太阳能自动灌溉控制器干湿探头抗钝化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前水资源日益短缺情况下,推广节水灌溉已成为世界各国为缓解水资源危机和实现农业现代化的必然选择。要改变传统的灌溉方式,推行现代精准农业,没有稳定、可靠的土壤干湿探头就无法保证智能化节水灌溉的实施。然而,由于土壤干湿探头长期工作在耕作层土壤中,很易发生腐蚀和钝化,从而引起土壤湿度探测的失灵,进而导致过灌而浪费水资源或缺灌而旱坏农作物和植物。
     本文对太阳能自动节水灌溉控制器土壤干湿探头抗钝化技术进行理论和实验研究,研发了石墨胶凝材料的抗钝化探头。采用了压力实验、化学实验、电化学实验、直流探针压降法和扫描电镜等方法和手段,对探头的形状和表面微结构及其设计与制造方法进行了深入的研究,对不同环境和使用条件的土壤干湿探头的导电性能、力学性能、耐腐蚀性能和抗钝化性能进行了对比分析。研究结果表明:
     (1)电阻值变化与接触面积并不呈线性关系,在接触面积较小时,探头两端电阻值随接触面积的增大而迅速减小,当接触面积增加到一定程度时,探头两端电阻值随着接触面积增大而减小的速率变慢,但探头和土壤之间的接触面积与探头两端电阻值并没有必然的联系。如内“W”形探头插入深度为3mm时与矩形探头插入深度为15mm时相比,不但接触面积较小而且其检测到的电阻值也比较小。
     (2)土壤在由湿变干的过程中,有轻微收缩,致使探头与土壤接触由紧变松,导致测量值与实际值发生偏差,土壤越干,偏差越大。合理的形状和表面微结构设计能有效减小这种偏差,其中内“W”型土壤干湿探头和表面微齿结构土壤干湿探头效果最为明显。
     (3)在酸、碱、盐环境下进行测试,石墨胶凝材料探头都能保持良好的导电性能,稳定性和可靠性明显高于金属探头。酸性和盐分含量高的环境对石墨胶凝材料探头有一定的侵蚀作用,其中盐含量高的工作环境对石墨胶凝材料探头的腐蚀性最大,但都不影响使用效果,也未见发生钝化,而碱性环境下对石墨胶凝材料探头的基本没有影响。
     (4)土壤干湿探头插入土壤后,其两端电阻值在初期阶段并不是很快稳定下来的,而是呈现出不断增大的变化规律。其中金属探头初值很小,其两端电阻值迅速增大,相比而言,石墨胶凝材料探头所测电阻值较稳定,其增速并不明显。
     (5)用SEM对四个在相同环境下使用了不同时间的铜镀镍探头横截面进行拍照分析可知,随时间越久,钝化膜层越厚,但膜层厚度与时间并不呈线性关系,膜层生长速度随着时间的增长而减小。
Nowadays, with the increasingly shortage of the water resources, promoting water-saving irrigation has became the inevitable choice to ease the water crisis. To change the traditional irrigation methods to promote the modern water-saving agriculture, it has to develop a reliable, stable, soil moisture probe to support the implementation of Water-saving irrigation technology. However, corrosion and passivation are serious problems to soil moisture probe as it must have been working in surface soil. It will lead to the failure of soil humidity detection system, thus cause crops bad because of drought or a waste of water.
     In this paper, anti-passivation technology of soil moisture probe of solar-powered intelligent water-saving irrigation controller has been studied on. We developed the graphite-cementitious materials probe, and design and manufacture the shape and surface micro-structure of soil moisture probe. Different environments and application conditions affecting conductivity, mechanical, properties, corrosion resistance and anti-passivation of soil moisture probe have been studied by means of compressive strength test, chemical experiment, electrochemical test, DC probe voltage drop method and SEM.
     Such conclusions can be drawn in our study.
     (1) As the increase of the contact area between soil moisture probes and soil, the voltage of probes slightly drops and the resistance decreases, but the change of resistance and the contact area is not a linear relationship. The resistance of probes drops rapidly when the contact area increases as the contact area is small, but as the contact area is larger, the resistance of probes drops slowly when the contact area increases.
     (2) A slight contraction of the soil when it from wet to dry. It makes the contact area between soil moisture probes and soil slightly smaller. This will result in measured value of resistance is larger than actual value. This measurement error can be reduced by reasonable design of shape and surface micro-structure of soil moisture probe. The "W"-shaped probe and the probe of micro tooth structure have excellent performance in reducing this type of measurement error.
