芽孢杆菌制剂对大肠杆菌感染仔猪免疫应答及肠道菌群影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:益生菌芽孢杆菌已被用于预防断奶仔猪腹泻,但芽孢杆菌调节宿主肠道健康机制尚不明确,尤其是在我国逐渐推广的大肠杆菌F4受体阴性猪上。适度的机体免疫应答及稳定的肠道微生物菌群能抵御致病菌感染。本研究的目的是通过比较不同剂量枯草芽孢杆菌(Bacillus subtilis)与地衣芽孢杆菌(Bacillus licheniformis)混合制剂对肠道菌群多样性影响及其免疫调控效应,探究芽孢杆菌制剂对受体阴性断奶仔猪F4+产肠毒素大肠杆菌(F4+Enterotoxigenic Escherichia coli,F4+ETEC)感染的预防机制。
     方法:32头21日龄断奶F4受体阴性仔猪随机分为4组,每组8头:1)CONT:第1-8天每天连续灌服10mL无菌生理盐水;2)ETEC:第一周每天连续灌服10mL无菌生理盐水,第8天灌服10mL浓度为10×109CFU/mL的F4+ETEC;3)LDBE:第一周连续灌服溶解于10mL生理盐水的低剂量芽孢杆菌制剂(3.9×107CFU/mL),第8天灌服与ETEC组等量F4+ETEC;4)HDBE:第一周连续灌服溶解于10mL生理盐水的高剂量芽孢杆菌制剂(78×107CFU/mL),第8天灌服与ETEC组等量F4+ETEC。第15天,仔猪全部屠宰。记录采食量、体重及直肠温度。通过平板计数和高通量DNA测序方法分析粪样及肠段内容物菌群结构多样性;H&E染色分析空肠及回肠炎症程度;血液样品进行血常规检查,ELISA检测血清中IL-10及TNF-a的浓度。
     结果:高、低剂量芽孢杆菌制剂均显著抑制F4+ETEC引起的仔猪采食量下降。低剂量芽孢杆菌制剂显著抑制F4+ETEC引起的粗蛋白质和总能消化率的下降,同时显著减缓F4+ETEC引发的发热及空肠肠炎。高、低剂量芽孢杆菌制剂明显抑制F4+ETEC感染后12,48,96及144h引起的杆状核嗜中性粒细胞升高。感染后6h,高剂量芽孢杆菌制剂显著抑制F4+ETEC引起的血清TNF-α浓度升高。低剂量芽孢杆菌制剂在感染后12h显著抑制F4+ETEC引起的血清IL-10浓度下降。相比于F4+ETEC,高剂量芽孢杆菌制剂显著升高第9天粪样中乳酸杆菌及双歧杆菌的数量,而低剂量芽孢杆菌制剂在第12天显著升高粪样中乳酸杆菌的数量。第12天高剂量芽孢杆菌制剂组仔猪粪样肠杆菌的数量显著低于其他三组。高、低剂量芽孢杆菌制剂在12天显著降低粪样中肠球菌的数量。与F4+ETEC相比,高剂量芽孢杆菌制剂显著升高了盲肠、结肠中乳酸杆菌数量,而低剂量芽孢杆菌制剂仅升高结肠中乳酸杆菌的数量。相比于对照组及ETEC组,高、低剂量芽孢杆菌制剂组仔猪在回肠、盲肠及结肠中有更高的双歧杆菌和更低的肠杆菌数量。
     结论:高、低剂量芽孢杆菌制剂均可以缓解F4+ETEC引起的F4受体阴性仔猪生长性能下降,但仅低剂量芽孢杆菌制剂抑制养分消化率的降低,同时减轻F4+ETEC引起的发热及肠炎。高剂量芽孢杆菌制剂对调节菌群平衡更有效,但影响机体免疫应答,增加了断奶仔猪发生感染性肠炎的风险。
Aims:Although the probiotic Bacillus has been used as an promising alternative to protect piglets from post-weaning diarrhea, the mechanism of probiotic in regulating the intestinal health still remains elusive, especially involving with F4receptor-negative weaning piglets. Moderate immune responses and stable gut microbiota community possesses the capacities in defensing the exogenous pathogens-induced infections. The present study aimed at exploring the preventing mechanism of the amalgam of Bacillus subtilis and Bacillus licheniformis in an F4Enterotoxigenic Escherichia coli (F4+ETEC) infection model of F4receptor-negative weaning piglets by comparing the dose effects on gut microbial diversity and immune regulation.
     Methods:Exact21-day-old weaning F4receptor negative-piglets were randomly divided into four groups and each group is comprised of eight individuals:1) CONT, piglets orally administered with10mL of sterile physiological saline daily during first8days;2) ETEC, pigs orally administered with10mL sterile physiological saline every day for the first week and then orally challenged with10mL F4+ETEC culture (1.0×109CFU/mL) on day8;3) LDBE, pigs orally administered with low dose of Bacillus amalgam dissolved in10mL sterile physiological saline (3.9×107CFU/mL) every day for the first week and then orally challenged with10mL of F4+ETEC culture (1.0R109CFU/mL) on day8; and4) HDBE, pigs orally administered with high dose of Bacillus amalgam dissolved in10mL sterile physiological saline (7.8×10'CFU/mL) every day for the first week and then orally challenged with10mL of F4+ETEC culture (1.0×109CFU/mL) on day8. Piglets were euthanized on day15. Feed intake, body weight and rectal temperature were recorded regularly. The fecal and intestinal contents samples were analysed for microbial diversity by plate counting and high-throughput DNA sequence methods. The jejunal and ileal enteritis were assessed by H&E straining. Blood samples were analysed for routine examination and Serum IL-10and TNF-a concentrations were detected by ELISA.
