晚疫病抗性信号传导研究体系的构建和番茄抗病资源的创新
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晚疫病是危害茄科作物马铃薯和番茄最严重的病害之一,对番茄和马铃薯生产造成巨大的经济损失。近年来,马铃薯抗晚疫病基因克隆取得了很快的进展,已经有来源于野生种Solanum. demissum的R1和R3a及来源于S. bulbocastanum的RB和Rpi-blb2、Rpi-blb3被克隆。由于晚疫病进化潜力高,所以新的抗病基因很快就被新的生理小种克服,限制了抗病基因的利用。相似的情况也出现在番茄抗晚疫病研究中,番茄有四个抗晚疫病基因被定位,但这四个基因的在田间的应用效果也十分有限。因此探索已克隆抗病基因的抗病机理,了解抗病信号传导途径就显得尤为重要,发现信号途径中的关键基因必将为晚疫病的防治开辟一个新的领域。抗病基因R3a和无毒基因Avr3a是晚疫病研究中第一对被克隆的符合基因对基因假说的R-Avr基因对,它们的克隆为我们研究抗晚疫病信号途径提供了基础。本论文主要的研究内容与结果如下:
     1.利用VIGS和瞬时表达技术研究已知的信号传导关键基因是否参与R3a-Avr3a的互作。通过构建已知抗病信号传导关键基因EDS1、NDR1、RAR1、SGT1、HSP90、NPR1、NtWRKY1、SIPK1的VIGS载体,以烟草作为模式系统沉默上述八个基因后,再利用瞬时表达技术在已沉默基因的烟草叶片中瞬时表达R3a和Avr3a,结果表明在SGT1和HSP90基因沉默的烟草植株中,R3a和Avr3a互作的HR被阻断,说明这两个基因参与了R3a与Avr3a的HR反应,在R3a的抗病信号途径中起重要作用。
     2.将抗晚疫病基因R3a转入番茄,获了对马铃薯晚疫病菌小种特异性抗性的转基因植株,说明R3a基因抗病信号传导途径在番茄和马铃薯中的保守性,也为利用番茄研究马铃薯的抗病基因R3a提供了证据。为了发现新的R3a与Avr3a互作过程中的关键基因,我们构建了一个用于研究晚疫病抗病信号传导的系统。在R3a转基因番茄后代中利用皮脂激素诱导系统(GVG系统)诱导表达与R3a相对应的无毒基因Avr3a,获得的MM-R3a-Avr3a转基因植株叶片在涂抹或喷施化学诱导剂地塞米松(DEX)的情况下能够诱导类似HR反应的产生,该系统能够用来研究构建突变体库,筛选HR反应被阻断的突变体,用于R3a与Avr3a互作信号途径的研究。
     3.快速筛选MM-R3a-Avr3a转基因植株的纯合株系是建立突变体库的重要前提。利用连接接头的PCR方法,扩增R3a基因在番茄基因组中插入位点的侧翼序列,该序列与NCBI数据库中位于第四号染色体的编号为SL_MboI-127L14的克隆有100%的相似性,说明R3a基因整合于番茄的第四号染色体上。Avr3a基因侧翼序列与SGN的番茄BAC末端数据库中编号为LE_HBa0167K15_SP6_13180的序列具有100%的同源性,但该BAC末端序列定位于哪条染色体目前未知。利用R3a和Avr3a的侧翼序列和边界序列的扩增,在转基因的T1代筛选到两个基因都纯合的MM-R3a-Avr3a植株。
     4.为了研究抗晚疫病基因R3a能否应用于番茄,我们对22份番茄晚疫病菌中的Avr3a等位基因进行了分析,结果表明R3a基因可以应用于部分地区番茄的抗晚疫病基因工程育种;除此之外,我们还将转R3a基因番茄和转另外两个马铃薯抗晚疫病基因R1和Rpi-blb1/RB的番茄植株,接种番茄晚疫病菌的主流小种和强致病力小种,证明马铃薯的抗晚疫病基因在番茄中对番茄的晚疫病菌株均具有一定的抗病功能,尤其是马铃薯抗晚疫病基因RB能够对番茄致病力最强的菌株产生抗性,为番茄的抗晚疫病基因工程育种提供了新的途径。
Late blight, caused by the oomycete Phytophthora infestans(Mont.)de Bary, is a devastating disease of two Solanaceous crops, tomato and potato. Over decades years efforts, five R genes have been cloned, such as R1 and R3a from Solanum demissum, RB (Rpi-blb1), Rpi-blb2 and Rpi-blb3 from S. bulbocastanum. But as new virulent races emerged rapidly, these race-specific R genes provided only short-lived resistance in the field. The similar situations have occurred in tomato, four resistance genes have been mapped and deployed in cultivars but the effectiveness is limited because of the fast evolving P. infestans pathogen in the field. In-depth understanding of signal transduction mechanisms underlying potato R gene resistance may help to generate effective measures to control late blight. R3a from potato and Avr3a from P. infestans are the first pair of R-AVR genes which have been cloned in potato and P. infestans which is the basic theory of our research.The results were as follows:
     1. Constructed the VIGS vectors contain key signal transduction gene EDS1, NDR1, RAR1, SGT1, HSP90, NPR1, NtWRKY1, SIPK1 respectively. Transient expressed R3a and Avr3a gene in Nicotiana benthamiana after the VIGS gene silencing. Hypersensitive cell death was interrupted in SGT1 and HSP90 silenced plants which indicated that SGT1 and HSP90 participated in R3a and Avr3a interaction and played a key role in R3a resistance sinal pathway.