     (3) The reliability and stability of graphite-cementitious materials probe is significantly higher than metal probe, because it can maintain original conductivity in acid, alkali, salt environment. The acid and the salt environment can erode the graphite-cementitious materials probe,but don’t affect its application effect. The graphite-cementitious materials probe was most serious eroded when it works in the environment contained high salt, but Alkaline do not almost affect the graphite-cementitious materials probe.
     (4) When the soil moisture probes ere inserted into the soil, the resistance of the probes is not stabilized in initial stage, but continuously increases. Initial value of the resistance of metal probes is small, but it increases rapidly. In comparison, initial value of the resistance of graphite-cementitious materials probes is bigger, but its increase is obviously slower. The stability of the graphite-cementitious materials probes is better than metal probes.
     (5) In the same environment at different times, cross sections of the four probes made of copper coated nickel have been observed with SEM. It can be drawn that the longer, the thicker passive film is. Growth rate of passive film and the time is not a linear relationship. The growth rate of passive film decreases as time increase.
引文
[1]刘晓初,叶邦彦.一种新型太阳能全自动节水灌溉设备研究[J].电子科技大学学报(自然科学版),2003,(6):124-127
    [2]刘晓初.植物浇水全自动控制器[P].中国,专利号:01266763.2002-07-31
    [3]刘晓初.植物浇水用太阳能全自动控制器[P].中国,专利号:01266948.2002-07-31
    [4] Yang X T, Xu L G, etal. Magnetic and electrical properties of poly pyrrole- coatedγ- Fe2O3 nano composite particles[J]. Nanotechnology,2003,14:624-629.
    [5] Wang G M, Chen H, Zhang H, etal. TiO2/polypyrrole diodes prepared by electrochemical deposition of polypyrrole on micro porous TiO2 film[J]. Appl Surface Sci.2007,135(1-4):97-100.
    [6] Kwon J D, Kim P H, Keum J H, etal. Polypyrrole/ titania hybrids: Synthetic variation and test for the photo voltaic materials[J]. Solar Energy Materials and Solar Cells,2004, 83(2-3):311-321.
    [7] Liu Y C, Huang J M, Tsa C E, etal. Effect of TiO2 nanoparticles on the electro polymerization of polypyrrole[J]. Chem Phys Lett, 2004,387:155-159.
    [8]高爱萍,王梅等.二溴和二碘取代的手性Schiff碱-钒(Ⅳ)络合物催化硫醚不对称氧化[J].催化学报, 2006,27(8): 743-748
    [9]孟庆波等.染料敏化纳米晶薄膜太阳电池[J].物理,2004,33(3):177-181
    [10]李永舫.导电聚合物的电化学性质[J].复旦大学学报,2004,18(4):74-80.
    [11]祝静艳,匡代彬等.低温合成纳米TiO2及其气相光催化氧化性能[J].中山大学学报(自然科学版),2002,41(2):53-56
    [12]张子旸,金鹏,曲胜春等.InAlAs/InGaAs复合限制层对InAs量子点发光性质的影响[J].微纳电子技术,2003,(2):14-16
    [13]蒋克健.偶氮化合物的光电导性能的研究[J].感光科学与光化学,2008,18(2):137-144
    [14]李相霖,何雅玲等.直接甲醇燃料电池(火用)传递及能量利用特性[J].太阳能学报,2008.29(2):148-153
    [15]陈震宇,郭烈锦.NI掺杂ZnSZnO复合光催化剂及光解水产氢性能[J].太阳能学报,2007,28(3):314-320
    [16]刘艳山,曹镛等. CdSe纳米晶/共轭聚合物太阳电池的制备与性能研究[J].高等学校化学学报,2007,28(3):596-599
    [17]张淼,吴捷.基于分级模糊控制风力太阳能混合发电控制系统的研究[J].太阳能学报, 2006, 27(12):1208-1213
    [18]龙敏南. UASB生物制氢反应系统生物强化作用研究[J].厦门大学学报(自然科学版),2008,47(5):181-184
    [19]陈涛,李灿等.Pt/TiO2光催化分解甲酸制氢反应的原位红外光谱研究[J].催化学报, 2008,29(2):105-107
    [20]隋军,金红光等.太阳能甲醇分解吸收-反应器研制与实验研究[J].工程热物理学报,2007(6):237-242
    [19] Paul W. Unger. Ridge tillage for continuous grain sorghum production with limited irrigation[J]. Soil and Tillage Research, 1994, 31:11-22
    [21] A. Soltani, F. R. Khooie, K. Ghassemi-Golezani, M. Moghaddam. A simulation study of chickpea crop response to limited irrigation in a semiarid environment[J]. Agricultural Water Management, 2001, 49: 225-237
    [22]Kwon C W, Quintin M, Mornet S, etal. Inorganicnano crystalline and hybridnanocrystalline particles and their contribution to electrode materials for lithium batteries[J]. J Electro chem Soc, 2004, 151:A1445-A1449.
