猪PGM1基因的序列、表达谱及多态性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据梅山猪(Meishan)与大白猪(Large White)背最长肌组织比较蛋白质组学分析发现磷酸葡萄糖变位酶1(PGM1)在大白猪中高表达,因此PGM1可以作为影响猪肉品质的一个较好的候选基因。PGM同工酶是在糖类代谢过程中起着关键作用的一类酶。鉴于PGM1丰富的多态性使得它在遗传学和法医学上得到了广泛的应用。本研究的主要目的是为分子进化研究奠定基础,为实现分子育种寻找较好的分子标记并初步探索猪PGM1基因3'-UTR在转录后调控中的潜在作用。本研究利用分子生物学技术及生物信息学知识主要对猪PGM1基因进行了研究,研究结果如下:
     (1)在我们的研究中,首先从猪骨骼肌组织分离了一个普遍存在于各组织的PGM1亚型的cDNA,CDS为1,689bp,编码562个氨基酸,与人相应转录本的氨基酸序列相似性达99%。利用推断的猪PGM1氨基酸序列和另外选择的13个物种的氨基酸序列进行了系统树分析,这些物种包括了动物界、植物界和原核生物界,分析结果表明PGM1能较好地将各界生物分开,猪与牛的PGM1比与人的PGM1有着更高的相似性,猪与牛被很好的归为独立的树枝系,且与人在同一个大树枝系里。
     (2)先前比较蛋白质组学研究暗示PGM1在猪上可能存在翻译后修饰的差异,因为经二维凝胶电泳(2D-E)分离及质谱鉴定发现猪PGM1在蛋白胶上存在两个独立的点。然而,在我们的研究中未发现PGM1存在任何错义突变的现象更加支持这个推断。
     (3)位于猪PGM1基因编码区(CDS)的突变位点A420G、C462T和3'-UTR的突变位点G1693A分别由PCR-RFLP和PCR-SSCP鉴定。对CDS内突变位点分析表明A和C等位基因频率在中国地方猪种中显著高于进口的猪种;G和T等位基因频率在国外猪种中显著高于中国地方猪种。
     (4)在284头“大白猪×梅山猪”的F2代群体中对前两个位点与猪重要经济性状进行GLM过程,相关性分析结果表明C462T与猪瘦肉率(LMP)显著相关(P<0.05),经卡方(χ2)适合性检验表明该等位基因座在大白猪(χc2<χ20.05(df))与长白猪(χc2<χ20.05(df))群体中基因型分布没有偏离哈代温伯格平衡(HWE)。
     (5)我们也利用半定量PCR的方法研究了在不同组织中猪PGM家族包括PGM1、PGM2、PGM3和PGM5基因mRNA的表达模式,以及利用实时荧光定量PCR的方法研究了在不同肌肉组织中和不同时期背最长肌组织中猪PGM1基因mRNA的表达模式。在所有分析的组织中,结果表明PGM1在半腱肌中表达最低,在背最长肌中较其它组织表达高,我们推测在背最长肌中PGM总酶活力主要来源于PGM1。
     此外,据文献报道3'-UTR和miRNA结合会抑制蛋白质的翻译过程,于是我们成功构建了将猪PGM1基因完整3'-UTR插入到pEGFP-C1载体多克隆位点(MCS)的真核表达载体,这为下一步进行转录后调控研究打下了基础。
Phosphoglucomutasel(PGM1) is up-regulated in Yorkshire muscles according to proteome analysis of porcine Longissimus Doris between Meishan and Yorkshire, Thus it is a good candidate gene affecting the pork quality. The isozymes of PGM are central to carbohydrate metabolism. PGM1 has also achieved prominence as a key marker in genetic linkage mapping and in forensic science. The aim of this work was to establish foundation for evolution research, to seek better SNPs for MAS and to investigate the potential function of 3'UTR of PGM1 on post-transcriptional level. In our research, methods of molecular biology and bioinformatics were used to study the PGM1 gene and the results are as follows:
     (1) Here we have isolated only one cDNA clone type corresponded to the ubiquitous transcript of PGM1 in porcine skeletal muscles, CDS is 1,689bp and encodes 562 amino acids, which is 99% similarity with the ubiquitous transcript of human PGM1. Putative amino acid sequence of Sus scrofa was closer to B.taurus PGM1 than H.sapiens on the basis of phylogenic tree among 14 selected species. These sequences spanned animal kingdom, plant and prokaryote.
     (2) It is implied that pig PGM1 has at least two different products since PGM1 was separated into two points in albumin gel by 2D-E during the previous studies. However, no missense mutation was detected for the diversity of swine PGM1. We suggested that the PGM1 have disparity in post-translational modification.