     2. Transgenic tomatoes contain R3a gene displayed race-specific resistance to P. infestans which verified the conservation of resistance signal pathway in tomato and potato, so it is feasible to use tomato as a model plant to research tomato late blight gene R3a. In order to find new genes that participate in R3a and Avr3a interaction, a novel transgenic tomato plant conferred potato late blight resistance gene R3a and glucocorticoid-inducible avirulence gene Avr3a was constructed in our study. MM-R3a-Avr3a plants showed specific cell death response induced by DEX. This system will be used to large-scale screen the mutants which HR were interrupted.
     3. In order to screen homozygous MM-R3a-Avr3a lines to construct the mutant library, we use modified adaptor ligation PCR method amplified R3a and Avr3a gene flanking sequences in tomato genome. The flanking sequence of R3a had 100% similarity with clone SL_MboI-127L14 on chromosomeⅣin NCBI database which indicated R3a gene integration in tomato genome on chromosomeⅣ. The flanking sequence of Avr3a had 100% similarity with a BAC end sequence LE_HBa0167K15_SP6_13180 in SGN database, but until now we still didn’t know this BAC end sequence located on which chromosome. By flanking sequence and border sequence we screened out homozygous MM-R3a-Avr3a lines in T1 transgenic generation.
     4. We analyzed Avr3a alleles of 22 tomato late blight isolates which demostrated that R3a gene can be used in tomato reisitance breeding in some areas. Other two potato late blight genes R1 and Rpi-blb1/RB were also introduced into tomato. Transgenic plants were inoculated by tomato widly distribute isolates and the high virulence isolates and showed resistance to some tomato late bligt isolates, especially RB, resist the high virulence isolates of tomato which offered a new way for tomato late blight transgene breeding.
引文
1.冯兰香,杨宇红,谢丙炎,冯东昕,杨翠荣.中国18省市番茄晚疫病菌生理小种的鉴定,园艺学报,2004, 31(6):758~761.
    2.刘庆.番茄Cf-4/Avr4互作系统中信号传导基因的克隆与功能分析,北京:中国农业科学院,2005.
    3.薛敏菊,李宝聚,傅俊范.番茄晚疫病研究进展,沈阳农业大学学报, 2002, 33(6): 456~460.
    4.杨雅云,罗文富,杨艳丽.马铃薯及番茄晚疫病菌的核糖体DNA-ITS区段序列分析,云南农业大学学报,2005, 20(2):188~192.
    5.朱杰华.中国马铃薯晚疫病菌群体遗传结构研究.博士学位论文.河北:河北农业大学,2004.
    6. Aarts N., Metz M., Holub E., Staskawicz B.J., Daniels M.J., Parker J.E. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95:10306~10311.
    7. Allen R.L., Bittner-Eddy P.D., Grenville-Briggs L.J., Meitz J.C., Rehmany A.P., Rose L.E., Beynon J.L. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science, 2004, 306:1957~1960.
    8. Aoyama T. and Chua N-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J, 1997, 11: 605~612.
    9. Armstrong M.R., Whisson S.C., Pritchard L., Bos J.I.B, Venter E., Avrova A.O., Rehmany A. P., Bohme U., Brooks K., Cherevach I., Hamlin N., White B., Fraser A., Lord A., Quail M.A., Churcher C., Hall N., Berriman M., Huang S., Kamoun S., Beynon J.L., Birch P.R.J. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc. Natl. Acad. Sci. USA, 2005, 102:7766~7771.
    10. Austin M.J., Muskett P., Kahn K., Feys B.J., Jones J.D., Parker J.E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 2002, 295:2077~2080.
    11. Azevedo C., Sadanandom A., Kitagawa K., Freialdenhoven A., Shirasu K., Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295:2073~2076.
    12. Ballvora A., Ercolano M.R., Weiss J., Meksem K., Bormann C.A., Oberhagemann P., Salamini F., Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J, 2002, 30: 361~371.
    13. Balzergue S., Dubreucq B., Chauvin S., Le-Clainche I., Le Boulaire F., de Rose R., Samson1 F., Biaudet V., Lecharny A., Cruaud C., Weissenbach J., Caboche M., Lepiniec L. Improved PCR-Walking for large-scale isolation of plant T-DNA borders, Biotechniques, 2001, 30:496~504.
    14. Barr D.J.S. The zoosporic grouping of plant pathogens, entity or non-entity. Buczaki S.T. Zoosporic plant pathogens, a modern Perspectives, Academic Press, 1983, 43~83.
    15. Bartnicki-Garcia S., Wang M.C. Biochemical aspects of morphogenesis in Phytophthora. In: Erwin D.C., Bartnicki-Garcia S., Tsao P.H. Phytophthora, its biology, taxonomy, ecology, and pathology.APS Press, St. Paul, 1983, 121~137.
    16. Bendahmane A., Kohn B.A., Dedi C., Baulcombe D.C. The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J., 1995, 8:933~41.
    17. Bendahmane A., Querci M., Kanyuka K., Baulcombe D.C. Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J, 2000, 21:73~81.
    18. Bhattacharjee S., Hiller N.L., Liolios K., Win J., Kanneganti T.D., Young C., Kamoun S., Haldar K. The malarial host-targeting signal is conserved in the Irish potato famine pathogen. PloS Pathog, 2006, 2:e50.
