang, S. Q. Huang, Q. X. Zhang, X. Z. Guo, D. M. Li, Y. H. Luo, Q. Shen, T. Toyoda, Q. B. Meng, Chem. Commun.47 (2011) 2664-2666.
    [71]M. Samadpour, S. Gimenez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. zad, T. Toyoda, H. Miguez, I. Mora-Sero, Electrochim. Acta 75 (2012) 139-147.
    [72]P. V. Kamat, Acc. Chem. Res.45 (2012) 1906-1915.
    [73]N. Guijarro, Q. Shen, S. Gimenez, I. Mora-Sero, J. Bisquert, T. Lana-Villarreal, T. Toyoda, R. G6mez, J. Phys. Chem. C 114 (2010) 22352-22360.
    [74]I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, J. Bisquert, Nanotechnology 19 (2008) 424007.
    [75]S. Gimenez, T. Lana-Villarreal, R. Gomez, S. Agouram, V. Munoz-Sanjose, I. Mora-Sero, J. Appl. Phys.108 (2010) 064310.
    [76]Y. L. Lee, B. M. Huang, H. T. Chien, Chem. Mater.20 (2008) 6903-6905.
    [77]X. Y. Yu, B. X. Lei, D. B. Kuang, C. Y. Su, Chem. Sci.2 (2011) 1396-1400.
    [78]G. Zhu, T. Lv, L. K. Pan, Z. Sun, C. Q. Sun, J. Alloys Compd.509 (2011) 362-365.
    [79]Y. H. Lee, S. H. Im, J. H. Rhee, J. H. Lee, S. I. Seok, ACS, Appl. Mater. Interface 2 (2010) 1648-1652.
    [80]A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, ACS Nano 4 (2010) 5962-5968.
    [81]J. Chen, W. Lei, C. Li, Y. Zhang, Y. P. Cui, B. P. Wang, W. Q. Deng, Phys. Chem. Chem. Phys.13 (2011) 13182-13184.
    [82]G. Hodes, J. Manassen, D. Cahen, J. Electrochem. Soc.127 (1980) 544-549.
    [83]付存,李陈欢,郑保战,袁红雁,化学研究与应用23(2011)1094-1098.
    [84]X. Q. Xu, G. Xu, Scientia Sinica Chimica 41 (2011) 37-43.
    [85]L. Li, X. C. Yang, J. J. Gao, H. N. Tian, J. Z. Zhao, A. Hagfeldt, L. C. Sun, J. Am. Chem. Soc. 133(2011)8458-8460.
    [86]Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, Chem. Lett.36 (2007) 88-89.
    [87]H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gratzel, M. K. Nazeeruddin, Langmuir 25 (2009) 7602-7608.
    [88]H. J. Lee, M. K. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, Nano Lett.9 (2009) 4221-4227.
    [89]郭旭东,马蓓蓓,王立铎,高瑞,董豪鹏,邱勇,物理化学学报29(2013)1240-1246.
    [90]Z. X.Yu, Q. X. Zhang, D. Qin, Y. H.Luo, D. M. Li, Q. Shen, Q. B. Meng, Electrochem. Commun.12 (2010) 1776-1779.
    [91]J. Qian, Q. S. Liu, G. Li, K. J. Jiang, L. M. Yang, Y. L. Song, Chem. Commun.47 (2011) 6461-6463.
    [92]H. Lee, H. C. Leventis, S. J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. N(u|")esch, T. Geiger, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeerruddin, Adv. Funct. Mater.19 (2009) 2735-2742.
    [93]Z. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, Chem. Commun.46 (2010) 5485-5487.
    [94]Z. Tachan, M. Shalom, I. Hod, S. Riihle, S. Tirosh, A. Zaban, J. Phys. Chem. C 115 (2011) 6162-6166.
    [95]J. H. Dong, S. P. Jia, J. Z. Chen, B. Li, J. F. Zheng, J. H. Zhao,Z. J. Wang,Z. P. Zhu, J. Mater. Chem.22 (2012) 9745-9750.
    [96]G S. Paul, J. H. Kim, M. S. Kim, K. Do, J. Ko, J. S. Yu, ACS Appl. Mater. Interfaces 4 (2012) 375-381.