     (3) The samesense mutations A420G and C462T of which genotypes and allelic frequencies were analyzed in CDS and mutational site G1693A in 3'-UTR of PGM1 are confirmed by using PCR-RFLP and PCR-SSCP respectively. For the former two SNPs, the frequencies of the'A' and'C allele were dominant in Chinese indigenous breeds.
     (4) The results of correlation analyses between genotype and traits, which were performed by GLM in 284 pigs of the'Yorkshire×Meishan'F2 resoure population, showed that C462T has significant correlation with lean meat percentage(P<0.05). Chi-square test indicated that no deviation from HWE was observed in Landrace(Xc2<χ20.05(df))and Yorkshire(χc2<χ20.05(df)) population.
     (5) We have also studied the temporal and spatial expression profile of the PGM superfamily except PGM4 by semiquantitative RT-PCR and quantitative real-time PCR(qRT-PCR). PGM1 has higher expression in longissimus Dorsi, the lowest in Semitendinosus. We speculate that the total enzymatic activity of PGM in longissimus Dor si come from PGM1.
     In addition, the complete 3'-UTR, which is possibly combined with miRNAs inhibiting the translation of swine PGM1 gene, was successfully inserted into the multiple cloning site(MCS) of pEGFP-C1 vector for the further study on post-transcriptional regulation.
引文
1引自 佚名 现代猪育种新技术和应用策略.http://www.fjxmw.com 2个体识别率(DP)DP=1-∑in=1p12+∑l=1n-1∑j=i+1n2(pipj)2(3pi+3pj-4)
    3Kreutzer R D等:MosqNews,37(3):407,1977(英文)盛伯梁摘黄左截校
    4 http://www.toyobo.co.jp/e/seihin/xr/lifescience/support/manual/FSK-101.pdf
    5 http://www.toyobo.co.jp/e/seihin/xr/lifescience/support/manual/NPK-201F.pdf
    6 OMEGA bio-tek D6950-01手册网址http://www.omegabiotek.com/files/resource/Handbook/46790300.pdf
    7 Fermentas公司网址:http://www.fermentas.com/doubledigest/double.php
    1. 常彩琴,邱宁,王明鑫.精斑中磷酸葡萄糖变位酶(PGM_1)及其亚型的电泳分型.中国法医学杂志,1988,3(4):211-214
    2. 崔洪昌,刘敬梅,Sun, S S.大白菜葡萄糖磷酸变位酶同工酶的纯化及其分子性质.华北农学报,1999,14(1):134-140
    3.崔文涛,单同领,李奎.转基因猪的研究现状及应用前景.中国畜牧兽医,2007,34(4):58-62
    4. 黄骥,王建飞,张红生等.水稻葡萄糖-6-磷酸脱氢酶cDNA的电子克隆.遗传学报,2002,29(11):1012-1016
    5. 江元清,凌毅,赵武玲.真核mRNA的3’非翻译区转录后水平调控作用研究进展.植物学通报,2001,18(1):3-10
    6. 刘榜.国内外猪基因组与分子育种研究进展.遗传育种,2008,(1):66-67
    7. 柳燕.PGM_1和EAP同步等电聚焦电泳分型.法医学杂志,1998,14(1):20
    8. 屈彦纯,邓昌彦,熊远著等.猪6号染色体部分遗传连锁图谱的构建与QTL定位.华中农业大学学报,2002,21(5):409-413
    9. 宋铭忻,周源昌,李淑声.哈尔滨地区猪、犬旋毛虫同工酶电泳比较的研究.东北农业大学学报,1994,25(3):260-265
    10.王伟继,杨翠华,孔杰等.五种海洋生物葡萄糖磷酸变位酶和磷酸葡萄糖异构酶的同工酶分析.水产学报,2006,30(20):156-160
    11.熊远著,邓昌彦.种猪测定原理及方法.北京:中国农业出版社,1999
    12.薛钦昭,Sheila Stiles,张福绥等.海湾扇贝不同种群在磷酸葡萄糖变位酶基因位点的遗传结构与性状.海洋与湖沼,1999,30(4):381-390
    13.于晶.猪FBXO32与其转录因子家族的基因克隆、定位、SNP检测及与生产性状的相关分析.[硕士学位论文].武汉:华中农业大学图书馆,2006
    14.余梅.猪12号染色体上四个新基因的分离、鉴定与物理定位.[博士学位论文].武汉:华中农业大学图书馆,2003
    15.赵赣,张守全,黄肖武等.一种改进的乳酸脱氢酶同工酶染色法.生物化学与生物物理进展,2000,04:438-439
    16.左波.猪3、4和7号染色体QTL定位及六个候选基因的分离和鉴定.[博士学位论文].武汉:华中农业大学图书馆,2004
    17. Belkin A M, Klimanskaya I V, Lukashev M E, et al. A novel phosphoglucomutase-related protein is concentrated in adherens junctions of muscle and nonmuscle cells. J Cell Sci,1994,107 (Pt 1):159-173
    18. Beutler E. Red cell metabolism:a manual of biochemical methods. Boca Raton, New York, USA, CRC Press,1975,79-81
    19. Billardon C, Nguyen Van C, Picard J Y, et al. Linkage studies of enzyme markers in man-mouse somatic cell hybrids. Ann Hum Genet,1973,36:273-284
    20. Bird A P. CpG-rich islands and the function of DNA methylation. Nature,1986,321:209-213
    21. Boros L G, Lee W N, and Go V L. A metabolic hypothesis of cell growth and death in pancreatic cancer. Pancreas,2002,24:26-33
    22. Boutet I, Tanguy A, and Moraga D. Response of the Pacific oyster Crassostrea gigas to hydrocarbon contamination under experimental conditions. Gene,2004,329:147-157