     Results:Administration of both low and high dose of Bacillus significantly inhibited the F4+ETEC-induced decrease of daily feed intake. The low dose of Bacillus remarkly attenuated the decline of crude protein and gross energy degestibility, as well as ameliorated the fever and jejunum inflammation induced by F4+ETEC.The surging percentage of banded neutrophils induced by F4+ETEC in12,48,96and144h following challenge were attenuated by both low and high dose of Bacillus. Administration of the high dose of Bacillus remarkly inhibited the elevation of TNF-a concentration induced by F4+ETEC in6h. The IL-10concentrations of piglets administrated with low dose of Bacillus were lower than piglets challenged with F4ETEC in12h. Compared to exposure to F4ETEC, administration of high dose of Bacillus increased the fecal Lactobacillus and Bifidbacteria counts on day9, whereas low dose of Bacillus only multiplied the fecal Lactobacillus number on day12. The fecal Coliformis numbers of piglets administrated with high dose of Bacillus was significantly lower than either of piglets with other treatments. The low and high dose of Bacillus administration lessened the numbers of fecal Enterococci compared to CONT and ETEC treatments on day12. Compared with F4+ETEC challenge, high dose of Bacillus augmented the Lactobacillus numbers in caecum and colon, while low dose of Bacillus boosted the Lactobacillus numbers only in colon. Piglets administrated with low or high dose of Bacillus had higher Bifidbacteria number and lower Coliformis in ileum, caecum and colon than piglets with CONT and ETEC treatments.
     Conclusions:Both low and high dose of Bacillus ameliorated the decline of growth performance induced by F4+ETEC in F4receptor-negative weaning piglets, but the low dose of Bacillus were more efficient to inhibit the decrease of nutrient digestibility and attenuated F4+ETEC-induced fever and intestinal inflammation. Although high dose of Bacillus was associated with better regulation of microbial balance, it may impose negative effects in immune responses and thus increased the risk of being infected.
引文
[1]Heo J. M., Opapeju F. O., Pluske J. R., et al. Gastrointestinal health and function in weaned pigs:a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl),2013,97:207-37
    [2]Melin L., Mattsson S., Katouli M., et al. Development of post-weaning diarrhoea in piglets. Relation to presence of Escherichia coli strains and rotavirus. J Vet Med B Infect Dis Vet Public Health,2004,51:12-22
    [3]Fairbrother J. M., Nadeau E.,Gyles C. L. Escherichia coli in postweaning diarrhea in pigs:an update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev.,2007,6:17-39
    [4]Fleckenstein J. M., Hardwidge P. R., Munson G. P., et al. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect,2010,12:89-98
    [5]Casewell M., Friis C., Marco E., et al. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother.,2003,52:159-61
    [6]Gaggia F., Mattarelli P., Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol.,2010,141 Suppl 1:S15-28
    [7]Allen H. K., Levine U. Y., Looft T., et al. Treatment, promotion, commotion:antibiotic alternatives in food-producing animals. Trends Microbiol.,2013,21:114-9
    [8]Partty A., Luoto R., Kalliomaki M., et al. Effects of early prebiotic and probiotic supplementation on development of gut microbiota and fussing and crying in preterm infants:a randomized, double-blind, placebo-controlled trial. J. Pediatr.,2013,163:1272-7 e1-2
    [9]LeBlanc J. G., Milani C., de Giori G. S., et al. Bacteria as vitamin suppliers to their host:a gut microbiota perspective. Curr. Opin. Biotechnol.,2013,24:160-8
    [10]Sanders M. E., Guarner F., Guerrant R., et al. An update on the use and investigation of probiotics in health and disease. Gut,2013,62:787-96
    [11]Bienenstock J., Gibson G, Klaenhammer T. R., et al. New insights into probiotic mechanisms:a harvest from functional and metagenomic studies. Gut Microbes,2013,4:94-100
    [12]Lebeer S., Vanderleyden J.,De Keersmaecker S. C. Host interactions of probiotic bacterial surface molecules:comparison with commensals and pathogens. Nat Rev Microbiol,2010,8:171-84
    [13]Parrado J., Rodriguez-Morgado B., Tejada M., et al. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme Microb. Technol.,2014,57:1-7
    [14]Biedendieck R., Malten M., Barg H., et al. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb Biotechnol,2010,3:24-37
    [15]Veiga P., Gallini C. A., Beal C., et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. U. S. A.,2010,107: 18132-7
    [16]Fukuda S., Toh H., Hase K., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature,2011,469:543-7
    [17]Maslowski K. M., Vieira A. T., Ng A., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature,2009,461:1282-6
    [18]Schuijt T. J., van der Poll T., de Vos W. M., et al. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol.,2013,21:221-9
    [19]Noverr M. C.,Huflhagle G. B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol.,2004,12:562-8
    [20]Gourbeyre P., Denery S.,Bodinier M. Probiotics, prebiotics, and synbiotics:impact on the gut immune system and allergic reactions. J. Leukoc. Biol.,2011,89:685-95
    [21]Hawrelak J. A.,Myers S. P. The causes of intestinal dysbiosis:a review. Altern. Med. Rev.,2004,9: 180-97
    [22]Morelli L. Postnatal development of intestinal microflora as influenced by infant nutrition. J. Nutr.,2008, 138:1791s-1795s
    [23]Ley R. E., Peterson D. A.,Gordon J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell,2006,124:837-48
    [24]Chiller K., Selkin B. A.,Murakawa G. J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc.,2001,6:170-4
    [25]Aziz Q., Dore J., Emmanuel A., et al. Gut microbiota and gastrointestinal health:current concepts and future directions. Neurogastroenterol. Motil.,2013,25:4-15
    [26]Guarner F., Malagelada J.-R. Gut flora in health and disease. The Lancet,2003,361:512-519
    [27]Nagura H., Sumi Y. Immunological Functions of the Gut-Role of the Mucosal Immune System. Toxicol. Pathol.,1988,16:154-164
    [28]Harris M. A., Reddy C. A., Carter G. R. Anaerobic bacteria from the large intestine of mice. Appl. Environ. Microbiol.,1976,31:907-12
    [29]Schloss P. D., Handelsman J. Status of the microbial census. Microbiol. Mol. Biol. Rev.,2004,68: 686-91
    [30]Eckburg P. B., Bik E. M., Bernstein C. N., et al. Diversity of the human intestinal microbial flora. Science,2005,308:1635-8
    [31]Xu J.,Gordon J. I. Honor thy symbionts. Proc. Natl. Acad. Sci. U. S. A.,2003,100:10452-9
    [32]Frank D. N., St Amand A. L., Feldman R. A., et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A.,2007,104: 13780-5
    [33]O'Hara A. M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep,2006,7:688-93
    [34]Swidsinski A., Loening-Baucke V., Lochs H., et al. Spatial organization of bacterial flora in normal and inflamed intestine:a fluorescence in situ hybridization study in mice. World J Gastroenterol,2005,11: 1131-40
