硫化氢后处理对缺血心肌影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用成年大鼠心肌细胞缺氧复氧模型以及Langendorff离体灌注大鼠心肌缺血再灌注损伤模型,研究硫化氢(以NaHS为供体)后处理对缺血再灌注损伤大鼠心功能与结构的影响,以探索其心肌保护作用的可能机制。
     方法:
     1.采用Langendorff装置建立大鼠离体心肌缺血再灌注损伤模型,将SD大鼠随机分为正常组(NOR)、缺血组(I/R)、缺血后处理组(Pcon)、硫化氢后处理组(NaHS1μM、10μM、100μM)、5-羟葵酸拮抗组(5HD)、HMR1098拮抗组(HMR1098),每组8例。正常组:平衡灌注20分钟后续灌100min;缺血组:平衡灌注20分钟,灌注4℃ST.Thomas停跳液,全心缺血40min,复灌60min;缺血后处理组:离体心脏平衡灌注20分钟,全心缺血40分钟,再灌注开始给予6次间隔有氧灌注10秒全心缺血10秒,续灌60分钟;硫化氢后处理组:离体心脏平衡灌注20分钟,全心缺血40分钟,再灌注60分钟,再灌注前给予含各浓度NaHS的K-H液2分钟;5-羟葵酸拮抗组:用药前给予含5-羟葵酸的K-H液5min,余同NaHS 10μM;HMR1098拮抗组:用药前给予含HMR1098的K-H液5min,余同NaHS 10μM。对比观察(1)平衡末、再灌注15分钟、30分钟、45分钟以及灌注末各时点的心功能指标:心率(HR)、左室舒张末压(LVEDP)、左室发展压(LVDP)、压力瞬时最大变化率(dp/dtmax);(2)平衡末、再灌注末取心肌组织并分离、提取线粒体,氧电极分析各组心肌组织线粒体呼吸功能的变化。
     2.采用Langendorff装置分离成年大鼠心肌细胞,将同批细胞随机分为正常组(NOR)、缺氧组(H/R)、硫化氢后处理组(NaHS 10μM)、缺氧后处理组(IPTC)、5HD拮抗组(5HD)、HMR1098拮抗组(HMR1098)。各组细胞复氧末在激光共聚焦显微镜下对比观察(1)线粒体膜电位的变化;(2)F-肌动蛋白的变化。
     结果:
     1.心功能指标的变化:A.平衡末,心功能各项指标各组差异无统计学意义(P>0.05);B.与平衡末比较,再灌注后各组心功能均呈下降趋势,以I/R组以及5HD组下降较为显著(P<0.05),而该两组间无明显差异;C.再灌注后NaHS 1μM、NaHS 10μM、NaHS 100μM组与Pcon组比较,各组间心功能指标无明显差异(P>0.05);D.应用阻断剂的两组,以HMR1098组心功能各项指标恢复较为迅速,与NaHS 10μM比较,其差异无统计学意义(P>0.05),但明显优于5HD组和I/R组(P<0.05)。
     2.心肌组织线粒体呼吸功能的变化:各组平衡末呼吸控制率无显著性差异(P>0.05);硫化氢后处理组、缺血后处理组及HMR1098拮抗组再灌注末的呼吸控制率各组间无明显差异,但明显高于缺血组以及5HD拮抗组(P<0.05),5HD拮抗组的RCR与缺血组比较,其差异无统计学意义(P>0.05)。
     3.心肌细胞线粒体膜电位:与正常组膜电位相比,复氧末H/R组、5HD组膜电位均显著下降(P<0.05);NaHS 10μM、HMR1098组与IPTC组三组组间膜电位差异无统计学意义(P>0.05),但HMR1098与5HD组比较,差异有统计学意义(P<0.05)。
     4.F-肌动蛋白的变化:心肌细胞缺氧复氧后组间比较,正常组F-肌动蛋白的荧光强度明显弱于其余各组(P<0.05);硫化氢后处理组以及缺氧后处理组荧光强度明显高于缺氧组(P<0.05);硫化氢后处理组与缺氧后处理组之间差异无统计学意义(P>0.05)。
     结论:
     1.三种浓度的硫化氢后处理均可模拟缺血后处理对离体灌注心脏的心功能产生一定的保护作用,且各浓度之间无量效关系;
     2.硫化氢后处理的作用位点可能是线粒体ATP敏感性钾通道,与肌膜钾通道无关;
     3.硫化氢后处理对缺血心肌保护作用的机制可能与稳定心肌细胞线粒体膜电位进而抑制凋亡,以及促进F-肌动蛋白聚集有关,同时也有助于线粒体呼吸功能的尽快恢复。
Objective To explore the effects of hydrogen sulfide postconditioning on function and structure of rat ischemic myocardium using both Langendorff perfused rat hearts and hypoxia/reoxygenation model of adult rat cardiomyocytes.
     Methods and Results