    [97]M. H. Deng, Q. X. Zhang, S. Q. Huang, D. M. Li, Y. H. Luo, Q. Shen, T. Toyoda, Q. B. Meng, Nanoscale Res. Lett.5 (2010) 986-990.
    [98]史继富,樊晔,徐雪青,徐刚,陈丽华,物理化学学报28(2012)857-864.
    [99]J. Kim, H. Choi, C. Nahm, C. Kim, J. I. Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H. H. Park, B. Park, Appl. Phys. Lett.102 (2013) 183901.
    [100]N. Zhou,Y. Y. Yang, X. M. Huang, H. J. Wu,Y H. Luo, D. M. Li, Q. B. Meng, ChemSusChem 6 (2013) 687-692.
    [101]G Hodes, J. Manassen, Sol. Energy Mater.4 (1981) 373-381.
    [102]Y. Y. Yang, L. F. Zhu, H. C. Sun, X. M. Huang, Y. H. Luo, D. M. Li, Q. B. Meng, ACS Appl. Mater. Interfaces 4 (2012) 6162-6168.
    [103]J. G. Radich, R. Dwyer, P. V. Kamat, J. Phys. Chem. Lett.2 (2011) 2453-2460.
    [1]J. J. Tian, R. Gao, Q. F. Zhang, S. G. Zhang, Y. W. Li, J. L. Lan, X. H. Qu, G. Z. Cao, J. Phys. Chem. C 116 (2012) 18655-18662.
    [2]Z. Yang, Q. F. Zhang, J. T. Xi, K. Park, X. L. Xu, Z. Q. Liang, G. Z. Cao, Sci. Adv. Mater.4 (2012) 1-5.
    [3]C. H. Chang, Y. L. Lee, Appl. Phys. Lett.91 (2007) 053503.
    [4]S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang, Appl. Phys. Lett.90 (2007) 143517.
    [5]W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc.130 (2008) 1124-1125.
    [6]J. Kim, H. Choi, C. Nahm, J. Moon, C. Kim, S. Nam, D. R. Jung, B. Park, J. Power Sources 196(2011)10526-10531.
    [7]Y. L. Lee, Y. S. Lo, Adv. Funct. Mater.19 (2009) 604-609.
    [8]Y. Tak, S. J. Hong, J. S. Lee, K. Yong, J. Mater. Chem.19 (2009) 5945-5951.
    [9]S. W. Jung, J. H. Kim, H. Kim, C. J. Choi, K. S. Ahn, J. Appl. Phys.110 (2011) 044313.
    [10]H. Lee, M. K. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeeruddin, Nano Lett.9 (2009) 4221-4227.
    [11]O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, G. Hodes, J. Photochem. Photobiol. A 181 (2006)306-313.
    [12]I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, J. Am. Chem. Soc.128 (2006) 2385-2393.
    [13]D. J. Norris, K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, E. S. Aydil, Nano Lett.7 (2007) 1793-1798.
    [14]S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda, J. Bisquert, Nanotechnology 20 (2009) 295204.
    [15]P. K. Santra, P. V. Kamat, J. Am. Chem. Soc.134 (2012) 2508-2511.
    [16]M. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews, Q. Wang, J. Mater. Chem.22 (2012) 16235-16242.
    [17]V. Gonzalez-Pedro, C. Sima, G. Marzari, P. P. Boix, S. Gimenez, Q. Shen, T. Dittrich, I. Mora-Sero, Phys. Chem. Chem. Phys.15 (2013) 13835-13843.
    [18]M. S. de la Fuente, R. S. Sanchez, V. Gonzalez-Pedro, P. P. Boix, S. G. Mhaisalkar, M. E. Rincon, J. Bisquert, I. Mora-Sero, J. Phys. Chem. Lett.4 (2013) 1519-1525.
    [19]E. Rabinovich, G. Hodes, J. Phys. Chem. C 117 (2013) 1611-1620.
    [20]H. Tong, N. Umezawa, J. Ye, T. Ohno, Energy Environ. Sci.4 (2011) 1684-1689.