    [35]Fanaro S., Chierici R., Guerrini P., et al. Intestinal microflora in early infancy:composition and development. Acta Paediatr. Suppl.,2003,91:48-55
    [36]Boris S., Barbes C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect,2000,2:543-6
    [37]Mackie R. I., Sghir A.,Gaskins H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr.,1999,69:1035S-1045S
    [38]Ley R. E., Backhed F., Turnbaugh P., et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A.,2005,102:11070-5
    [39]Zoetendal E. G, Akkermans A. D. L., Vliet W. M. A.-v., et al. The Host Genotype Affects the Bacterial Community in the Human Gastrointestinal Tract. Mcirob. Ecol. Health and Disease,2001,13:129-134
    [40]Dethlefsen L., Eckburg P. B., Bik E. M., et al. Assembly of the human intestinal microbiota. Trends Ecol Evol,2006,21:517-23
    [41]Jensen A. N., Mejer H., Molbak L., et al. The effect of a diet with fructan-rich chicory roots on intestinal helminths and microbiota with special focus on Bifidobacteria and Campylobacter in piglets around weaning. Animal,2011,5:851-60
    [42]Sarria R., Lopez Albors O., Soria F., et al. Characterization of oral double balloon endoscopy in the dog. Vet. J.,2013,195:331-6
    [43]Leser T. D., Amenuvor J. Z., Jensen T. K., et al. Culture-Independent Analysis of Gut Bacteria:the Pig Gastrointestinal Tract Microbiota Revisited. Appl. Environ. Microbiol.,2002,68:673-690
    [44]Ducluzeau R. Implantation and development of the gut flora in the newborn animal. Ann. Rech. Vet., 1983,14:354-9
    [45]何明清,廖德惠,谢镜怀.猪不同日龄及不同肠段正常肠菌群的研究.畜牧兽医学报,1985,16(1):66-71
    [46]Savage D. C. Microbial ecology of the gastrointestinal tract. Ann. Rev. Microbiol,1977,31:107-33
    [47]Clemente J. C., Ursell L. K., Parfrey L. W., et al. The impact of the gut microbiota on human health:an integrative view. Cell,2012,148:1258-1270
    [48]Metzler-Zebeli B. U., Zijlstra R. T., Mosenthin R., et al. Dietary calcium phosphate content and oat beta-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol Ecol,2011,75:402-13
    [49]Yang I., Nell S., Suerbaum S. Survival in hostile territory:the microbiota of the stomach. FEMS Microbiol. Rev.,2013,37:736-61
    [50]Bik E. M., Eckburg P. B., Gill S. R., et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. U. S. A.,2006,103:732-7
    [51]Salyers A. A. Bacteroides of the human lower intestinal tract, nu. Rev. Microbiol,1984,38:293-313
    [52]Robinson L. Uneven Modernity:Literature, Film and Intellectual Discourse in Postsocialist China. University of Hawai'i Press,2012. The China Quarterly,2012,210:533-535
    [53]Buzoianu S. G., Walsh M. C., Rea M. C., et al. High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab (Bt maize) for 31 days. Appl. Environ. Microbiol.,2012,78:4217-24
    [54]Cotta M. A., Whitehead T. R., Zeltwanger R. L. Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ Microbiol,2003,5:737-45
    [55]Buzoianu S. G., Walsh M. C., Rea M. C., et al. Sequence-based analysis of the intestinal Microbiota of sows and their offspring fed genetically modified maize expressing a truncated form of Bacillus thuringiensis CrylAb protein (Bt Maize). Appl. Environ. Microbiol.,2013,79:7735-44
    [56]Aron-Wisnewsky J., Dore J.,Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastro and Hepat,2012,9:590-598
    [57]McFall-Ngai M., Hadfield M. G, Bosch T. C., et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U. S. A.,2013,110:3229-3236
    [58]Maynard C. L., Elson C. O., Hatton R. D., et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature,2012,489:231-241
    [59]J.Macpherson A.,L.Harris N. Interactions between commensal intestinal bacteria and the immune system. Nature,2004,4:478-485
    [60]Bouskra D., Brezillon C., Berard M., et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature,2008,456:507-10
    [61]Rakoff-Nahoum S., Medzhitov R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol,2008,1 Suppl 1:S10-4
    [62]Mazmanian S. K., Liu C. H., Tzianabos A. O., et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell,2005,122:107-18
    [63]Christensen H. R., Frokiaer H., Pestka J. J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol.,2002,168:171-8
    [64]Fink L. N., Zeuthen L. H., Christensen H. R., et al. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int. Immunol.,2007,19:1319-27
    [65]Ivanov I. I., Frutos R. d. L., Manel N., et al. Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe,2008,4:337-349
    [66]Dewhirst F. E., Chien C. C., Paster B. J., et al. Phylogeny of the defined murine microbiota:altered Schaedler flora. Appl. Environ. Microbiol.,1999,65:3287-92
    [67]Kamada N., Seo S.-U., Chen G. Y., et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol.,2013,13:321-335
    [68]Hooper L. V. Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol,2009,7:367-374
    [69]Williams I., Iqbal T., Webber M., et al. A mechanism for the effect of alginate on the gut microflora. Gut, 2011,60:A76-A76
    [70]Vaishnava S., Behrendt C. L., Ismail A. S., et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. U. S. A.,2008,105: 20858-63
    [71]Hooper L. V, Stappenbeck T. S., Hong C. V., et al. Angiogenins:a new class of microbicidal proteins involved in innate immunity. Nat Immunol,2003,4:269-73
    [72]Kida Y., Shimizu T., Kuwano K. Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1. Mol. Immunol.,2006,43:1972-81
    [73]Schauber J., Svanholm C., Termen S., et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes:relevance of signalling pathways. Gut,2003,52:735-741
    [74]Marteau P. R., de Vrese M., Cellier C. J., et al. Protection from gastrointestinal diseases with the use of probiotics. Am. J. Clin. Nutr.,2001,73:430s-436s
    [75]Corr S. C., Gahan C. G., Hill C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol., 2007,50:380-8
    [76]Sommer F., Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol.,2013,11:227-238
    [77]Medellin-Pena M. J., Griffiths M. W. Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Appl. Environ. Microbiol.,2009,75:1165-72
    [78]Banasaz M., Norin E., Holma R., et al. Increased Enterocyte Production in Gnotobiotic Rats Mono-Associated with Lactobacillus rhamnosus GG. Appl. Environ. Microbiol.,2002,68:3031-3034
    [79]Madsen D., Beaver M., Chang L., et al. Analysis of bile acids in conventional and germfree rats. J. Lipid Res.,1976,17:107-11
    [80]Hooper L. V., Midtvedt T.,Gordon J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr.,2002,22:283-307
    [81]Tuohy K. M., Probert H. M., Smejkal C. W., et al. Using probiotics and prebiotics to improve gut health. Drug Discovery Today,2003,8:692-700
    [82]De Filippo C., Cavalieri D., Di Paola M., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A.,2010,107: 14691-6
    [83]Maslowski K. M., Mackay C. R. Diet, gut microbiota and immune responses. Nat Immunol,2011,12: 5-9
    [84]Hooper L. V., Wong M. H., Thelin A., et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science,2001,291:881-4