     Langendorff perfused Sprague-Dawley male rat hearts were randomized into 8 groups.After 20min equilibration ischemia(40min)/reperfusion(60min)(I/R) was induced.After 40 min ischemia,rat hearts were perfused with Krebs-Henseleit buffer containing different concentrations of NaHS(1,10,100uM) for 2min,or subjected to six 10-second cycles of ischemia/reperfusion.To evalate the ATP sensitive postassium chanels in hydrogen sulfide postconditoning, 5-hydroxydecanoate(5HD),or HMR1098 was treated before 10uM NaHS.The hearts were then reperfused for 60min.Normal hearts were left untreated.Heart function was assessed by LVDP,±dp/dtmax,HR and LVEDP;mitochondrial respiratory function was assessed by respiratory control rate(RCR).Comparied with equilibration,reduction trends of heart function was found in all groups.Heart function of I/R group was significantly decreased.NaHS and ischmia postconditing preserved heart function.5HD abolished the protective effects of postconditioning while HMR1098 can imitate the postconditioning effects.At the end of reperfusion RCR was decreased in I/R group,but was protected by NaHS 10uM and ischmia postconditioning antagonizing by 5HD but not by HMR1098.
     Cultured cariomyocytes from the same donor rat were subjected to hypoxia/reoxygenation, After hypoxia,cells were treated with 10uM Naris or IPTC,with or without pretreatment with 5HD/HMR1098.Mitochondrial membrane potential and F-actin fluorecense were determined.At the end of reoxygenation,hypoxia/reoxygenation significantly decreased mitochondrial membrane potential,NaHS and IPTC protected the injury,5HD but not HMR1098 reversed the postconditioning effects.Hypoxia/reoxygenation significantly increased F-actin fluorescence. Fluorescence intensity of F-actin of 10uM NaHS,or IPTC were higher than hypoxia/reoxygenation.
     Conclusions:NaHS postconditioning improves myocardial function and mitochondrial respiratory function.This effect can be blocked by 5HD but not by HMR1098,suggesting the involvement of mitochondrial ATP sensitive potassium channel.In cultured rat cardiomyocytes,this protection is associated with preservation of mitochondrial membrane potential and aggregation of F-actin.
引文
1 Zhi-Qing Zhao, Joel S. Corvera, Michael E. Halkos,et al. Inhibition of myocardial injury by ischemic postconditioning duringreperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2003, 285(2): H579-H588.
    