    [21]D. R. Baker, P. V. Kamat, Adv. Funct. Mater.19 (2009) 805-811.
    [22]R. Gao, L. Wang, Y. Geng, B. Ma, Y. Zhu, H. Dong, Y. Qiu, J. Phys. Chem. C 115 (2011) 17986-17992.
    [23]R. Vogel, K. Pohl, H. Weller, Chem. Phys. Lett.174 (1990) 241-246.
    [24]P. Ardalan, T. P. Brennan, H. B. R. Lee, J. R. Bakke, I. K. Ding, M. D. McGehee, S. F. Bent, ACS Nano 5 (2011) 1495-1504.
    [25]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. GrStzel, J. Am. Ceram. Soc.80 (1997) 3157-3171.
    [26]T. P. Chou, Q. F. Zhang, B. Russo, G. E. Fryxell, G. Z. Cao, J. Phys. Chem. C 111 (2007) 6296-6302.
    [27]S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang, Appl. Phys. Lett.90 (2007) 143517.
    [28]Q. X. Zhang, Y. D. Zhang, S. Q. Huang, X. M. Huang, Y. H. Luo, Q. B. Meng, D. M. Li, Electrochem. Commun.12 (2010) 327-330.
    [29]K. R. Gopidas, M. Bohorquez, P. V. Kamat, J. Phys. Chem.94 (1990) 6435-6440.
    [30]G. Zhu, L. K. Pan, T. Xu, Z. Sun, ACS Appl. Mater. Interfaces 3 (2011) 1472-1478.
    [31]L. Li, H. Qian, J. Ren, Chem. Commun.4 (2005) 528-530.
    [32]L. J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, Appl. Phys. Lett.91 (2007) 023116.
    [33]W. W. Gartner, Phys. Rev.116 (1959) 84-87.
    [34]M. Seol, H. Kim, Y. Tak, K. Yong, Chem. Commun.46 (2010) 5521-5523.
    [35]M. Kosmulski, Surface Charging and Points of Zero Charge, CRC Press, Boca Raton, FL, 2009.
    [36]W. Stumm, J. J. Morgan, Aquatic Chemistry, Wiley-Interscience, New York,1996.
    [37]K. Suttiponparnit, J. K. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Nanoscale Res. Lett.6 (2011) 27.
    [38]J. K. Jiang, G. Oberdorster, P. Biswas, J. Nanopart. Res.11 (2009) 77-89.
    [39]M. Kosmulski, J. Colloid Interface Sci.337 (2009) 439-448.
    [40]M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Phys. Chem. Chem. Phys.4 (2004) 865-870.
    [41]J. A. Davis, R. O. James, J. O. Leckie, J. Colloid Interface Sci.63 (1978) 480-499.
    [42]J. C. Liu, C. P. Huang, Langmuir 8 (1992) 1851-1856.
    [43]E. Matijevic, D. M. Wilhelmy, J. Colloid Interface Sci.86 (1982) 476-484.
    [1]M. Gratzel, Inorg. Chem.44 (2005) 6841-6851.
    [2]Q. F. Zhang, K. Park, J. T. Xi, D. Myers, G. Z. Cao, Adv. Energy Mater.1 (2011) 988-1001.
    [3]J. J. Tian, Q. F. Zhang, E. Uchaker, Z. Q. Liang, R. Gao, X. H. Qu, S. G. Zhang, G. Z. Cao, J. Mater. Chem. A1 (2013) 6770-6775.
    [4]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater.4 (2005) 455-459.
    [5]M. Paulose, K. Shankar, O. K. Varghese, G K. Mor, C. A. Grimes, J. Phys. D:Appl. Phys.39 (2006) 2498-2503.
    [6]P. K. Santra, P. V. Kamat, J. Am. Chem. Soc.134 (2012) 2508-2511.
    [7]Y. L. Lee, Y. S. Lo, Adv. Funct. Mater.19 (2009) 604-609.
    [8]B. Oregan, M. Gratzel, Nature 353 (1991) 737-740.
    [9]A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science 334 (2011) 629-634.
    [10]S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, M. Gratzel, Prog. Photovoltaics 15 (2007) 603-612.