    [85]Faith J. J., McNulty N. P., Rey F. E., et al. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science,2011,333:101-4
    [86]Yatsunenko T., Rey F. E., Manary M. J., et al. Human gut microbiome viewed across age and geography. Nature,2012,486:222-7
    [87]Koropatkin N. M., Cameron E. A.,Martens E. C. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol.,2012,10:323-335
    [88]Chichlowski M., De Lartigue G, German J. B., et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr.,2012,55: 321-7
    [89]Handelsman J. Metagenomics:application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev.,2004,68:669-85
    [90]Torsvik V., Ovreas L. Microbial diversity and function in soil:from genes to ecosystems. Curr. Opin. Microbiol.,2002,5:240-5
    [91]WOESE C. R. Bacterial Evolution. Microb Reviews,1987,221-271
    [92]Mardis E. R. The impact of next-generation sequencing technology on genetics. Trends Genet.,2008,24: 133-41
    [93]Hong H. A., Duc le H., Cutting S. M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev.,2005,29:813-35
    [94]Czerucka D.,Rampal P. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes Infect,2002,4:733-9
    [95]Czerucka D., Dahan S., Mograbi B., et al. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect. Immun.,2000,68:5998-6004
    [96]Guo X., Li D., Lu W., et al. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek, 2006,90:139-46
    [97]Stenfors Arnesen L. P., Fagerlund A.,Granum P. E. From soil to gut:Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev.,2008,32:579-606
    [98]Klijn N., Weerkamp A. H.,Vos W. M. d. Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microb.,1995,61:2771
    [99]Vesa T., Pochart P., Marteau. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactobacillus lactis MG 1363 in the human gastrointestinal tract. Aliment Pharmacol, 2000,14:823-828
    [100]Lee K. H., Jun K. D., Kin W. S., et al. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of bacillus polyfermenticus. Lett. Appl. Microbiol.,2001,32:146-151
    [101]Biourge V., Vallet C., Levesque A., et al. The Use of Probiotics in the Diet of Dogs. J. Nutr.,1998,128: 2730S-2732S
    [102]Hoa T. T., Due L. H., Isticato R., et al. Fate and Dissemination of Bacillus subtilis Spores in a Murine Model. Appl. Environ. Microbiol.,2001,67:3819-3823
    [103]Nakano M. M.,Zuber P. ANAEROBIC GROWTH OF A "STRICT AEROBE" (BACILLUS SUBTILIS). Annu. Rev. Microbiol.,1998,52:165-90
    [104]Hyronimus B., Le Marrec C., Sassi A. H., et al. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol.,2000,61:193-7
    [105]Duc L. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine,2003,21:4215-4224
    [106]Duc L. H., Hong H. A., Barbosa T. M., et al. Characterization of Bacillus Probiotics Available for Human Use. Appl. Environ. Microbiol.,2004,70:2161-2171
    [107]Mendelson N. H. Bacillus subtilis macrofibres, colonies and bioconvection patterns use different strategies to achieve multicellular organization. Environ Microbiol,1999,1:471-477
    [108]Branda S. S., Gonzalez-Pastor J. E., Ben-Yehuda S., et al. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A.,2001,98:11621-6
    [109]Kotirantaa A., Lounatmaa K.,Haapasalo M. Epidemiology and pathogenesis of Bacilus cereus infections. Microbe Infect,2000,2:189-198
    [110]Sleytr U. B., Sara M., Pum D., et al. Characterization and use of crystalline bacterial cell surface layers. Prog. Surf. Sci.,2001,68:231-278
    [111]Sidhu M. S.,Olsen I. S-layers of Bacillus species. Microbiology,1997,143 (Pt 4):1039-52
    [112]Sousa J. C. F.,Silva M. T. An exoporium-like outer layer in Bacillus subtilis spores. Nature,1976,263: 53-54
    [113]Sylvestre P., Couture-Tosi E.,Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol. Microbiol.,2002,45:169-178
    [114]Charlton S., Moir A. J., Baillie L., et al. Characterization of the exosporium of Bacillus cereus. J. Appl. Microbiol.,1999,87:241-5
    [115]La Ragione R. M., Casula G., Cutting S. M., et al. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Vet. Microbiol.,2001,79:133-42
    [116]La Ragione R. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet. Microbiol.,2003,94:245-256
    [117]Samanya M., Yamauchi K. E. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. A. Mol. Integr. Physiol.,2002,133:95-104
    [118]Preston R. A., Douthit H. A. Stimulation of germination of unactivated Bacillus cereus spores by ammonia. J. Gen. Microbiol.,1984,130:1041-50
    [119]Schierack P., Wieler L. H., Taras D., et al. Bacillus cereus var. toyoi enhanced systemic immune response in piglets. Vet. Immunol. Immunopathol.,2007,118:1-11
    [120]Kyriakis S. C., Tsiloyiannis V. K., Vlemmas J., et al. The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Res. Vet. Sci.,1999,67:223-8
    [121]Duc L. H., Hong H. A., Fairweather N., et al. Bacterial Spores as Vaccine Vehicles. Infect. Immun., 2003,71:2810-2818
    [122]Duc le H., Hong H. A., Uyen N. Q., et al. Intracellular fate and immunogenicity of B. subtilis spores. Vaccine,2004,22:1873-85
    [123]Urdaci M. C., Bressollier P., Pinchuk I. Bacillus clausii probiotic strains:antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol.,2004,38:S86-S90
    [124]Lawrence C., Nauciel C. Production of interleukin-12 by murine macrophages in response to bacterial peptidoglycan. Infect. Immun.,1998,66:4947-9
    [125]Ciprandi G., Scordamaglia A., Venuti D., et al. In vitro effects of Bacillus subtilis on the immune
    response. Chemioterapia:international journal of the Mediterranean Society of Chemotherapy,1986,5:
    404-407
    [126]Zanvit P., Havlickova M., Tacner J., et al. Immune response after adjuvant mucosal immunization of
    mice with inactivated influenza virus. Immunol. Lett.,2005,97:251-9
    [127]Sartor R. Cytokine regulation of experimental intestinal inflammation in genetically engineered and
    T-lymphocyte reconstituted rodents. Aliment. Pharmacol. Ther.,1995,10:36-42; discussion 43-4
    [128]Pinchuk I. V., Bressollier P., Verneuil B., et al. In vitro anti-Helicobacter pylori activity of the probiotic
    strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob. Agents Chemother.,2001,45:3156-61
    [129]Ozawa K., Yagu-Uchi K., Yamanaka K., et al. Antagonistic effects of Bacillus natto and Streptococcus
    faecalis on growth of Candida albicans. Microbiol. Immunol.,1979,23:1147-56
    [130]Hong H. A., Khaneja R., Tam N. M., et al. Bacillus subtilis isolated from the human gastrointestinal
    tract.Res.Microbiol.,2009,160:134-43
    [131]Menconi A., Morgan M. J., Pumford N. R., et al. Physiological Properties and Salmonella Growth
    Inhibition of Probiotic Bacillus Strains Isolated from Environmental and Poultry Sources. Int. J. Bacterio.,
    2013,2013:1-8
    [132]Ma Q. G., Gao X., Zhou T., et al. Protective effect of Bacillus subtilis ANSB060 on egg quality,
    biochemical and histopathological changes in layers exposed to aflatoxin B1. Poult. Sci.,2012,91:2852-7
    [133]Caldini G., Trotta F.,Cenci G. Inhibition of 4-nitroquinoline-1-oxide genotoxicity by Bacillus strains.