    19. Bhattarai K.K., Li Q., Liu Y., Dinesh-Kumar S.P., Kaloshian I. The Mi-1-Mediated Pest Resistance Requires Hsp90 and Sgt1. Plant Physiology, 2007, 144: 312~323.
    20. Bisgrove S.R., Simonich M.T., Smith N.M., Sattler A., Innes R.W. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell, 1994, 6: 927~933.
    21. Bohner S., Lenk I., Rieping M., Herold M., Gatz C. Transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression. Plant J, 1999, 19:87~95.
    22. Bos J.I.B., Kanneganfi T.D., Young C., Cakir C., Huitema E., Win J., Armstrong M.R., Birch P.R.J., Kamoun S.. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J, 2006, 48:165~176.
    23. Bourke A. Potato blight in Europe in 1845: The scientific controversy. In: Phytophthora (Lucas, J.A., Shattock, R.C., Shaw, D.S. and Cooke, L.R.). Cambridge, UK: Cambridge University Press, 1991, pp. 12~24.
    24. Brandwagt B.F., Mesbah L.A., Takken F.L.W, Laurent P.L., Kneppers T.J.A, Hille J. , Nijkamp H.J.J. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc. Natl. Acad. Sci. USA, 2000, 97: 4961~4966.
    25. Brigneti G., Martin-Hernandez A.M., Jin H.L., Chen J., Baulcombe D.C., Baker B. Jones J.D.G. Virus-induced gene silencing in Solanum species. Plant J., 2004, 39(2): 264~271.
    26. Brouwer D.J., Jones E.S., St Clair D.A.QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome, 2004, 47 (3): 475~492
    27. Burton R.A., Gibeaut D.M., Bacic A., Findlay K., Roberts K., Hamilton A. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell, 2000, 12: 691~706
    28. Calder V.L., Palukaitis P. Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. J. Gen. Virol, 1992, 73:165~68.
    29. Cao H., Glazebrook J., Clarke J., Volko S., Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57 ~63.
    30. Cao H., Li X., Dong X.. Generation of broad-spectrum disease resistance by overexpression of anessential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA, 1998, 95: 6531~6536.
    31. Century K.S., Holub E.B., Staskwicz B.J. NDR1,a locus for Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA, 1995, 92: 6597~6601.
    32. Century K.S., Shapiro A.D., Repetti P.P., Dahlbeck D., Holub E., Staskawicz B.J. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science, 1997, 278:1963~1965.
    33. Chen C., Chen Z. Isolation and characterization of two pathogen and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol, 2000, 42:387~396.
    34. Chisholm S.T., Coaker G., Day B., Staskawicz B.J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124: 803~814
    35. Chunwongse J., Chunwongse C., Black L., Hanson P.. Mapping of the Ph-3 gene for late blight from L. pimpinellifolium L3708. Rep. Tomato Genet. Coop, 1998, 48: 963~971.
    36. Cooke D.E.L., Lees A.K., Hansen J.G., Lassen P., Andersson B., Bakonyi J. From a european to a global database of P. infestans genetic diversity: examining the nature and significance of population change. 2008. Beijing: The Third International Late Blight Conference.
    37. Cottage A., Yang A.P., Maunders H., de Lacy R.C., Ramsay N.A. Identification of DNA sequences flanking T-DNA insertions by PCR-Walking. Plant Mol. Biol. Rep, 2001, 19:321~327.
    38. David K.M., Perrot-Rechenmann C. Characterization of a tobacco bright yellow 2 cell line expressing the tetracycline repressor at a high level for strict regulation of transgene expression. Plant Physiol, 2001, 125:1548~1553.
    39. Day B., Dahlbeck D., Staskawicz B.J. NDR1 Interaction with RIN4 Mediates the Differential Activation of Multiple Disease Resistance Pathways in Arabidopsis. Plant Cell, 2006, 18:2782~2791.
    40. DeIlarduya O.M., Moore A.E., Kaloshian I. The tomato Rme1 locus is required for Mi-mediaed resistance to rootknot nematodes and the potato aphid. Plant J., 2001, 27:417~425.
    41. Dick M.W. The Straminipillous fungi, a new classification for the biflagellate fungi and their uniflagellate relatives with particular reference to Lagenidiaceous fungi. CAB Internat Mycol Pap, 1995, 168.
    42. Dinesh-Kumar S.P., Tham W.H., Baker B.J. Structure function analysis of the tobacco mosaic virus resistance gene N. Proc.Natl.Acad.Sci.USA, 2000, 97:14789~14794.
    43. Dixon M.S., Hatzixanthis K., Jones D.A., Harrison K., Jones J.D.G. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucinerich repeat copy number. Plant Cell, 1998, 10:1915~25.
    44. Dixon M.S., Jones D.A., Keddie J.S., Thomas C.M., Harrison K., Jones J.D.G. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucinerich repeat proteins. Cell, 1996, 84:451~59.
    45. Dong J., Chen C., Chen Z. Expression profiles of the Arabidopsis WRKY gene super family during plant defense response. Plant Mol Biol, 2003, 51:21~37.
    46. Ekengren S.K., Liu Y., Schiff M., Dinesh-Kumar S.P., Martin G.B. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J, 2003, 36: 905~917.