    23. Brutus L, Riandey M F, Guilloteau J, et al. [Demonstration of two twin species A and B of the Aedes detritus (Haliday,1833) complex from the Atlantic coast of France]. Parasite,1994, 1:167-170
    24. Calissano M, Diss J K, and Latchman D S. Post-transcriptional regulation of the Brn-3b transcription factor in differentiating neuroblastoma cells. FEBS Lett,2007,581:2490-2496
    25. Cantu J M, and Ibarra B. Phosphoglucomutase:evidence for a new locus expressed in human milk. Science,1982,216:639-640
    26. Caspar T, Huber S C, and Somerville C. Alterations in Growth, Photosynthesis, and Respiration in a Starchless Mutant of Arabidopsis thaliana (L.) Deficient in Chloroplast Phosphoglucomutase Activity. Plant Physiol,1985,79:11-17
    27. Chretien S, Dubart A, Beaupain D, et al. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci,1988,85:6-10
    28. Collins F S. Positional cloning moves from perditional to traditional. Nat Genet,1995,9:347-350
    29. Cui Y, Barford J P, and Renneberg R. Amperometric determination of phosphoglucomutase activity with a bienzyme screen-printed biosensor. Anal Biochem,2006,354:162-164
    30. Dai J B, Liu Y, Ray W J, et al. The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. J Biol Chem,1992,267:6322-6337
    31. Drago G A, Hopkinson D A, Westwood S A, et al. Antigenic analysis of the major human phosphoglucomutase isozymes:PGM1, PGM2, PGM3 and PGM4. Ann Hum Genet,1991, 55:263-271
    32. Dworniczak K, Ginalska G, and Patkowska M. Isolation and characterisation of phosphoglucomutase (PGM) from Escherichia coli bacterial cells. SECTIO D,2008, ⅩⅪ:99-107
    33. Edfors-Lilja I, Wattrang E, Andersson L, et al. Mapping quantitative trait loci for stress induced alterations in porcine leukocyte numbers and functions. Anim Genet,2000,31:186-193
    34. Edwards Y H, Putt W, Fox M, et al. A novel human phosphoglucomutase (PGM5) maps to the centromeric region of chromosome 9. Genomics,1995,30:350-353
    35. Gardner J P A, and Lobkov L. A test for overdominance at the phosphoglucomutase-2 locus in Pacific oysters (Crassostrea gigas) from New Zealand. Aquaculture,2005,244:29-39
    36. Gottlieb L D. Conservation and Duplication of Isozymes in Plants. Science,1982,216:373-380
    37. Gururaj A, Barnes C J, Vadlamudi R K, et al. Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene,2004,23:8118-8127
    38. Harding N E, Raffo S, Raimondi A, et al. Identification, genetic and biochemical analysis of genes involved in synthesis of sugar nucleotide precursors of xanthan gum. J Gen Microbiol, 1993,139:447-457
    39. Herman J G. Epigenetics in lung cancer:focus on progression and early lesions. Chest,2004,125, 119S-122S
    40. Hesketh J. Translation and the cytoskeleton:a mechanism for targeted protein synthesis. Mol Biol Rep,1994,19:233-243
    41. Hesketh J, Campbell G, Piechaczyk M, et al. Targeting of c-myc and beta-globin coding sequences to cytoskeletal-bound polysomes by c-myc 3'untranslated region. Biochem J,1994, 298 (Pt1):143-148
    42. Hesketh J E. mRNA targeting:signals in the 3'-untranslated sequences for sorting of some mRNAs. Biochem Soc Trans,1996,24:521-527
    43. Ingi T, Mori H, and Inuzuka M. Identification of human calphoglin-induced phosphoglucomutase phosphorylation in Escherichia coli. J Chromatogr B Analyt Technol Biomed Life Sci,2005, 824:312-318
    44. Insley J, McDermott A, and Parrington J. Familial structural chromosome abnormality with maternal mosaicism. Ann Genet,1968,11:138-144
    45. Izzo P, Costanzo P, Lupo A, et al. Human aldolase A gene. Structural organization and tissue-specific expression by multiple promoters and alternate mRNA processing. Eur J Biochem, 1988,174:569-578