    Res. Microbiol.,2002,153:165-71
    [134]Perez-Garcia A., Romero D.,de Vicente A. Plant protection and growth stimulation by microorganisms:
    biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol.,2011,22:187-93
    [135]Taylor J. M., Sutherland A. D., Aidoo K. E., et al. Heat-stable toxin production by strains of Bacillus
    cereus, Bacillus firmus, Bacillus megaterium, Bacillus simplex and Bacillus licheniformis. FEMS Microbiol.
    Lett.,2005,242:313-7
    [136]Hong H. A., Huang J. M., Khaneja R., et al. The safety of Bacillus subtilis and Bacillus indicus as food
    probiotics. J. Appl. Microbiol.,2008,105:510-20
    [137]Aminov R. I.,Mackie R. I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett.,
    2007,271:147-61
    [138]Rowan N. J., Deans K., Anderson J. G., et al. Putative Virulence Factor Expression by Clinical and
    Food Isolates of Bacillus spp. after Growth in Reconstituted Infant Milk Formulae. Appl. Environ. Microbiol.,
    2001,67:3873-3881
    [139]Cutting S. M. Bacillus probiotics. Food Microbiol,2011,28:214-20
    [140]Kaper J. B., Nataro J. P., Mobley H. L. Pathogenic Escherichia coli. Nat Rev Microbiol,2004,2:
    123-40
    [141]Qadri F., Svennerholm A. M., Faruque A. S., et al. Enterotoxigenic Escherichia coli in developing
    countries:epidemiology, microbiology, clinical features, treatment, and prevention. Clin. Microbiol. Rev., 2005,18:465-83
    [142]SAVARINO S. J., FASANO A., WATSON J., et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc. Natl. Acad. Sci. U. S. A.,1993, 90:3093-3097
    [143]Pichel M. G., Binsztein N., Qadri F., et al. Type IV Longus Pilus of Enterotoxigenic Escherichia coli: Occurrence and Association with Toxin Types and Colonization Factors among Strains Isolated in Argentina. J. Clin. Microbiol.,2002,40:694-697
    [144]Elsinghorst E. A.,Weitz J. A. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein. Infect. Immun.,1994, 62:3463
    [145]Fleckenstein J. M. Interaction of an Outer Membrane Protein of Enterotoxigenic Escherichia coli with Cell Surface Heparan Sulfate Proteoglycans. Infect. Immun.,2002,70:1530-1537
    [146]Ludwig A., von Rhein C., Bauer S., et al. Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains. J. Bacteriol.,2004,186:5311-20
    [147]Cheng D., Sun H., Xu J., et al. PCR detection of virulence factor genes in Escherichia coli isolates from weaned piglets with edema disease and/or diarrhea in China. Vet. Microbiol.,2006,115:320-8
    [148]Carniel E. The Yersinia high-pathogenicity island. Internatl Microbiol,1999,2:161-167
    [149]Zsolt Fekete P., Schneider G, Olasz F., et al. Detection of a plasmid-encoded pathogenicity island in F18+ enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs. Int. J. Med. Microbiol.,2003, 293:287-298
    [150]Schroyen M., Stinckens A., Verhelst R., et al. The search for the gene mutations underlying enterotoxigenic Escherichia coli F4ab/ac susceptibility in pigs:a review. Vet. Res.,2012,43:70
    [151]Toledo A., Gomez D., Cruz C., et al. Prevalence of virulence genes in Escherichia coli strains isolated from piglets in the suckling and weaning period in Mexico. J. Med. Microbiol.,2012,61:148-56
    [152]Liu W., Yuan C., Meng X., et al. Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Vet. J.,2014,199:286-9
    [153]Jin L. Z., Zhao X. Intestinal receptors for adhesive fimbriae of enterotoxigenic Escherichia coli (ETEC) K88 in swine--a review. Appl. Microbiol. Biotechnol.,2000,54:311-8
    [154]Francis D. H., Grange P. A., Zeman D. H., et al. Expression of Mucin-Type Glycoprotein K88 Receptors Strongly Correlates with Piglet Susceptibility to K88+Enterotoxigenic Escherichia coli, but Adhesion of this Bacterium to Brush Borders Does Not. Infect. Immun.,1998,66:4050
    [155]Jansson L., Tobias J., Lebens M., et al. The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein. Infect. Immun.,2006,74:3488-97
    [156]Jansson L., Tobias J., Jarefjall C., et al. Sulfatide Recognition by Colonization Factor Antigen CS6 from Enterotoxigenic Escherichia coli. PLoS One,2009,4:e4487
    [157]Roy K., Hilliard G. M., Hamilton D. J., et al. Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature,2009,457:594-8
    [158]Turner S. M., Scott-Tucker A., Cooper L. M., et al. Weapons of mass destruction:virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol. Lett.,2006,263:10-20
    [159]Fleckenstein J. M., Munson G M., Rasko D. A. Enterotoxigenic Escherichia coli:Orchestrated host engagement. Gut Microbes,2013,4:392-396
    [160]Choi C., Cho W.-S., Chung H.-K., et al. Prevalence of the enteroaggregative Escherichia coli heat-stable enterotoxin 1(EAST1) gene in isolates in weaned pigs with diarrhea and/or edema disease. Vet. Microbiol.,2001,81:65-71
    [161]Dorsey F. C., Fischer J. F., Fleckenstein J. M. Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol,2006,8:1516-27
    [162]Johnson A. M., Kaushik R. S., Francis D. H., et al. Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J. Bacteriol.,2009,191:178-86
    [163]Kesty N. C., Mason K. M., Reedy M., et al. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. The EMBO Journal 2004,23:4538-4549
    [164]Norton E. B., Lawson L. B., Freytag L. C., et al. Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. Clin Vaccine Immunol,2011,18: 546-51