    [23] A. W. Kilili, M. H. Behboudian, T .M. Mills. Composition and quality of‘Braeburn’apples under reduced irrigation[J]. Scientia Horticulturae, 1996, 67: 1-11
    [24] P.D. Mitchell, A.M. Boland, J.L. Irvine, P.H. Jerie. Growth and water use of young, closely planted peach trees[J]. Scientia Horticulturae, 1991, 47(3-4): 283-293
    [25] J. Marsal, H. F. Rapoport, T. Manrique, J. Girona. Pear fruit growth under regulated deficit irrigation in container-grown trees[J]. Scientia Horticulturae, 2000: 243-259
    [26] Jordi Marsal, MercèMata, Amadeu Arbonés, Josep Rufat, Joan Girona. Regulated deficit irrigation and rectification of irrigation scheduling in young pear trees: an evaluation based on vegetative and productive response[J]. European Journal of Agronomy, 2002, 17: 111-122
    [27]费良军等.陕西省土地整理工程生态承载力模型[J].农业工程学报, 2008,24(8):80-83
    [28]史良胜,蔡树英,杨金忠.降水入渗补给系数空间变异性分析[J].水资源研究, 2006,27(3):1-4
    [29]谢先红,崔远来.参考作物腾发量时间序列的长程相关性和多重分形分布[J].水利学报,2008,39(12):1327-1334
    [30]杜太生,康绍忠,张富仓.时空亏缺调控灌溉—果园节水理论的新突破[J].沈阳农业大学学报, 2004,35(5):449-454
    [31]吴永成,张永平,周顺利等.不同灌水条件下冬小麦的产量、水分利用与氮素利用特点[J].生态环境,2008,17(5):2082-2085
    [32]彭世彰等.节水灌溉与控制排水理论及其农田生态效应研究[J].水利学报, 2007,22(10):504-511
    [33]秦国治,丁良棉,田志明.管道防腐蚀技术.北京:化学工业出版社,2004:21~26
    [34] Wilcox C D, Gabe D R. Molyadayte Chemical Treat ment [J]. Metal Finishing,1988, 28(9): 1-73
    [35] Hinton B R W,Wilson L. The Corrosion Inhibition of Zmc With Cerous Chlorine[J].Corrosion Science,1989 , 29 (9): 967-985
    [36] Ping H K,Kui W J. Decorative and Protective Coatingson Zinc Using Rare Earths[J].Trans MetalRn,1996 ,5 (2): 83
    [37] Bellezze T, Roventi G,Fratesi R. Electrochemical Study of on the Corrosion Resistance of Cr(III)- Based Conversion Layers on ZincCoatings[J]. Surface and Coatings Technology ,2002 ,155 (23) :227一228
    [38] Knotty S. Thermodynamic properties of liquid AI-Sn-Zn alloys: A possible new lead-free solder material [J]. Mater Trans, 2002, 43:1868-1872
    [39] Lin K L, Hsu H M. Sn-Zn-A1 Pb-free solder-an inherent barrier solder for Cu contact [J]. J Electron Mater, 2001, 30: 1068-1072
    [40]段莉价,于大个,赵杰,土来Sn-9Zn-3Bi/Cu钎焊接头在170℃时效过程中的C7HV微结构[J}中u有色金属学报,2004, 14(5): 842-847
    [41] Chang T C, Hon M H, Wang M C. Intermetallic compoundsformation and interfacial adhesion strength of Sn-9Zn-0.5Agsolder alloy hot-dipped on Cu substrate[J]. J Alloy Comp, 2003(352): 168-174
    [42]于大全,赵杰,王来.稀土元素对Sn-9Zn合金润湿性的影响[J].有色金属学报,2003,13(4):1001-1004
    [43] Wu C M L, Yu D Q. The wettability and microstructure of Sn-Zn-RE alloys [J]. J Electron Mater, 2003, 32: 63-69
    [44]WuCML,Yu D Q. The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements [J]. Electronic Mater, 2002, 31:921-927
    [45] Lin K L, Chung F C, LIU T P. The potentiodynamic polarization behavior of Pb-free aIn-9(5A1-Zn)一,}Sn solders[J]. Mater Chem Phys, 1998, 53: 55-59
    [46]曹楚南.腐蚀金属电极的电化学频域测量研究进展[J].电化学, 1996,2(1):1-8
    [47] M. Bethencourt, F.J. Bonata, M.A.Marcos, et al, J.Alloys Comp, 1997, 250: 455.
