灌溉污水中AOX在包气带中的地球化学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AOX (Absorbable Organic Halogens)作为一个重要的环境质量指标得到了国际上的广泛应用。同其它的卤化物一样,它具有致癌和致突变性,广泛来源于人类活动所产生的生活污水和工业废水。污水灌溉是解决我国农业用水严重不足的有效途径,但是产生的生态与环境问题也日益突出。
     利用污水灌溉时包气带会通过过滤、吸附、降解等作用净化污染物,使地下水免遭污染,被污染的包气带在后期入渗水的作用下又能释放污染物污染地下水。赋存在包气带中的污染物也可以通过食物链进入人体。由于包气带的空间变异性和水动力特性,污染物在包气带中的迁移是一复杂的过程。目前全国分布有大面积的污灌区,许多工矿企业的污水偷排乱放,使包气带和地下水面临污染的风险,直接威胁到当地农业生产和居民的生存环境。因此无论是从地下水污染机理,还是包气带污染防治的角度研究AOX在包气带中的地球化学过程都有着重要的意义。
     为了研究在污水灌溉条件下AOX在包气带中的地球化学行为,采用了静态实验和室内土柱动态实验相结合的方法,刻画了AOX在包气带中的等温吸附模型,定量分析了AOX的吸附-解吸附行为,模拟污水中复杂污染组分状况和AOX单组分状况下AOX在包气带中的迁移过程,确认包气带去除AOX的主要的地球化学作用。同时对污灌区进行地下水和包气带中AOX以及其他污染物的调查,分析了长期进行污水灌溉后,AOX在地下水和包气带中的赋存规律。
     本文在总结已有研究成果的基础上,结合室内实验和实地调查,得出以下结论:
     1.在小店区东干渠、北张退水渠、太榆退水渠所采集的19个地表水样中,总氮总磷均严重超标,总氮超标1-25倍,总磷超标1~15倍,AOX最大值为1.52mg/L,最小值0.11mg/L。沿灌渠流向水质没有改善。重金属元素基本低于《地下水环境质量标准》(GB/T 14848-93)第Ⅳ类标准(Ⅳ类以农业和工业用水要求为依据),符合生活污水的典型特征。
     2、AOX在包气带中的吸附等温线可以用Linear等温吸附模型和Freundlich等温吸附模型拟合,其吸附动力学可以用Lagergren二级吸附速率线性方程描述。土壤颗粒越小、有机质含量越高,AOX在土壤中的吸附量越大。
     3、AOX在土壤中的吸附是快速反应,吸附实验进行到1h时土壤对AOX的吸附量可以达到平衡吸附量的83%以上,24h后达到吸附平衡。
     4、污水灌溉过程中,为包气带中微生物提供的碳源和氮素能促进微生物对AOX的降解,效率能提高约15%。
     5.研究区地下水背景值较低,局部区域含量未检出。地下水中的AOX与TOC的含量有着显著的相关关系,在进行长期污水灌溉的区域地下水中AOX的含量明显高于清灌区地下水中AOX的含量。通过三个包气带钻孔数据的相关性分析,发现遭受污染的包气带中TOC对AOX在包气带中的空间分布有重要影响。
     本文首次开展了对小店污灌区包气带和地下水AOX污染现状的调查。通过实验研究定量的描述了AOX在包气带中的吸附-解吸附行为,分析了具有复杂污染组分的污染入渗下状况下AOX在包气带中的自净机理。所获得的结论对加强水资源管理,地下水污染的防治有重要意义。
AOX (Absorbable Organic Halogens) as an important index of the environmental quality is use extensive in the world. As the same with other Organic Halogens, it has the carcinogenicity and mutagenicity. Sewage and industrial wastewater contain high concentration of AOX. Sewage irrigation as a measure to saving water was applicated in many areas, but also causes AOX pollutants to vadose.
     Vadose can remove pollutants from swage thouge the process of filtering, adsorption and degradation. Vadose which has been polluted will release contaminationto the groundwater again under the action of water infiltrate soon, the pollutants in vadose can also enters the body through transfer of plants. Because of the spatial variability and dynamic characteristics of water in vadose, the migration of pollutant is a complicated process.