    [165]Chao A. C., de Sauvage F. J., Dong Y. J., et al. Activation of intestinal CFTR Cl-channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J.,1994,13:1065-72
    [166]Dreyfus L. A., Harville B., Howard D. E., et al. Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB). Proc. Natl. Acad. Sci. U. S. A.,1993,90:3202-6
    [167]Frydendahl K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhea and edema disease in pigs and a comparision of diagnostic approaches. Vet. Microbiol., 2002,85:169-182
    [168]Verdonck F., Cox E., van Gog K., et al. Different kinetic of antibody responses following infection of newly weaned pigs with an F4 enterotoxigenic Escherichia coli strain or an F18 verotoxigenic Escherichia coli strain. Vaccine,2002,20:2995-3004
    [169]Prager R., Bauerfeind R., Tietze E., et al. Prevalence and deletion types of the pathogenicity island ETT2 among Escherichia coli strains from oedema disease and colibacillosis in pigs. Vet. Microbiol.,2004, 99:287-94
    [170]温海燕.菏泽地区猪源产肠毒素大肠埃希菌的分离鉴定及耐药性分析.江苏农业科学,2013,41(9):197-198
    [171]罗淑华,黄鹏飞,李燕,等.产毒性大肠埃希菌血清型与毒力流行特征及耐药分析.中国卫生检验杂志,2013,23(9):2176-2180
    [172]Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet,2001,2: 130-8
    [173]Python P., Jorg H., Neuenschwander S., et al Inheritance of the F4ab, F4ac and F4ad E. coli receptors in swine and examination of four candidate genes for F4acR. J Anim Breed Genet,2005,122 Suppl 1:5-14
    [174]Michaels R., Whipp S., Rothschild M. Resistance of Chinese Meishan, Fengjing, and Minzhu pigs to the K88ac+ strain of Escherichia coli. Am. J. Vet. Res.,1994,55:333-338
    [175]Mathur S., Singh R. Antibiotic resistance in food lactic acid bacteria--a review. Int. J. Food Microbiol., 2005,105:281-95
    [176]Moeser A. J., Ryan K. A., Nighot P. K., et al. Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. Am J Physiol Gastrointest Liver Physiol,2007, 293:G413-G421
    [177]Bhandari S. K., Xu B., Nyachoti C. M., et al. Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea:effects on gut microbial ecology. J. Anim. Sci.,2008,86: 836-47
    [178]McLamb B. L., Gibson A. J., Overman E. L., et al. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One,2013,8:e59838
    [179]Wang L. S., Shi Z., Shi B. M., et al. Effects of dietary stevioside/rebaudioside A on the growth performance and diarrhea incidence of weaned piglets. Anim Feed Sci Tech.,2014,187:104-109
    [180]Nicholson W. L., Munakata N., Horneck G., et al. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiol. Mol. Biol. Rev.,2000,64:548-572
    [181]Wang S. P., Yang L., Tang X.-S., et al. Dietary supplementation with high-dose Bacillus subtilis or Lactobacillus reuteri modulates cellular and humoral immunities and improves performance in weaned piglets. J Food Agric Environ.,2011,9:181-187
    [182]Lee S. H., Ingale S. L., Kim J. S., et al. Effects of dietary supplementation with Bacillus subtilis LS 1-2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weanling pig. Anim Feed Sci Tech.,2014,188:102-110
    [183]王学东,呙于明,姚娟,等.芽孢杆菌在仔猪日粮中的应用效果初探.营养饲料,2008,44(21):46-48
    [184]虞泽鹏,谢启轮,唐举,等.益生素对断乳仔猪生产性能的影响.动物科学与动物医学,2002,19(3):49-50
    [185]Jensen G. M., Frydendahl K., Svendsen O., et al. Experimental infection with Escherichia coli O149:F4ac in weaned piglets. Vet. Microbiol.,2006,115:243-9
    [186]Lalles J.-P., Bosi P., Smidt H., et al. Weaning-A challenge to gut physiologists. Livest Sci.,2007,108: 82-93
    [187]Hedemann M. S., Jensen B. B. Variations in enzyme activity in stomach and pancreatic tissue and digesta in piglets around weaning. Arch Anim Nutr,2004,58:47-59
    [188]Motohashi Y., Fukushima A., Kondo T., et al. Lactase Decline in Weaning Rats Is Regulated at the Transcriptional Level and Not Caused by Termination of Milk Ingestion. J. Nutr.,1997,127:1737-1743
    [189]Xiao D., Tang Z., Yin Y., et al. Effects of dietary administering chitosan on growth performance, jejunal morphology, jejunal mucosal sIgA, occluding, claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli. Int. Immunopharmacol,2013,17:670-6
    [190]Ross R. P., Desmond C., Fitzgerald G. F., et al. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol.,2005,98:1410-7
    [191]Alexopoulos C., Georgoulakis I. E., Tzivara A., et al. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. a. Anim. Nutr.,2004,88:381-392
    [192]Wang Y., Cho J. H., Chen Y. J., et al. The effect of probiotic BioPlus 2B(?) on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livest Sci.,2009,120: 35-42
    [193]Papatsiros V., Tassis P., Tzika E., et al. Effect of benzoic acid and combination of benzoic acid with a probiotic containing Bacillus Cereus var. toyoi in weaned pig nutrition. P J Vet Sci.,2011,14:117-125
    [194]Chen W., Zhu X. Z., Wang J. P., et al. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae fermented liquid feed on growth performance, relative organ weight, intestinal microflora, and organ antioxidant status in Landes geese. J. Anim. Sci.,2013,91:978-985
    [195]Giang H. H., Viet T. Q., Ogle B., et al. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest Sci.,2012,143:132-141
    [196]Sen S., Ingale S. L., Kim J. S., et al. Effect of Supplementation of Bacillus subtilis LS 1-2 Grown on Citrus-juice Waste and Corn-soybean Meal Substrate on Growth Performance, Nutrient Retention, Caecal Microbiology and Small Intestinal Morphology of Broilers. Asian Austral J Anim.,2011,24:1120-1127