    [48] C.B.Baliga, P. Tsakipoulos, Mater. Sci. Technol, 1993, 9:513.
    [49] H.B.Yao, Y. Li, A.T.S. Wee.Corrosion behavior of melt一spun Mg65Ni20Nd15,and Mg65cu25Y10 metallic glasses [J]. Electrochimica Acta, 2003,48:2641-2650.
    [50]李瑛,林海朝,曹楚南.自然大气中非晶合金腐蚀界面的微观形貌特征与分维数分析[J].中国腐蚀与防护学报.1998,18 ( 4 ): 258-261.
    [51] H.B.Yao, Y. Li, A.T.S.Wee, An XPS investigation of the oxidation/corrosion of melt-spun Mg, Applied Surface Science [J], 2000, 158:112-119.
    [52] J.D.H-anawalt, C.E.Nelson, J.A.Peloubet. Trans AIME, 1942, 147:273.
    [53]李花,左禹.耐热和耐蚀的环氧有机硅涂料的研究.北京化工大学学报(自然科学版), 2006,33(06):57-60
    [54]林万舟,宋来洲. TiO_2复合膜的耐蚀性能研究.腐蚀与防护, 2003.01, 24(01): 9-12
    [55]韩凤俊.鳞片状锌粉防腐涂料的研制[D].东南大学硕士学位论文,2007
    [56]宋加金.耐腐蚀环氧粉末涂料的改性研究[D].北京化工大学硕士学位论文,2007
    [57]艾华德?多肯股份公司.硅基防腐蚀剂[P].中国,专利号:101370880,2009-02-18 [58 ]陈鸿海.金属腐蚀学[M].北京理工大学出版社.1995.12:2
    [59]田永奎,金属腐蚀与防护,机械工业出版社, 1995. 05::8
    [60]梁成浩.金属腐蚀学导论[M].机械工业出版社. 1999.05:30
    [61]杨德钧,沈卓身.金属腐蚀学[M].冶金工业出版社.1999.05:115
    [62]朱日璋.金属腐蚀学[M].机械工业出版色.1989.05:93
    [63]叶康民.高等学校教学参考书金属腐蚀与防护概论(修订本)[M].高等教育出版社. 1980.06
    [64]武秀兰,陈国平等.硅酸盐生产配方设计与工艺控制[M].化学工业出版社. 2004.08
    [65]黄淑菊.金属腐蚀与防护[M].西安交通大学出版社.1988.04 66吕贻忠、李保国.土壤学[M].中国农业出版社. 2006.03
    [67]刘国强.硅酸盐工业产品性能及测试分析,化学工业出版社,2004.08:339-340]
    [68]刘永辉,张佩芬.金属腐蚀学原理[M].航空工业出版社,1993.12: 7
    [69]吴继勋主编.金属防腐蚀技术[M].冶金工业出版社, 1998.09
    [70][钟庆东,王超,鲁雄刚,M.Rohwerder,周国治.04不锈钢钝化膜在不同溶液中的半导体导电行为[J].中国腐蚀与防护学报. 2008.12(28):341-343]
    [71]李志江,刘文奇,孙丽.防雷设计中土壤电阻率及其测量[J].辽宁气象. 2001 (4):36-38]
    [72]中国农业科学院农田灌溉研究所.植物茎秆直径变差测量变送器[P].中国,专利号: CN2725853.2005-09-14
    [73]段爱旺,孟兆江.作物水分信息采集技术与采集设备[J].中国农业科技导报.2007.09(1) : 6~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700