    47. Erickson F.L., Holzberg S., Calderon-Urrea A., Handley V., Axtell M., Corr C., Baker B. The helicase domain of the TMV replicase proteins induces the N-mediated defense response in tobacco. Plant J., 1999, 18:67~75.
    48. Erinile I.D., Quimv J.G. An Epiphytotic of late blight of tomatos in Nigeria. Plant Disease, 1998, 64(7): 701~702
    49. Eulgen T., Rushton P.J., Robatzek S., Somssich I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5(5):199~206.
    50. Falk A., Feys B.J., Frost L.N., Jones J.D., Daniels M.J., Parker J.E. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA, 1999, 96: 3292~3297.
    51. Fay J.C. and Fry W.E. Effects of hot and cold temperatures on the survival of oospores produced by United States strains of Phytophthora infestans. Am. Potato J., 1997, 74:315~332.
    52. Feys B.J., Moisan L.J., Newman M.A., Parker J.E. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J., 2001, 20:5400~5411.
    53. Fischer R., Vaquero-Martin C., Sack M., Drossard J., Emans N., Commandeur U. Towards molecular farming in the future: transient protein expression in plants. Biotech Appl Biochem, 1999, 30:113~116.
    54. Flor H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol., 1971, 9: 275~296.
    55. Fry W.E. Phytophthora infestans: the plant (and R gene) destroyer. Molecular plant pathology, 2008, 9(3): 385~402
    56. Fry W.E., Goodwin S.B. Re-emergenoe of potato and tomato late blight in the United States. Plant Disease, 1997, 81(12): 1349~1357
    57. Gabriels S.H.E.J, Takken F.L.W, Vossen J.H., de Jong C.F., Liu Q., Turk S.C., Wachowski L.K., Peters J., Witsenboer H.M., de Wit P.J., Joosten M.H. cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol. Plant Microbe Interact, 2006, 19:567~76.
    58. Gabriels S.H.E.J, Vossen J.H., Ekengren S.K, van Ooijen G., Abd-El-Haliem A.M., Berg G.C.M. van den, Rainey D.Y., Martin G.B., Takken F.L.W., de Wit P.J.G.M., Joosten M.H.A.J. An NB-LRR protein required for HR signaling mediated by both extra- and intra-cellular resistance proteins. Plant J., 2007, 50:14~28.
    59. Gatz C. Chemical control of gene expression. Annu. Rev. Plant Physiol.. Plant Mol. Biol., 1997, 48: 89~108.
    60. Gatz C. Chemically inducible promoters in transgenic plants. Curr. Opin. Biotech., 1996, 7:168~172.
    61. Gatz C., Frohberg C., Wendenburg R. Stringent repression and homogeneous derepression by tetracycline of a modified CaMV35S promoter in intact transgenic tobacco plants. Plant J., 1992, 2:397~404.
    62. Gatz C., Lenk I. Promoters that respond to chemical inducers. Trends Plant Sci., 1998, 3:352~358.
    63. Gatz C., Quai P.H. Tn10-encoded tetrepressor can regulate an operator-containing plant promotor, Proc. Natl. Acad. Sci. USA, 1988, 85:1394~1397.
    64. Gil P., Green P.J. Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: The 3’untranslated region functions as an mRNA instability determinant, EMBO J., 1996, 15:1678~1686.
    65. Griffith J., Davis A.J., Grant B.R. Target sites of fungicides to control Oomycetes. In: Koller W Target sites of fungicide action. London, UK: CRC Press, 1992, 69~100.
    66. Hartman G.l., Huang Y. Characteristics of Phytophthora infestans isolates and development of late blight on tomato in Taiwan. Plant Disease, 1995, 79 (8): 849~540
    67. Holzberg S., Brosio P., Gross C., Pogue G.P. Barley snipe mosaic virus-induced gene silencing in a monocot plant. Plant J., 2002, 30:315~27
    68. Hu G., de Hart A.K.A., Li Y., Ustach C., Handley V., Navarre R., Hwang C.F., Aegerter B.J., Williamson V.M., Baker B. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J., 2005, 42:376~391.
    69. Huang S., Van der Vossen E.A.G., Kuang H., Vivianne G.A.A.V., Zhang N. , Borm T.J.A., van Eck H.J., Baker B., Jacobsen E. and. Visser R.G.F. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J., 2005, 42(2): 261~271
    70. Huitema E., Bos J.I., Tian M., Win J., Waugh M.E., Kamoun S. Linking sequence to phenotype in Phytophthora plant interactions. Trends Micro biol., 2004, 12:193~200.
    71. Hwang C.F., Bhakta A.V., Truesdell G.M., Pudlo W.M., Williamson V.M. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell, 2000, 12:1319~29.
    72. Jia Y., McAdams S.A., Bryan G.T., Her-shey H.P., Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBOJ., 2000, 19:4004~4014.
    73. Jin H.L., Axtell M.J., Dahlbeck D., Ekwenna O., Zhang S.Q., Staskawicz B., Baker1 B. NPK1, an MEKK1-like mitogen activated protein kinase, regulates innate immunity and development in plants. Dev Cell, 2002, 3(2):291~297.
    74. Jin H.L., Liu Y.D., Yang K.Y., Kim C.Y., Baker B., Zhang S. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J, 2003, 33(4):719~731.