    [197]Scheuermann S. Effect of the probiotic on energy and protein metabolism in growing pigs. Anim Feed Sci Tech.,1993,41:181-189
    [198]Scholten R. H. J., Peet-Schwering C. M. C. v. d., Verstegen M. W. A., et al. Fermented co-products and fermented compound diets for pigs:a review. Anim Feed Sci Tech.,1999,82:1-19
    [199]Choi J. Y, Shinde P. L., Ingale S. L., et al. Evaluation of multi-microbe probiotics prepared by submerged liquid or solid substrate fermentation and antibiotics in weaning pigs. Livest Sci,2011,138: 144-151
    [200]Heyman M., Menard S. Probiotic microorganisms:how they affect intestinal pathophysiology. CMLS. Cell. Mol. Life Sci.,2002,59:1151-1165
    [201]Hecker M.,Volker U. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics,2004,4:3727-50
    [202]Shim Y. H., Shinde P. L., Choi J. Y, et al. Evaluation of Multi-microbial Probiotics Produced by Submerged Liquid and Solid Substrate Fermentation Methods in Broilers. Asian Austral J Anim.,2010,23: 521-529
    [203]Patterson J., Burkholder K. Application of prebiotics and probiotics in poultry production. Poult. Sci., 2003,82:627-631
    [204]辛娜,刁其玉,张乃锋,等.芽孢杆菌制剂对断奶仔猪生长性能、免疫器官指数、及胃肠道pH值 的影响.饲料工业,2011,32(9):33-36
    [205]Cole S. T., Elglmeler K., Parkhill J., et al. Massive gene decay in the leprosy bacillus. Nature,2001, 409:1007-1011
    [206]刘学剑.饲用芽孢杆菌的研究和应用.广东饲料,2005,14(2):30-33
    [207]Priest F. G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev.,1977,41:711-53
    [208]Fu S., Sun J., Qian L., et al. Bacillus phytases:present scenario and future perspectives. Appl. Biochem. Biotechnol.,2008,151:1-8
    [209]Omoike A.,Chorover J. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim. Cosmochim. Acta,2006,70:827-838
    [210]Millen A. E., Bodnar L. M. Vitamin D assessment in population-based studies:a review of the issues. Am. J. Clin. Nutr.,2008,87:1102S-5S
    [211]Lutful Kabir S. M. The role of probiotics in the poultry industry. Int J Mol Sci,2009,10:3531-46
    [212]Feng J., Liu X., Xu Z. R., et al. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig. Dis. Sci.,2007,52:1845-50
    [213]Li X. Q., Zhu Y. H., Zhang H. F., et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea:intestinal microbiota and immune imbalances. PLoS One,2012,7: e40666
    [214]Burkey T. E., Skjolaas K. A.,Minton J. E. Board-invited review:porcine mucosal immunity of the gastrointestinal tract. J. Anim. Sci.,2009,87:1493-501
    [215]Sargeant H. R., McDowall K. J., Miller H. M., et al. Dietary zinc oxide affects the expression of genes associated with inflammation:Transcriptome analysis in piglets challenged with ETEC K88. Vet. Immunol. Immunopathol.,2010,137:120-9
    [216]Delcenserie V, Martel D., Lamoureux M., et al. Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol,2008,10:37-54
    [217]Yurong Y, Ruiping S., Shimin Z., et al. Effect of probiotics on intestinal mucosal immunity and ultrastructure of cecal tonsils of chickens. Arch Anim Nutr,2005,59:237-46
    [218]Adams C. A. The probiotic paradox:live and dead cells are biological response modifiers. Nutr Res Rev,2010,23:37-46
    [219]Zhu Y. H., Li X. Q., Zhang W., et al. Dose-Dependent Effects of Lactobacillus rhamnosus on Serum Interleukin-17 Production and Intestinal T-Cell Responses in Pigs Challenged with Escherichia coli. Appl. Environ. Microbiol.,2014,80:1787-98
    [220]Boge T, Remigy M., Vaudaine S., et al. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine,2009,27:5677-84
    [221]Mauriello E. M., Cangiano G, Maurano F., et al. Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine,2007, 25:788-93
    [222]Shu Q., Qu F., Gill H. S. Probiotic Treatment Using Bifidobacterium lactis HN019 Reduces Weanling Diarrhea Associated With Rotavirus and Escherichia coli Infection in a Piglet Model. J. Pediatr. Gastroenterol. Nutr.,2001,33:171-177
    [223]Geenen P., Van der Meulen J., Bouma A., et al. Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs. Epidemiol. Infect.,2007,135: 1001-1009
    [224]Groschwitz K. R., Hogan S. P. Intestinal barrier function:molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol.,2009,124:3-20; quiz 21-2 [225] Turner J. R. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol,2009,9: 799-809
    [226]Nataro J. P., Kaper J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev.,1998,11:142
    [227]Rijkers G. T., Bengmark S., Enck P., et al. Guidance for substantiating the evidence for beneficial effects of probiotics:current status and recommendations for future research. J. Nutr.,2010,140:671S-6S
    [228]Basu S., Paul D. K., Ganguly S., et al. Efficacy of high-dose Lactobacillus rhamnosus GG in controlling acute watery diarrhea in Indian children:a randomized controlled trial. J. Clin. Gastroenterol., 2009,43:208-213
    [229]靳二辉,陈耀星,王群,等.芽孢杆菌类益生素对肉鸡血细胞及免疫器官组织结构的影响.畜牧兽医学报,2013,44(5):778-787
    [230]Cho J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol., 2008,8:458-466
    [231]Cohen J. The immunopathogenesis of sepsis. Nature,2002,420:885-891
    [232]Mantovani A., Cassatella M. A., Costantini C., et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol.,2011,11:519-531
    [233]Nathan C. Neutrophils and immunity:challenges and opportunities. Nat Rev Immunol.,2006,6: 173-182
    [234]Mlckova P., Cechova D., Chalupna P., et al. Enhanced systemic and mucosal antibody responses to a model protein antigen after intranasal and intratracheal immunisation using Bacillus firmus as an adjuvant. Immunol. Lett.,2001,77:39-45