    46. Jackson R J. Cytoplasmic regulation of mRNA function:the importance of the 3'untranslated region. Cell,1993,74:9-14
    47. Khanna R, and Tewari K K. Phosphoglucomutase activity in Aspergillus niger. Arch Mikrobiol, 1963,45:398-406
    48. Kislauskis E H, Li Z, Singer R H, et al. Isoform-specific 3'-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol,1993,123:165-172
    49. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res,1987,15:8125-8148
    50. Kuhnl P, Schmidtmann U, and Spielmann W. Evidence for two additional common alleles at the PGM1 locus (phosphoglucomutase--E.C.:2.7.5.1). A comparison by three different techniques. Hum Genet,1977,35:219-223
    51. Lahiri S D, Zhang G, Radstrom P, et al. Crystallization and preliminary X-ray diffraction studies of beta-phosphoglucomutase from Lactococcus lactus. Acta Crystallogr D Biol Crystallogr,2002, 58:324-326
    52. Lazarevic V, Soldo B, Medico N, et al. Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol,2005,71:39-45
    53. Lee Y S, Marks A R, Gureckas N, et al. Purification, characterization, and molecular cloning of a 60-kDa phosphoprotein in rabbit skeletal sarcoplasmic reticulum which is an isoform of phosphoglucomutase. J Biol Chem,1992,267:21080-21088
    54. Lin S L, Miller J D, and Ying S Y. Intronic MicroRNA (miRNA). J Biomed Biotechnol.2006, 1-13
    55. Lin Z, Konno M, Abad-Zapatero C, et al. The structure of rabbit muscle phosphoglucomutase at intermediate resolution. J Biol Chem,1986,261:264-274
    56. Liu, B H. Statistical genomics:linkage, mapping, and QTL analysis. Boca Raton, FL, USA, CRC Press,1998,404-409
    57. Looft C, Paul S, and Kalm E. Detection and mapping of mutations in the porcine phosphoglucomutase 1 (PGM1) and phosphorylase kinase gamma unit (PHKG) genes using F-SSCP-analysis. Anim Genet,1999,30:234
    58. Lytovchenko A, Hajirezaei M, Eickmeier I, et al. Expression of an Escherichia coli phosphoglucomutase in potato (Solanum tuberosum L.) results in minor changes in tuber metabolism and a considerable delay in tuber sprouting. Planta,2005,221:915-927
    59. Malek M, Dekkers J C, Lee H K, et al. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. Ⅱ. Meat and muscle composition. Mamm Genome,2001a,12:637-645
    60. Malek M, Dekkers J C, Lee H K, et al. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. Ⅰ. Growth and body composition. Mamm Genome,2001b,12:630-636
    61. Martin A, Watterson M P, Brown A R, et al.6R-and 6S-6C-Methylmannose from D-mannuronolactone Inhibition of phosphoglucomutase and phosphomannomutase:agents for the study of the primary metabolism of mannose. Tetrahedron:Asymmetry, Elsevier Science Ltd, 1999,10:355-366
    62. Martin C L, Wong A, Gross A, et al. The evolutionary origin of human subtelomeric homologies--or where the ends begin. Am J Hum Genet,2002,70:972-84
    63. McLauchlan J, Gaffney D, Whitton J L, et al. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3'termini. Nucleic Acids Res,1985,13:1347-1368
    64. Moiseeva E P, Belkin A M, Spurr N K, et al. A novel dystrophin/utrophin-associated protein is an enzymatically inactive member of the phosphoglucomutase superfamily. Eur J Biochem,1996, 235:103-113
    65. Neves A R, Pool W A, Castro R, et al. The alpha-phosphoglucomutase of Lactococcus lactis is unrelated to the alpha-D-phosphohexomutase superfamily and is encoded by the essential gene pgmH. J Biol Chem,2006,281:36864-36873
    66. Ortner S, Binder M, Scheiner O, et al. Molecular and biochemical characterization of phosphoglucomutases from Entamoeba histolytica and Entamoeba dispar. Mol Biochem Parasitol, 1997,90:121-129