    [11]H. C. van de Hulst, Light Scattering by Small Particles, Wiley, New York,1957.
    [12]P. E. Wolf, G Maret, Phys. Rev. Lett.55 (1985) 2696-2699.
    [13]A. Usami, Chem. Phys. Lett.277 (1997) 105-108.
    [14]J. Ferber, J. Luther, Sol. Energy Mater. Sol. Cells 54 (1998) 265-275.
    [15]G. Rothenberger, P. Comte, M. Gratzel, Sol. Energy Mater. Sol. Cells 58 (1999) 321-336.
    [16]Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G Z. Cao, Angew. Chem.120 (2008) 2436-2440.
    [17]Q. F. Zhang, T. R. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Adv. Funct. Mater.18 (2008) 1654-1660.
    [18]D. H. Chen, F. Z. Huang, Y. B. Cheng, R. A. Caruso, Adv. Mater.21 (2009) 2206-2210.
    [19]F. Z. Huang, D. H. Chen, X. L. Zhang, R. A. Caruso, Y. B. Cheng, Adv. Funct. Mater.20 (2010) 1301-1305.
    [20]J. T. Xi, Q. F. Zhang, K. Park, Y. M. Sun, G. Z. Cao, Electrochim. Acta 56 (2011) 1960-1966.
    [21]T. Shu, P. Xiang, Z. M. Zhou, H. Wang, G. H. Liu, H. W. Han, Y. D. Zhao, Electrochim. Acta 68(2012)166-171.
    [22]Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev.248 (2004) 1381-1389.
    [23]S. Ito, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Pechy, P. Comte, M. Gratzel, T. Mizuno, A. Tanaka, T. Koyanagi, Int. J. Photoenergy 2009 (2009) 517609.
    [24]S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, M. Gratzel, Thin Solid Films 516 (2008) 4613-4619.
    [25]Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B 110 (2006) 25210-25221.
    [26]S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Sol. Energy Mater. Sol. Cells 90 (2006) 1176-1188.
    [27]D. H. Chen, L. Cao, F. Z. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, J. Am. Chem. Soc.132 (2010) 4438-4444.
    [28]B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, New York,2nd edn,1978, p.281.
    [29]S. Lowell, J. E. Shields M. A. Thomas, M. Thommes, Characterization of Porous Solids and Powders:Surface Area, Pore Size and Density, Kluwer, London,2004.
    [30]J. J. Tian, Q. F. Zhang, L. L. Zhang, R. Gao, L. F. Shen, S. G. Zhang, X. H. Qu, G Z. Cao, Nanoscale 5 (2013) 936-943.
    [31]Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, J. Appl. Phys.103 (2008) 084304.
    [32]L. W. Chong, H. T. Chien, Y. L. Lee, J. Power Sources 195 (2010) 5109-511.
    [33]N. Koide, A. Islam, Y. Chiba, L. Y. Han, J. Photochem. Photobiol. A 182 (2006) 296-305.
    [34]K. Lee, S.W. Park, M.J. Ko, K. Kim, N. G Park, Nat. Mater.8 (2009) 665-671.
    [35]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47 (2002) 4213-4225.
    [36]J. V. D. Lagemaat, N. G. Park, A. J. Frank, J. Phys. Chem. B 104 (2000) 2044-2052.
    [37]J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gimenez, J. Phys. Chem. C 113 (2009) 17278-17290.
    [38]Q. Wang, J. E. Moser, M. Gr(a|")tzel, J. Phys. Chem. B 109 (2005) 14945-14953.
    [39]M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 110 (2006) 13872-13880.
    [40]Y. J. Kim, M. H. Lee, H. J. Kim, G Lim, Y. S. Choi, N. G Park, K. Kim, W. I. Lee, Adv. Mater.21 (2009) 3668-3673.
    [41]I. G Yu, Y. J. Kim, H. J. Kim, C. Lee, W. I. Lee, J. Mater. Chem.21 (2011) 532-538.
    [1]Y. L. Lee, Y. S. Lo, Adv. Funct. Mater.19 (2009) 604-609.
    [2]P. K. Santra, P. V. Kamat, J. Am. Chem. Soc.134 (2012) 2508-2511.