    2 Wu L, Yang W, Jia X, et al. Pancreatic islet overproduction of H_2S and suppressed insulin release in Zucker diabetic rats. Lab Invest, 2009, 89(1):59-67.
    
    3 Sivarajah A, Collino M, Yasin M,et al. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock, 2009, 31(3):267-74.
    
    4 Testai L, Rapposelli S, Calderone V. Cardiac ATP-sensitive potassium channels: a potential target for an anti-ischaemic pharmacological strategy. Cardiovasc Hematol Agents Med Chem, 2007, 5(1):79-90.
    
    5 Yong QC, Lee SW, Foo CS,et al. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol, 2008, 25.
    
    6 Bian JS, Yong QC, Pan TT, et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther, 2006, 316(2):670-8.
    
    7 Johansen D, Ytrehus K, Baxter GF.Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury-Evidence for a role of K ATP channels. Basic Res Cardiol, 2006, 101(1):53-60.
    
    8 Calaghan SC, Le Guennec JY, White E. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol, 2004, 84(1):29-59.
    
    9 Cooper G 4th. Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol, 2006, 291(3):H1003-14.
    
    10 Li Q, Montalbetti N, Shen PY, et al. Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet, 2005,14(12): 1587-603.
    
    11 Papakonstanti EA, Vardaki EA, Stournaras C. Actin cytoskeleton: a signaling sensor in cell volume regulation. Cell Physiol Biochem, 2000,10(5-6):257-64.
    
    12 Christopher P. Baines, Guang S.Liu, Mustafafabirincioglu, et al. Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am J Physiol, 1999 Apr, 276:H1361-8.
    
    13 Kustermans G, Piette J, Legrand-Poels S. Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction. Biochem Pharmacol. 2008;76(11): 1310-22.
    
    14 Gourlay CW, Ayscough KR. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res, 2005, 5(12):1193-8.
    
    15 Lamendola P, Di Monaco A, Barone L, et al. Mechanisms of myocardial cell protection from ischemia/reperfusion injury and potential clinical implications. G Ital Cardiol (Rome), 2009, 10(1):28-36.
    
    16 Mockford KA, Girn HR, Homer-Vanniasinkam S. Postconditioning: current controversies and clinical implications.Eur J Vasc Endovasc Surg,2009,37(4):437-42.
    17 Andreadou I,lliodromitis EK,Koufaki M,et al.Altemative pharmacological interventions that limit myocardial infarction.Curr Med Chem,2008,15(30):3204-13.
    18 Tsang A,Hausenloy DJ,Mocanu MM,et al.Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway.Circ Res,2004,95(3):230-2.
    19 Ji Y,Pang QF,Xu G,et al.Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury.Eur J Pharmacol,2008,587(1-3):1-7.
    20 Bian JS,Yong QC,Pan TT,et al.Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes.J Pharmacol Exp Ther,2006,316(2):670-8.
    21 Zhu XY,Yan XH,Chen SJ.H_2S protects myocardium against ischemia/reperfusion injury and its effect on c-Fos protein expression in rats.Sheng Li Xue Bao,2008,60(2):221-7.
    22 Zhang Z,Huang H,Liu P,et al.Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening K ATP channels.Can J Physiol Pharmacol,2007,85(12):1248-53.
    23 耿彬,杨靖辉,庞永正,等.硫化氢对大鼠离体灌流心脏心功能的影响.中国病理生理杂志,2005,21(1):1-5.
    24 Volpato GP,Searles R,Yu B,et al.Inhaled hydrogen sulfide:a rapidly reversible inhibitor of cardiac and metabolic function in the mouse.Anesthesiology,2008,108(4):659-668.
    25 Xu M,Wu YM,Li Q,et al.Electrophysiological effects of hydrogen sulfide on pacemaker cells in sinoatrial nodes of rabbits.Sheng Li Xue Bao,2008,60(2):175-80.
    26 Weimin Zhao,Jing Zhang,Yanjie Lu,et al.The vasorelaxant effect of H_2S as a novel endogenous gaseous K_(ATP) channel opener.EMBO J,2001,20(21):6008-6016.
    27 Hu Y,Chen X,Pan TT,et al.Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways.Pflugers Arch,2008,455(4):607-16.
    28 Sivarajah A,McDonald MC,Thiemermann C.The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin,but not ischemia in the rat.Shock,2006,26(2):154-61.
    29 张琼,喻田,余志豪.缺血预处理对离体大鼠心肌线粒体功能的保护.中华麻醉学杂志,2007.8:745-747.
    30 陈其彬,喻田,刘兴奎等.二氮嗪预处理对鼠心线粒体呼吸功能与呼吸酶活性的保护研究.中国病理生理,2008,24(12):2302-230.
    31 季永,喻田,李宗权等.缺血预处理对大鼠离体缺血再灌注心脏心肌功能和线粒体ATP敏感性钾通道的影响.中华麻醉学杂志,2006,26(3):238-241.
    32 Anthony Mathur,Ying Hong,Barbara K.Kemp,et al.Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovascular Research, 2000, 46 :126-138.
    
    33 John W. Elrod, John W. Calvert, Joanna Morrison, et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. PNAS, 2007, 104(39): 15560-11565.
    