    75. Joh L.D., Wroblewski T., Ewing N.N., VanderGheynst J.S. High-level transient expression of recombinant protein in lettuce. Bio technol Bioeng., 2005, 91(7):861~871.
    76. Jones D.A., Thomas C.M., Hammond-Kosack K.E., Balint-Kurti P.J., Jones J.D.G. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994,266:789~93.
    77. Joosten M.H.A.J., Cozijnsen T.J., De Wit P.J.G.M. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature, 1994, 367:384~86.
    78. Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol., 2006, 44: 41~60.
    79. Kamoun S., Huitema E., Vleeshouwers V.G.A.A. Resistance to oomycetes: a general role for the hypersensitive response . Trends Plant Sci., 1999, 4:196~200.
    80. Kamoun S., van West P., Vleeshouwers V.G., de Groot K.E., Govers F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell, 1998, 10:1413~1426.
    81. Kang H.G., Fang Y., Singh K.B. A glucocorticoid inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes, Plant J, 1999, 20:127~133.
    82. Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., Yoshioka H., Terauchi R. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol., 2003, 4(5): 383~391.
    83. Kato M., Mizubuti E.S., Goodwin S.B., Fry W.E. Sensitivity to protectant fungicides and pathogenic fitness of clonal lineages of Phytophthora infestans in the United States. Phytopathology. 1997, 87:973~978.
    84. Kawchuk L.M., Hachey J., Lynch D.R., Kulcsar F., van Rooijen G., Waterer D.R., Robertson A., Kokko E., Byers R., Howard R.J., Fischer R., Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA, 2001, 98:6511~6515.
    85. Kay S., Boch J., Bonas U. Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol. Plant Microbe Interact, 2005, 18:838~48.
    86. Keen N.T., Tamaki S., Kobayashi D., Gerhold D., Stayton M., Shen H., Gold S., Lorang J., Thordal-Christensen H., Dahlbeck D., Staskawicz B.J. Bacteria expressing avirulence gene produce a specific elicitor of the soybean hypersensitive reaction. Molecular Plant-Microbe Interaction, 1990, 3:112~121.
    87. Kim Y.J., Lin N.C., Martin G.B. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell, 2002, 109:589~599.
    88. Kjemtrup S., Sampson K.S., Pecle C.G., Nguyen L.V., Conkling M.A., Thompson W.F., Robertson D. Gene silencing from plant DNA carried by a geminivirus. Plant J., 1998, 14:91~100.
    89. Kole C., Ashrafi H., Lin G., Foolad M. Identification and molecular mapping of a new R gene, Ph-4, conferring resistance to lateb light in tomato. Solanaceae Conf, Univ of Wisconsin, Madison, 2006.Abstr 449
    90. Kruger J., Thomas C.M., Golstein C., Dion M.S., Smoker M. A tomato cysteine protease required for Cf-2 dependent disease resistance and suppression of autonecrosis. Science, 2002, 96: 744~748.
    91. Kumagai M.H., Denson J., della-Cioppa Q., Harvey D., Hanley K., Grill L.K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA.. Proc. Nati. Acad. Sci. U.S.A., 1995, 92:1679~1683.
    92. Lanfermeijer F.C.,Warmink J., Hille J. The products of the broken Tm-2 and the durable Tm-2(2) resistance genes from tomato differ in four amino acids. J. Exp. Bot., 2005, 56:2925~33.
    93. Lebreton L.,Lucas JM., Andrivon D. Aggressiveness and. competitive fitness of Phytophthora infestans isolates. collected from potato and tomato in France. Phytopathology, 1999, 89: 679~686.
    94. Lee S., Hirt H., LeeY. Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J., 2001, 26:479~486.
    95. Liang P.and Pardee A.B. Differential display of eukaryotic messager RNA by means of the polymerase chain reaction. Science, 1992, 257:967~971.
    96. Liu H.C., Creech R.G., Jenkins J.N., Ma D.P. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3, Bio chem. Biophy. Acta., 2000, 1487:106~111.
    97. Liu Y., Burch-Smith T., Schiff M., Feng S., Dinesh-Kumar S.P. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem., 2004a., 279(3):2101~2108.
    98. Liu Y., Schiff M., Dinesh-Kumar S.P. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/ MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J., 2004b, 38(5):80~809.
    99. Liu Y., Schiff M., Dinesh-Kumar S.P. Virus-induced gene silencing in tomato. Plant J., 2002a,
    31(6):777~786.
    100. Liu Y., Schiff M., Marathe R., Dinesh-Kumar S.P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance totobacco mosaic virus. Plant J., 2002b, 30:415~429.
    101. Liu Y.G., Whittler R.F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking, Genome, 1995, 25: 674~681.
    102. Lokossou A., Van Arkel G., Tani A., Park T., Hutten R., van Eck H., Visser R.G.F., Jacobsen E., Van der Vossen E.A.G. Cloning of Rpi-blb3 and other functional alleles from a major late blight resistance locus on chromosome IV of Potato PS-3-260. MPMI meeting, July 2007, Sorrento, Italy.
    103. Love J., Scott A.C., Thompso W.F. Stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system, Plant J., 2000, 21:579~588.
    104. Lu R., Martin-Hernandez A.M., Peart J.R., Malcuit I., Baulcombe D.C. Virus-induced gene silencing in plants. Methods, 2003a, 30(4):296~303.