    [3]A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science 334 (2011) 629-634.
    [4]N. Zhao,L. Qi, Adv. Mater.18 (2006) 359-362.
    [5]J. B. Sambur, T. Novet, B. A. Parkinson, Science 330 (2010) 63-66.
    [6]R. D. Schaller, M. Sykora, J. M. Pietryga, V. I. Klimov, Nano Lett.6 (2006) 424-429.
    [7]N. Zhou, G. P. Chen, X. L. Zhang, L. Y. Cheng, Y. H. Luo, D. M. Li, Q. B. Meng, Electrochem. Commun.20 (2012) 97-100.
    [8]L. Tao, Y. Xiong, H. Liu, W. Z. Shen, Nanoscale 6 (2014) 931-938.
    [9]H. Lee, H. C. Leventis, S. J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Niiesch, T. Geiger, S. M. Zakeeruddin, M. Gratzel, M. K. Nazeerruddin, Adv. Funct. Mater.19 (2009) 2735-2742.
    [10]J. W. Lee, D. Y. Son, T. K. Ahn, H. W. Shin, I. Y. Kim, S. J. Hwang, M. J. Ko, S. Sul, H. Han, N. G Park, Scientific Reports 3 (2013) 1050.
    [11]A. Braga, S. Gimenez, I. Concina, A. Vomiero, I. Mora-Sero, J. Phys. Chem. Lett.2 (2011) 454-460.
    [12]B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. Sun, H. D. Abrufia, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, ACS Nano 2 (2008) 2206-2212.
    [13]S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, L. Jiang, J. Mater. Chem.12 (2002) 1459-1464.
    [14]R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem.98 (1994) 3183-3188.
    [15]M. J. Fernee, A. Watt, J. Warner, S. Cooper, N. Heckenberg, H. Rubinsztein-Dunlop, Nanotechnology 14 (2003) 991-997.
    [16]A. N. Rodriguez, M. T. S. Nair, P. K. Nair, Semicond. Sci. Technol.20 (2005) 576-585.
    [17]A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G J. Wang, Electrochem. Commun.12 (2010) 1158-1160.
    [18]H. W. Hu, J. N. Ding, S. Zhang, Y. Li, L. Bai, N. Y. Yuan, Nanoscale Res. Lett.8 (2013) 10.
    [19]C. Chen, Y. Xie, G Ali, S. H. Yoo, S. O. Cho, Nanoscale Res. Lett.6 (2011) 462.
    [20]G. Q Ji, Z. Q. Liu, D. B. Guan, Y. T. Yang, Appl. Surf. Sci.282 (2013) 695-699.
    [21]A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Langmuir 14 (1998) 3153-3156.
    [22]P. R. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, A. J. Nozik, J. Phys. Chem. B 110 (2006)25451-25454.
    [23]F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, Sol. Energy Mater. Sol. Cells 90 (2006) 2952-2959.
    [24]G. Larramona, C. Chone, A. Jacob, D. Sakakura, B. Delatouche, D. Pere, X. Cieren, M.
    Nagino, R. Bay6n, Chem. Mater.18 (2006) 1688-1696.
    [25]V. Gonzalez-Pedro, X. Q. Xu, I. Mora-Sero, J. Bisquert, ACS Nano 4 (2010) 5783-5790.
    [26]H. J. Lee, J. Bang, J. Park, S. Kim, S. M. Park, Chem. Mater.22 (2010) 5636-5643.
    [27]T. P. Brennan, O. Trejo, K. E. Roelofs, J. Xu, F. B. Prinz, S. F. Bent, J. Mater. Chem. A 1 (2013) 7566-7571.
    [28]J. Kim, H. Choi, C. Nahm, C. Kim, J. I. Kim, W. Lee, S. Kang, B. Lee, T. Hwang, H. H. Park, B. Park, Appl. Phys. Lett.102 (2013) 183901.
    [29]G. H. T. Au, W. Y. Shih, S. J. Tseng, W. H. Shih, Nanotechnology 23 (2012) 275601.
    [30]C. H. Chang, Y. L. Lee, Appl. Phys. Lett.91 (2007) 053503.