    [235]Prokesova L., Novakova M., Julak J., et al. Effect of Bacillusfirmus and Other Sporulating Aerobic Microorganisms on in vitro Stimulation of Human Lymphocytes. A Comparative Study. Folia Microbiol, 1994,39:501-504
    [236]Marseglia G. L., Tosca M., Cirillo I., et al. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children:a pilot study. Therapeutics and Clinical Risk Management,2007, 3:13-17
    [237]Dinarello C. A. Cytokines as endogenous pyrogens. J. Infect. Dis.,1999,179:S294-S304
    [238]Anderson R., Wadee A. A. Innate immune mechanisms confer essential first-line host defence against the unrelenting threat posed by environmental microbial and viral pathogens. Continuing Medical Education, 2012,30:273-277
    [239]Liu Y., Ho R. C.-M., Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-a) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder:a meta-analysis and meta-regression. J. Affect. Disord.,2012,139:230-239
    [240]Zhang L., Xu Y.-Q., Liu H.-Y., et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses. Vet. Microbiol.,2010,141:142-148
    [241]Shabana I., Zaraket H.,Suzuki H. Molecular studies on diarrhea-associated Escherichia coli isolated from humans and animals in Egypt. Vet. Microbiol.,2013,167:532-539
    [242]Netea M. G, Kullberg B. J.,Van der Meer J. W. Circulating cytokines as mediators of fever. Clin. Infect. Dis.,2000,31:S178-S184
    [243]Bettelli E., Oukka M.,Kuchroo V. K. TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol,2007,8:345-350
    [244]Chang S. H., Dong C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res.,2007,17:435-440
    [245]Kolls J. K., Linden A. Interleukin-17 family members and inflammation. Immunity,2004.21:467-476
    [246]Llopis M., Antolin M., Carol M., et al. Lactobacillus casei downregulates commensals'inflammatory signals in Crohn's disease mucosa. Inflamm. Bowel Dis.,2009,15:275-283
    [247]Loos M., Geens M., Schauvliege S., et al. Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with enterotoxigenic Escherichia coli. PLoS One,2012,7: e41041
    [248]Fujino S., Andoh A., Bamba S., et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut,2003,52:65-70
    [249]Scott K. P., Gratz S. W., Sheridan P. O., et al. The influence of diet on the gut microbiota. Pharmacol. Res.,2013,69:52-60
    [250]Musso G., Gambino R.,Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med.,2011,62:361-380
    [251]Walsh A., Sweeney T., O'Shea C., et al. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr.,2013,110:1630-1638
    [252]Konstantinov S. R., Favier C. F., Zhu W. Y, et al. Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim Res,2004,53:317-324
    [253]Gareau M. G, Sherman P. M.,Walker W. A. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastro Hepat.,2010,7:503-514
    [254]冼琼珍,马春全,徐礼杰.猪源益生芽孢杆菌抑制大肠杆菌的研究.畜牧与兽医,2007,39(1):38-39
    [255]Ragione R. M. L., Casula G, Cuttine S. M.,et al. Bacillus subtilis spores competitively exclude Escherichia coli 078:K80 in poultry. Vet. Microbiol.,2001,79:133-142
    [256]陈旭东,马秋刚,计成,等.芽孢杆菌和果寡糖制剂对断奶仔猪肠道菌群的影响.中国饲料,2003, 18:11-13
    [257]窦茂鑫,吴涛.不同类型益生素对断奶仔猪肠道微生物区系、pH和挥发性盐基氮的影响.动物营养与饲料科学,2013,40(2):84-87
    [258]Roca M., Nofrarias M., Majo N., et al. Changes in bacterial population of gastrointestinal tract of weaned pigs fed with different additives. Biomed Res Int,2014,2014:269402
    [259]Tlaskalova-Hogenova H., Stepankova R., Kozakova H., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol.,2011,8: 110-120
    [260]Gonzalez-Ortiz G., Hermes R., Jimenez-Diaz R., et al. Screening of extracts from natural feed ingredients for their ability to reduce enterotoxigenic Escherichia coli (ETEC) K88 adhesion to porcine intestinal epithelial cell-line IPEC-J2. Vet. Microbiol.,2013,167:494-499
    [261]Lebeer S., Claes I., Tytgat H. L., et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol.,2012,78:185-193
    [262]孙晓鸣,王萍,黄云飞.几株芽孢杆菌产消化酶分析.江西畜牧兽医杂志,2009,2:13-15
    [263]Deng W., Dong X. F., Tong J. M., et al. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci.,2012,91:575-82
    [264]Cerezuela R., Fumanal M., Tapia-Paniagua S. T., et al. Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immun.,2013,34:1063-70
    [265]董晓丽,张乃锋,周盟,等.复合菌制剂对断奶仔猪生长性能、粪便微生物和血清指标的影响.动物营养学报,2013,25(6):1285-1292
    [266]戴国俊,段忠进,谢恺舟,等.不同剂量地衣芽孢杆菌对断奶仔猪腹泻的影响.上海畜牧兽医通讯,2007,3:40-41
    [267]张董燕,乔海峰,徐炜玲.益生菌对动物肠道微生物生态学影响的研究进展.中国畜牧兽医,2007,34(3):15-17
    [268]Woo J., Ahn J. Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Lett. Appl. Microbiol.,2013,56:307-313
    [269]Klindworth A., Pruesse E., Schweer T., et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res,2013,41:el
    [270]Semova I., Carten J. D., Stombaugh J., et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe,2012,12:277-88
    [271]Turnbaugh P. J., Backhed F., Fulton L., et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe,2008,3:213-23
    [272]De Vadder F., Kovatcheva-Datchary P., Goncalves D., et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell,2014,156:84-96
    [273]Cotillard A., Kennedy S. P., Kong L. C., et al. Dietary intervention impact on gut microbial gene richness. Nature,2013,500:585-8
    [274]Le Chatelier E., Nielsen T., Qin J., et al. Richness of human gut microbiome correlates with metabolic markers. Nature,2013,500:541-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700