     Now, China has a large sewage irrigation area, and many industrial and farm discharge wastewater without control, the vadose and groundwater face the risk of pollution.It is a direct threat to the local agricultural.production and people's living environment. So the geochemistry process of AOX in vadose zone of sewage irrigation area study is very meaningful for preventing pollution of groundwater and vadose.
     On the conditions of swage irrigation, the geochemical behaviour of AOX in the vadose area is complicated, in order to facilitate study, static experiment and indoor dynamic soil column experiment are both used in this paper to reaseach the static adsorption,the adsorption and desorption dynamics behavior of AOX in vadose.
     Static experiment analyze AOX soil adsorption and desorption behavior quantitatively and its adsorption and desorption model was established. Simulated the movement process of AOX in vadose on the two conditions:complex pollutant in swage and AOX is the only pollutant in the swage. Through this research confirmed which geochemical process play a main role for vadose to remove AOX of swage. This paper have implementated a pollution investigation of groundwater and vadose in the area where have a long-term sewage irrigation and analyzes the spatial distribution characteristic of AOX in vadose of sewage irrigation area.
     According to the experimental data and investigation, the conclusions are as follows:
     a. There are 19 surface water samples were collected in the east main canal of Xiaodian area, Beizhang and Taiyu waste canal. The indexes of total nitrogen and total phosphorus both exceed standard severely. The value of total nitrogen exceeds standard from 1 to 25 times and total phosphorus exceeds standard from 1 to 15 times. The maximum value of AOX is 1.52 mg/L, the minimum is 0.11 mg/L. Water quantity keeps under standard in the water flow direction of irrigation channel. Most heavy metal elements below theⅣclass of groundwater environmental quality standards (GB/T 14848-93) standard (Ⅳclass in according to the agricultural and industrial water demands), which accord with the typical characteristics of sewage.
     b. Adsorption isothermal of AOX in soil can be fit by Linear and Freundlich isothermal adsorption model. Its kinetic adsorption rate can be fit by Langmuir secondary adsorption rate linear equation. If the soil particle is smaller and the content of organic matter is higher, then the adsorptive capacity of AOX is higher.
     c. The adsorption ability of AOX in soil is a kind of fast reaction. After one hour of the absorption experiment, adsorption capacity of soil for AOX is above 83 percent of the equilibrium adsorption. After 24 hours, it can reach absorption balance.
     d. In the process of wastewater irrigation, provide the source of carbon and nitrogen for microbe in soil can promote the microbial degradation of AOX and improve about 15 percent of depredate efficiency.
     e. In the research area, the background values of groundwater are less low, and AOX was not detected in local area. The contents of AOX and TOC in ground water have significant correlationship. AOX in the groundwater of long-term wastewater irrigation area was obviously higher than that of clean water irrigation area. According to the correlation analysis of the data from three boreholes in vadose zone, we found TOC has an important impact to AOX for spatial distribution feature in polluted vadose zone.
     In conclusion, it is the first time to investigate the pollution situation of AOX in soil of vodose zone and groundwater at Xiaodian irrigation area. According to the experimental data, we study the adsorption-desorption behavior of AOX in vadose zone by the quantitative analysis and analyze the mechanism of self-purification in vadose zone for AOX under the irrigation of complex components. The conclusions have an important significance for strengthening water resources management and groundwater pollution prevention.
引文
[1]中国水利部.中国水资源公报[Z].北京:中国水利水电出版社,2006.
    [2]国家环境保护总局.中国环境状况公报(2002)[N].中国环境报,2003.
    [3]水利部水文司,中国水利学会.中国水环境问题研讨会论文集[C].北京:中国科学出版社,1998:229-233.
    [4]中国农业部.中国农业年鉴.中国农业部网站,2006.
    [5]增进,张建伟.污水灌溉在我国发展的必要性分析[J].安徽农业科学,2008,6(20):8738-8739.
    [6]胡雄星,张文英,韩中豪等.水样中可吸附有机卤化物(AOX)的测定[J].中国环境监测,2006,22(3):15-17.
    [7][加]R.A.弗利泽J.A.彻里.地下水[M].北京:地质出版社,1987.