    [31]M. A. Hossain, Z. Y. Koh, Q. Wang, Phys. Chem. Chem. Phys.14 (2012) 7367-7374.
    [32]M. A. Hossain, J. R. Jennings, Z. Y. Koh, Q. Wang, ACS Nano 5 (2011) 3172-3181.
    [1]W. Shockley, H. J. Queisser, Phys. Rev. B 32 (1961) 510-519.
    [2]T. Trupke, M. A. Green, P. W(u|")rfel, J. Appl. Phys.92 (2002) 1668-1674.
    [3]B. M. van der Ende, L. Aarts, A. Meijerink, Phys. Chem. Chem. Phys.11 (2009) 11081-11095.
    [4]J. Ueda, S. Tanabe, J. Appl. Phys.106 (2009) 043101.
    [5]P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, A.Meijerink, Phys. Rev. B 71 (2005) 014119.
    [6]Q. Y. Zhang, C. H. Yang, Z. H. Jiang, X. H. Ji, Appl. Phys. Lett.90 (2007) 061914.
    [7]X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshmi-narayana, J. Qiu, Appl. Phys. B 96 (2009) 51-55.
    [8]B. M. van der Ende, L. Aarts, A. Meijerink, Adv. Mater.21 (2009) 3073-3077.
    [9]K. M. Deng, X. T. Wei, X. C. Wang, Y. H. Chen, M. Yin, Appl. Phys. B 102 (2011) 555-558.
    [10]L. C. Xie, Y. H. Wang, H. J. Zhang, Appl. Phys. Lett.94 (2009) 061905.
    [11]K. M. Deng, T. Gong, L. X. Hu, X. T. Wei, Y. H. Chen, M.Yin, Opt. Express 19 (2011) 1749-1754.
    [12]D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, J. Appl. Phys.104 (2008) 116105.
    [13]J. J. Zhou, Y. X. Zhuang, S. Ye, Appl. Phys. Lett.95 (2009) 141101.
    [14]J. W. M. Verweij, C. Pedrini, D. Bouttet, C. Dujardin, H. Lautesse, B. Moine, Opt. Mater.4 (1995) 575-582.
    [15]X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin, W. Xu, J. Appl. Phys.107 (2010) 103107.
    [16]D. Van der Voort, J. M. E. de Ruk, G. Blasse, Phys. Status Solidi A 135 (1993) 621-626.
    [17]Y. Cheng, X. Xu, J. Xu, C. C. Zhao, X. B. Yang, X. Y. Liang, S. M. Zhou, IEEE J. Quantum Electron.45 (2009) 1571-1576.
    [18]A. Vecht, D. Charlesworth, D. W. Smith, Dig. Tech. Papers SID Int. Symp., Boston,1997, p. 588.
    [19]Y. J. Hsiao, C. W. Liu, B. T. Dai, Y. H. Chang, J. Alloys Compd.475 (2009) 698-701.
    [20]G. Blasse, Philips Res. Rep.23 (1968) 344.
    [21]C. Han, H. Kim, H. Chang, S. K. Lee, H. D. Park, J. Electrochem. Soc.147 (2000) 2800-2804.
    [22]S. H. Shin, D. Y. Jeon, K. S. Suh, J. Appl. Phys.90 (2001) 5986-5990.
    [23]E. Husson, Y. Repelin, N. Q. Dao, H. Brusset, J. Chem. Phys.66 (1977) 5173-5180.
    [24]P. Dorenbos, J. Phys.:Condens. Matter 15 (2003) 8417-8434.
    [25]S. K. Lee, H. Chang, C. H. Han, H. J. Kim, H. G. Jang, H. D. Park, J. Solid State Chem.156 (2001) 267-273.
    [26]J. H. Bahng, E. S. Oh, S. H. Seo, J. S. Kim, M. Lee, H. L. Park, C. Lee, G. C. Kim, K. J. Kim, Phys. Status Solidi A 191 (2002) 291-295.
    [27]L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink, J. Lumin.91 (2000) 177-193.
    [28]X. Xiao, B. Yan, Appl. Phys. A 88 (2007) 333-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700