    105. Lu R., Moffett P., Moffett P. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO Journal, 2003b, (22):5690~5699.
    106. Luck J.E., Lawrence G.J., Doddsetal P.N. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. 2000,Plant Cell, 12:1367~ 1377
    107. Luderer R., Takken F.L.W, Wit P.J.G.M, Joosten M.H.A.J. Cladosporium fulvum overcomesCf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol. Microbiol., 2002, 45:875~84.
    108. Mackey D., Holt B.F., Wiig A., Dangl J.L. RIN4 interacts with Pseudomonas syringae typeIII effector molecules and is required for RPM1 mediated resistance in Arabidopsis. Cell, 2002, 108:743~754.
    109. Martin G.B., Bogdanove A.J., Sessa G. Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol., 2003, 54:23~61.
    110. Martin G.B.,Willianms J.G.K.,Tanksly S.D. Rapid identification of markers linked to a pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc. Natl. Acad. Sci. USA, 1991, 88: 2336~2340
    111. Martinez de Ilarduya O., Nombela G., Hwang C.F., Williamson V.M., Muniz M., Kaloshian I. Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Mol. Plant Microbe Interact, 2004, 17: 55~61.
    112. Mayton H., Smart C.D., Moravec B.C., Mizubuti E.S.G., Muldoon A.E., Fry W.E. Oospore survival and pathogenicity of single oospore recombinant progeny from a cross involving the US-8 and US-17 lineages of Phytophthora infestans. Plant Disease, 2000, 84:1190~1196.
    113. McDowell J.M., Cuzick A., Can C., Beynon J., Dangl J.L., Holub E.B. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J., 2000, 22:523~529.
    114. McNellis T.W., Mudgett M.B., Li K., Aoyama T., Horvath D., Chua N-H., Staskawicz B.J. Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J., 1998, 14:247~257.
    115. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15:809~834.
    116. Milligan S.B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P., Williamson V.M. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 1998, 10:1307~19.
    117. Minami M., Poussin K., Brechot C., Paterlini P. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome, Genomics, 1995, 29:403~408.
    118. Monosi B.,Wisser R.J., Pennill L., Hulbert S.H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet., 2004, 109:1434~1447.
    119. Moreau P., Thoquet P., Oliver J., Laterrot H., Grimsley N. Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol. Plant-Microbe Interact., 1998, 11: 259~269.
    120. Morgan W. and Kamoun S. RXLR effectors of plant pathogenic oomycete. Current Opinionin Microbiology, 2007, 10:1~7.
    121. Negi M.S., Devic M., Deleseny M., Lakshmikumaruan M. Identification of AFLP fragments linked to seed coat color in Brassica juncea and conversion to a SCAR marker for rapid selection, Theor.Appl. Genet., 2000, 101:146~152.
    122. Oldtoyd G.D., Stakawicz B.J. Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci. USA., 1998, 95: 10300~10305
    123. Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell, 1997, 9:521~32.
    124. Ouwerkerk P.B., de Kam R.J., Hoge J.H., Meijer A.H. Glucocorticoid-inducible gene expression in rice. Planta, 2001, 213:370~378.
    125. Oyarzun P. J., Pozo A., Ordonez M. E., Doucett K., Forbes G. A. Host specificity of Phytaphthora infestans on tomato and potato in Ecuador. Phytopathology, 1998, 88:265~271.
    126. Paal J., Henselewski H., Muth J., Meksem K., Menendez C.M., Salamini F., Ballvora A., Gebhardt C. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J., 2004, 38:285~97.
    127. Pan Q., Wendel J., Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol., 2000, 50:203~213.
    128. Panter S.N., Hammond-Kosack K.E., Harrison K., Jones J.D.G, Jones D.A. Developmental control of promoter activity is not responsible for mature onset of Cf-9 Bmediated resistance to leaf mold in tomato. Mol. Plant Microbe Interact, 2002, 15:1099~1107.
    129. Parker J.D., Rabinovitch P.S., Burmer G.C. Targeted gene walking polymerase chain reaction, Nucl. Acid. Res., 1991, 19:3055~3060.
    130. Parker J.E., Holub E.B., Frost L.N., Falk A., Gunn N.D., Daniels M.J. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell, 1996, 8:2033~2046.
    131. Peart J.R., Cook G., Feys B.J., Parker J.E., Baulcombe D.C. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J., 2002a, 29:569~579.
    132. Peart J.R., Lu R., Sadanandom A., Malcuit I., Moffett P., Brice D.C., Schauser L., Jaggard D.A., Xiao S., Coleman M.J., Dow M., Jones J.D., Shirasu K., Baulcombe D.C. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA, 2002b, 9:10865~10869.
    133. Peart J.R., Mestre P., Lu R., Malcuit I., Baulcombe D.C. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against Tobacco Mosaic Virus. Curr Biol., 2005, 15:968~973.
    134. Peele C., Jordan C.V., Muangsan N., Tumage M., Egelkrout E., Eagle P., Hanley-Bowdoin L., Robertson D. Silencing of a meristematic gene using geminivirus-derived vectors. Plant J., 2001, 27 (4):357~366.
    135. Peng J.L., DongH S., Dong H.P., Delan ey T.P., Bonasera B.M., Boer S.V.Harpin-elicited hypersensitive cell death and pathogen resistance require the NDR1 and EDS1 genes. PhysiologicalMolecular Plant Pathol., 2003, 62:317~326.