    [8]蒋枚,沈新强,王云龙等.AOX漂白废水对黑绸鱼卵及仔鱼的毒性效应[J].环境科学研究,2006,19(2):27-30.
    [9]邢雷,王柏华,张辉等.AOX—一类应引起重视的纺织化学污染源[J].染整及纺织化学品,2008,1:87-90.
    [10]陈荣圻.AOX与纺织品[J].印染,2009,22:48-51.
    [11]M. Hahn, H. H. Riittinger, H. Matschiner, and N. Lenk. A new measuring device for the rapid coulometric determination of adsorbable organic halogen compounds [J]. Fresenius J Anal Chem,1991,3(40):22-26.
    [12]German Muller. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments [J]. Chemosphere,2003,52:371-379.
    [13]Horst Kuflmaul*, Hellmuth Simon, and Manfred Sietz. Impact of halide ions on the determination of adsorbable organically bound halogens (AOX)[J]. Short communications, 1987,12:532.
    [14]S. Cherif, R. Ben Fradj, A. Jrad. Quality of treated wastewater:method validation of AOX [J]. Accred Qual Assur,2006,11:632-637.
    [15]Christian GrCn. Organic Halogens in Danish Groundwaters [M]. Lecture Notes in Earth Sciences. Springer Berlin/Heidelberg. Volume 33/1991.
    [16]Michael Bunge, Mika A. Kahkonen, Winfried Ramisch et al. Biological Activity in a Heavily Organohalogen-Contaminated River Sediment [J]. River Sediment Special Issue 1 (2007):3-10.
    [17]T.Grischel,W.Nestler. Urban Groundwater In Dresden, Germany[J].Hydrogeology Journal,1996,4(1):48-63.
    [18]B.H. Shomar, G. Muller et al. Geochemical features of topsoils in the Gaza Strip:Natural occurrence and anthropogenic inputs[J]. Environmental Research,2005,98:372-382.
    [19]B. Shomar. Sources of adsorbable organic halogens (AOX) in sludge of Gaza [J]. Chemosphere,2007,69:1130-1135.
    [20]李玉峰,陈嘉川,杨桂花等.简述几种漂白废水AOX的治理技术[J].江苏造纸,2008,1:46-48.
    [21]李玉峰,陈嘉川,庞志强等.过氧化氢在降低二氧化氯漂白废水中AOX含量的应用[J].造纸化学品,2008,20(2):36-38.
    [22]疏明君,李友明,谢澄等.浅谈造纸废水中AOX的去除方法[J].西南造纸,2001,5:32-34.
    [23]宋云,王洁,程言君等.活性污泥法对草浆漂白废水AOX去除效果的调查研究[J].调查与研究,2000,9:35-37.
    [24]R.Vahala. Removal of AOX from bleached Kraft mill effluents [J].Water Science and Techonogy,1999,40:852-862.
    [25]Neval Baycanl, Fusun Sengul1,Erwin Thomanetz. AOX Formation and Elimination in the Oxidative Treatment of Synthetic Wastewaters in a UV-Free Surface Reactor[J]. Environ Sci & Pollut Res,2005,12 (3):153-158.
    [26]Haggblom. Biodegradability of chlorinated organic compounds in pulp bleaching diffluents. Wat Sci and Tech,1997,24(2):183-194.
    [27]Neilson A H. Biodegradation of halogenated organic compounds. JAppl Bact,1990, 69(3):445-470.
    [28]Reinake W, Knackmuss H J. Microbial degradation of haloaromatics. Ann Rev Microbial, 1988,42(3):263-287.
    [29]陈兀彩,肖锦,詹怀宇.生物吸附作用对漂白废水中AOX去除作用的研究[J].环境科学研究,1999,12(6):28-31.
    [30]Milsteim.O, et al.Removal of chlorophenols and chlorolignins from bleaching effluent by combined chemical and biological treatment. Wat Sci Tech.1988,20(1):161-170.
    [31]Savant D V, Abdul-Rahman R, Ranade D R. Anaerobic degradation of absorbable organic halides (AOX) from pulp and paper industry Wastewater [J]. Bioresources Technology, 2006,97(9):1092-1104.