    67. Pang H, Li Z J, Wang B J, et al. Analysis of the Human Phosphoglucomutase-3 Gene Based on Mismatched PCR-RFLP Technique. Biochemical Genetics,2010,48:208-214
    68. Perlino E, Cortese R, and Ciliberto G. The human alpha 1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J,1987,6:2767-2771
    69. Putt W, Ives J H, Hollyoake M, et al. Phosphoglucomutase 1:a gene with two promoters and a duplicated first exon. Biochem J,1993,296 (Pt 2):417-422
    70. Quick C B, Fisher R A, and Harris H. A kinetic study of the isozymes determined by the three human phosphoglucomutase loci PGM1, PGM2, and PGM3. Eur J Biochem,1974,42:511-517
    71. Seidel H M, Pompliano D L, and Knowles J R. Exons as microgenes? Science,1992, 257:1489-1490
    72. Shows T B, Ruddle F H, and Roderick T H. Phosphoglucomutase electrophoretic variants in the mouse. Biochemical Genetics,1969,3:25-35
    73. Stern-Straeter J, Bonaterra G A, Hormann K, et al. Identification of valid reference genes during the differentiation of human myoblasts. BMC Mol Biol,2009,10:66
    74. Stojkovic T, Rolland M O, Hezode M, et al. Phosphoglucomutase deficiency:A rare glycogen storage disease with an adult onset. Neuromuscular Disorders,2008,18:829-829
    75. Takahashi K, Inuzuka M, and Ingi T. Cellular signaling mediated by calphoglin-induced activation of IPP and PGM. Biochem Biophys Res Commun,2004,325:203-214
    76. Tanguy A, Boutet I, Boudry P, et al. Molecular identification and expression of the phosphoglucomutase (PGM) gene from the Pacific oyster Crassostrea gigas. Gene,2006, 382:20-27
    77. Tanguy A, Boutet I, Laroche J, et al. Molecular identification and expression study of differentially regulated genes in the Pacific oyster Crassostrea gigas in response to pesticide exposure. FEBS J,2005,272:390-403
    78. Tremblay L W, Zhang G, Dai J, et al. Chemical confirmation of a pentavalent phosphorane in complex with beta-phosphoglucomutase. J Am Chem Soc,2005,127:5298-5299
    79. Veyrune J L, Campbell G P, Wiseman J, et al. A localisation signal in the 3'untranslated region of c-myc mRNA targets c-myc mRNA and beta-globin reporter sequences to the perinuclear cytoplasm and cytoskeletal-bound polysomes. J Cell Sci,1996,109 (Pt 6):1185-1194
    80. Vives Corrons J L, Merino A, Pujades A, et al. Combined study of lymphocyte phosphoglucomutase (PGM) and adenylate kinase (AK) isoenzymes in the early characterization of bone marrow engraftment. Scand J Haematol,1985,35:469-473
    81. Wall R J. New gene transfer methods. Theriogenology,2002,57:189-201
    82. Ward P I, Jann P, and Blanckenhorn W U. Temperature-mediated seasonal variation in phosphoglucomutase allozyme frequency in the yellow dung fly, Scathophaga stercoraria. Mol Ecol,2004,13:3213-3218
    83. Whitehouse D B, Tomkins J, Lovegrove J U, et al. A phylogenetic approach to the identification of phosphoglucomutase genes. Mol Biol Evol,1998,15:456-462
    84. Wiseman J W, Glover L A, and Hesketh J E. Localisation of beta-globin reporter sequences to the perinuclear cytoplasm by myosin heavy chain and vimentin 3'untranslated regions. Biochem Soc Trans,1996,24:188S
    85. Wong A, Vallender E J, Heretis K, et al. Diverse fates of paralogs following segmental duplication of telomeric genes. Genomics,2004,84:239-47
    86. Xie X, Lu J, Kulbokas E J, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature,2005,434:338-345
    87. Xu Y J, Jin M L, Wang L J, et al. Differential proteome analysis of porcine skeletal muscles between Meishan and Large White. J Anim Sci,2009,87:2519-2527
    88. Young R A, Hagenbuchle O, and Schibler U. A single mouse alpha-amylase gene specifies two different tissue-specific mRNAs. Cell,1981,23:451-458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700