    136. Peters R.D., Platt H.W., Hall R. Hypotheses for the inter-regional movement of new genotypes of Phytophthora infestans in Canada. Can. J. Plant Pathol., 1999, 21:132~136
    137. Pfyffer G., Boraschi-Gaia E., Weber B., Hoesch L., Orpin C.G. , Rast D. A further report on the occurrence of acylic sugar alcohols in fungi. Mycol Res, 1990, (92): 219~222.
    138. Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C. Tobacco tattle virus as a vector for analysis gene function by silencing. Plant J., 2001, 25:237~245
    139. Rehmany A.P., Gordon A., Rose L.E., Allen R.L., Armstrong M.R., Whisson S.C., Kamoun S., Tyler B.M., Birch P.R., Beynon J.L. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 highly polymorphic resistance genes from two Arabidopsis lines. Plant Cell, 2005, 17:1839~1850.
    140. Rogers E.E., Ausubel F.M. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression. Plant Cell, 1997, 9:305~316.
    141. Romeis T., Piedras P., Zhang S., Klessing D.F., Hirt H., Jones J. Rapid Avr9 and Cf-9 dependent activation of MAP kinases in tobacco cell cultures and leaves:convergence of resistance gene, elicitor, wound and salicylate responses. Plant Cell, 1999, 11:273~287.
    142. Ronald P.C., Salmeron J.M., Carland F.M., Staskawicz B.J. The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J. Bacteriol., 1992, 174:1604~1611.
    143. Rooney H.C., Van't Klooster J.W., van der Hoorn R.A., Joosten M.H., Jones J.D., de Wit P.J. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science, 2005, 308:1783~1786.
    144. Ruiz M.T., Voinnet O., Baulcombe D.C. Initiation and maintenance of virus-induced gene silencing. Plant Cell, 1998,10:937-946
    145. Rusterucci C., Aviv D.H., Holt B.F., Dangl J.L., Parker J.E. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell, 2001, 13:2211~2224.
    146. Salmeron J.M., Oldroyd G.E.D, Rommens C.M.T, Scofield S.R, Kim H.S, Lavelle D.T, Dahlbeck D., Staskawicz B.J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86:123~133.
    147. Sarkar G., Turner R.T., Bolander M.E. Restriction site PCR: a direct method of unknown sequence retrieval adjacent to a know locus by using universal primers, PCR Methods Appl., 1993, 2:318~322.
    148. Schornack S., Ballvora A., Gurlebeck D., Peart J.R., Ganal M., Baker B., Bonas U., Lahaye T. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and over expressed AvrBs3. Plant J. 2004, 37:46~60.
    149. Schornack S., Meyer A., Romer P., Jordan T., Lahaye T. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Plant Physiol., 2006, 163:256~272.
    150. Shan W., Cao M., Leung D., Tyler B.M. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant Microbe Interact, 2004, 17:394~403.
    151. Sharma P. C., Ito A., Shimizu T., Terauchi R., Kamoun S., Saitoh H. . Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response(HR) in Nicotiana benthamiana. Mol.Genet.Genomics, 2003, 269:583~591.
    152. Shen Q., Zhou F., Bieri S., Haizel H., Shirasu K., Schulze-Lefert P. Recognition specificity and RAR1/SGT1 dependency in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 2003, 15: 732~744.
    153. Shibata D. Genome sequencing and functional genomics approaches in tomato. Journal of General Plant Pathology, 2005, 71(1):1~7.
    154. Shirasu K. A novel class of eukaryotic zinc binding proteins is required for disease resistance signaling in barley and development in C. clegans. Cell, 1999, 99:355~366.
    155. Siebert P.D., Chenchik A., Kellogg D.E., Lukyanov K.A., Lukyanov S.A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Research, 1995, 23(6): 1087~1088
    156. Song J., Bradeen J.M., Naess S.K., Raasch J.A., Wielgus S.M., Haberlach G.T., Liu J., Kuang H., Austin-Phillips S., Buell C. R., Helgeson J.P., Jiang J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Natl. Acad. Sci.USA., 2003, 100: 9128~9133.
    157. Swiderski M.R., Innes R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J., 2001, 26:101~112.
    158. Swords K.M, Dahleck D., Kenrney B., Roy B.M., Staskawicz B.J. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J. Bacteriol., 1996, 178: 4661~4 669.
    159. Tai T.H., Dahlbeck D., Clark E.T., Gajiwala P., Pasion R., Whalen M.C., Stall R.E., Staskawicz B.J. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA, 1999, 96:14153~14158.
    160. Takahashi A ., Casais C., Ichimura K., Shirasu K. HSP90 interacts with RAR1 and SGT1, and is essential for RPS2-mediated resistance in Arabidopsis. Proc Natl Acad Sci USA, 2003, 100: 11777~11782.
    161. Takken F.L.W., Schipper D., Nijkamp H.J.J, Hille J. Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J., 1998, 14:401~411.
    162. Thomas C.L., Jones L., Baulcombe D.C., Maule A.J. Size constraints for targeting post- transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using apotato virus X vector. Plant J, .2001, 25(4):417~425.
    163. Thomas C.M., Jones D.A., Parniske M., Harrison K., Balint-Kurti P.J., Hatzixanthis K., Jones J.D. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9:2209~2224.
    164. Tomiyama K. Cytologycal and biochemical studies of the hypersensitive reaction of potato cell to Phytophthora infestans. Phytopathology. Soc., 1971, Tokyo, Japan.