    [32]Lax. S, Peterson, E.W.,2008. Characterization of chloride transport in the unsaturated zone near salted road [J].Environ Geol.22 (3):798-811.
    [33]王玉平等:水中可吸附有机氯(AOCl)的测定———离子色谱法[J].中国环境监测,1998.14(3):18-20.
    [34]胡雄星,张文英,韩中豪等.水样中可吸附有机卤化物(AOX)的测定[J].中国环境监测,2006,22(3):15-17.
    [35]王洁,洪晓华.造纸工业总排水及漂白废水中AOX监测方法的研究[J].中国环境监测,2000,16(2):44-47.
    [36]胡雄星,王文华.固体样品中可吸附有机卤化物(AOX)的测定[C].中国环境科学学会学术年会优秀论文集,2006:2915-2917.
    [37]胡雄星,韩中豪,刘娟等.微库仑法测定固体样品中的可吸附有机卤化物[J].分析实验室,2008,27(7):88-90.
    [38]郭秀红,陈玺,黄冠星等.珠江三角洲地区浅层地下水中有机氯农药的污染特征[J].环境化学,2006,21(6):33-38.
    [39]王浩,陈玉松,胡开林等.污水灌溉研究综述[J].江苏环境科技,2007,20(2):73-76.
    [40]刘兆昌,聂永丰,朱鈱.地下水系统的污染与控制[M].北京:环境出版社,1991,582-582.
    [41]张洪凯,周桂芬,张新华,等.小清河水体中有机污染物的测定及其扩散迁移初探[J].环境科学研究,1998,11(1):22-26.
    [42]李素淇,袁敏.北京排污灌区地下水中有机物研究[J].天津建设科技,2000,(3):32-34.
    [43]戚爱萍,侯继梅.济南地区岩溶地下水有机物污染状况调查[J].预防医学文献信息,2001,7(6):637-641.
    [44]陈元彩等.絮凝法处理纸浆漂白废水的研究[J].中国造纸学报,1999,14(增刊):68-72.
    [45]邱心泓,方战强.修饰型纳米零价铁降解有机卤化物的研究[J].化学进展,2010(22):54-57.
    [46]陈维芳,叶裕才.可吸附有机卤化物的深度处理研究[J].污染防治技术,1999,12(2):77-79.
    [47]孙大志,李绪谦,商书波.张士灌区土壤中多环芳香烃菲(PH Es)的垂向分布与迁移[J].吉林大学学报(地球科学版),2008,38(2):313-318.
    [48]付向明.多环芳烃菲在包气带中的迁移转化规律研究[D].吉林:吉林大学,2007.
    [49]秦传玉.阿特拉津在包气带和地下水迁移转化规律研究[D].吉林:吉林大学,2007.
    [50]Zhang Xiaoxuan, Ren Yuan, Wei Chaohai, et al.Adsorption mechanism of organic pollutants from biologically treated coking wastewater by powdered activated carbon[J] Journal of Environmental Science,2007,27(7):1113-1120.
    [51]刘菲,刘明亮,何江涛.包气带对三氯乙烯的吸附行为研究[J].岩石矿物学杂志,2007,26(6):549-553.
    [52]Martin JAR, Arias M L, Corbi J M G. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variation [J]. Environmental Pollution,2006,144(30):1001-1021.
    [53]卢声.土壤因素对农作物中重金属含量的影响分析[J].丹东纺专学报.2004.9:34-35.
    [54]GRATHWOHL. P. Influlenc oforganicmatter from soilsand sedmi ents from various origins on the sorption of some chlorinated aliphaltic hydrocarbons in plications on Koc correlations [J]. Environ Sci Techno,1 1990,24:1687-1693.
    [55]WEBERW J JR,HUANGW A Distributed Reactivity Model for Sorption by Soils and Sediments.4. Intraparticle Heterogeneity and Phase-Distribution Relationships under Nonequilibrium Conditions [J].Environ SciTechnol,1996,30(3):881-888.
    [56]梁重山党志刘丛强等.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究[J].土壤学报,2004,41(3):329-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700