    165. Tor M., Gordon P., Cuzick A., Eulgem T., Sinapidou E., Mert-Turk F., Can C., Dangl J.L., Holub E.B. Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell, 2002, 14:993~1003.
    166. Tornero P., Chao R.A., Luthin W.N., Goff S.A., Dangl J.L. Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell, 2002, 14:435~450.
    167. Trout C.L., Ristaino J.B., Madritch M., Wangsomboondee T. Rapid detection of Phytophthora infestantin late blight infected potato and tomato using PCR. Plant Disease, 1997, 81:1042~1048.
    168. Turkensteen L.J. Partial resistance of tomatoes against Phytophthora infestans, the late blight fungus. Instituut Voor Plantenziektenkundig Onderzoek, Wageningen, the Netherlands. In Mededeling. 1973. 633. 70–88.
    169. Tyler B.M, Tripathy S., Zhang X., Dehal P., Jiang R.H., Aerts A., Arredondo F.D., Baxter L., Bensasson D., Beynon J.L. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science, 2006, 313:1261~1266.
    170. Van den Burg H.A., Harrison S.J., Joosten M.H.A.J, Vervoort J., de Wit P.J.G.M. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact. 2006, 19(12):1420~1430.
    171. Van der Biezen E.A., Jones J.D.G. Plant disease resistance proteins and the gene-for-gene concept. Trends Biochem. Sci., 1998, 23: 454~456.
    172. Van der Biezen E.A., Jones J.D.G. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol., 1998, 8: 226~227.
    173. Van der Hoorn R.A.L, Laurent F., Roth R. Agro-infiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant-Micro Interact, 2000, 13(4):439~446.
    174. Van der Vossen E., Sikkema A., Hekkert B.T.L., Gros J., Stevens P., Muskens M., Wouters D., Pereira A., Stiekema W. and Allefs, S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J., 2003, 36, 867~882.
    175. Van Kan J.A.L, van den Ackerveken G.F.J.M, de Wit P.J.G.M. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol. Plant Microbe Interact. 1991, 4:52~59.
    176. Van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL. Structure and Function of Resistance Proteins in Solanaceous Plants. Annu Rev Phytopathol. 2007, 45:43~72.
    177. Vivian D.L. and Arnold. Bacterial effector genes and their role in host-pathogen interactions. Journal of Plant Pathology, 2000, 82 (3): 163~178.
    178. Vleeshouwers V.G.A.A., Rietman H., Krenek P., Champouret N., Young C., Oh S-K., Wang M., Bouwmeester K., Vosman B., Visser R.G.F., Jacobsen E., Govers F., Kamoun S., Vossen E.A.G. van der. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One, 2008, 3(8): 2875~2884.
    179. Vogel H.J. Distribution of lysine pathways among fungi: evolutionary implications. Am Nat, 1964, (98): 435~446.
    180. Warren R.F., Henk A.,Mowery P., Holub E., Innes R.W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell, 1998, 10:1439~52.
    181. Warren R.F., Merritt P.M., Holub E., Innes R.W. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics, 1999, 152: 401~412.
    182. Weinmann P., Gossen M., Hillen W., Bujard H., Gatz C. A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J., 1994, 5:559~569.
    183. Westerink N., Brandwagt B.F., De Wit P.J.G.M, Joosten M.H.A.J. Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E ) by secretion of a stable avr4E isoform. Mol. Microbiol., 2004, 54: 533~45.
    184. Whitham S., McCormick S., Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci.USA. 1996. 93: 8776~8781
    185. Wroblewski T., Tomczak A.M., Michelmore R. Optimization of Agrobacterium-mediated transient. assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 2005, (3):259~273.
    186. Yang C.W., Gonzalez-Lamothe R., Ewan R.A., Rowland O., Yoshioka H., Shenton M., Ye H., O'Donnell E., Jones J.D.G., Sadanandom A. The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell, 2006, 18:1084~1098.
    187. Yang K.Y., Liu M., Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. U.S.A., 2001, 98:741~746.
    188. Yang P., Wang Z., Fan B., Chen C., Chen Z. A pathogen and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco classI chitinase gene promoter. Plant J., 1999, 18:141~149.
    189. Yu D., Chen C., Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1gene expression. Plant Cell, 2001, 13:1527~1540.
    190. Zhang S., Klessig D.F. MAPK cascades in plant defense signaling. Trends Plant Sci., 2001, 6, 520~527.
    191. Zhang Y., Dorey S., Swiderski M., Jones J.D.G. Expression of RPS4 in tobacco induces anAvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J., 2004, 40: 213~224.
    192. Zhang Y.L., Tessaro M.J., Lassner M., Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 2003, 15:2647~2653.
    193. Zhang Z.L., Xing P., Zou X., Casaretto J., David H.T., Shen Q.J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cell. Plant Physiol., 2004, 134:1500~1513.
    194. Zhou N., Tootle T.L., Tsui F., Klessig D.F., Glazebrook J. PAD4 functions up stream from salicylic acid to control defense responses in Arabidopsis. Plant Cell, 1998, 10:1021~1030.
    195. Zipfel C., Felix G. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol., 2005, 8: 353~360
    196. Zuo J., and Chua N.H. Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol, 2000a, 11:146~151.
    197. Zuo J., Niu Q., and Chua N.H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in plants. Plant J., 2000b, 24:265~273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700