    34 Hu LF, Lu M, Wu ZY,et al. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol, 2009, 75(1):27-34.
    
    35 Tang XQ, Yang CT, Chen J,et al. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol, 2008, 35(2):180-6.
    
    36 Kage S, Ikeda H, Ikeda N, et al. Fatal hydrogen sulfide poisoning at a dye works. Leg Med (Tokyo), 2004,6(3): 182-6.
    
    37 Florence Appaix , Andrey V. Kuznetsov , Yves Usson, et al. Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol, 2003, 88: 175-190.
    
    38 Viola HM, Arthur PG, Hool LC. Evidence for regulation of mitochondrial function by the L-type Ca(2+) channel in ventricular myocytes. J Mol Cell Cardiol, 2009 Jan 7.
    
    39 Campbell W. Gourlay, Kathryn R. Ayscough. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Research, 2005, (5) 1193-1198.
    
    40 Shi T, Moulton VR, Lapchak PH,et al. Ischemia-mediated aggregation of the actin cytoskeleton is one of the major initial events resulting in ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol, 2009, 296(2):G339-47.
    
    41 Simon J. Atkinson, Melanie A. Hosford, et al. Molitoris. Mechanism of Actin Polymerization in Cellular ATP Depletion. The journal of biological chemistry, 2003, 11: 1-30.
    
    42 Aoto M, Shinzawa K, Suzuki Y, et al. Essential role of p38 MAPK in caspase-independent, iPLA(2)-dependent cell death under hypoxia/low glucose conditions. FEBS Lett, 2009 Apr 24.
    
    43 Schafer C, Ross SE, Bragado MJ, et al. A role for the p38 mitogen-activated protein kinase/Hsp 27 pathway in cholecystokinin-induced changes in the actin cytoskeleton in rat pancreatic acini. J Biol Chem, 1998 Sep 11, 273(37):24173-80.
    
    44 Weber NC, Toma O, Wolter JI,et al. Mechanisms of xenon- and isoflurane-induced preconditioning - a potential link to the cytoskeleton via the MAPKAPK-2/HSP27 pathway. Br J Pharmacol, 2005, 146(3):445-55.
    
    45 Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol, 2000, 62:79-109.
    
    46 Liu XH, Zhang ZY, Sun S, et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress. Shock, 2008, 30(4):422-7. Links
    
    47 ROsales C. Jones SL, McCourt D, et al. Bromophenacyl bromide binding to the actinbundling protein 1-plastin inhibits inositol trisphosphate - independent increase in Ca2+in human neutrophils. Proc Natl Acad Sci U S A, 1994, 91:3534.
    
    48 Lange K, Brandt U. Calcium storage and release properties of F-actim evidence for the involvement of F-actin in cellular calcium signaling. FEBS Lett, 1996, 395(2-31: 137-42).
    49 Chen SC, Huang B, Liu YC, et al. Acute hypoxia enhances proteins' S-nitrosylation in endothelial cells. Biochem Biophys Res Commun, 2008,377(4): 1274-8.
    1 Lee SW, Hu YS, Hu LF,et al. Hydrogen sulphide regulates calcium homeostasis in microglial cells. Glia, 2006 Aug 1, 54(2): 116-24.
    
    2 Eto K, Asada T, Arima K,et al.Brain hydrogen sulfide is severely decreased in Alzheimer's disease.Biochem.Biophys Res Commun, 2002,293(5): 1485-8.
    
    3 Tang XQ, Yang CT, Chen J,et al. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol, 2008,35(2): 180-6.
    
    4 Hu LF, Wong PT, Moore PK, Bian JS. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem, 2007,100(4): 1121-8.
    
    5 Hu LF, Lu M, Wu ZY,et al. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol, 2008, Oct 6.
    
    6 Qu K, Chen CP, Halliwell B,et al. Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke, 2006,37(3):889-93.
    
    7 Behowski J.Hydrogen sulfide as a biologically active mediator in the cardiovascular system. Postepy Hig Med Dosw (Online),2004,19(58):285-91.
    
    8 Sun NL, Xi Y, Yang SN,et al. Plasma hydrogen sulfide and homocysteine levels in hypertensive patients with different blood pressure levels and complications. Zhonghua Xin Xue Guan Bing Za Zhi, 2007 Dec, 35(12): 1145-8.
    
    9 Shi YX, Chen Y, Zhu YZ,et al. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol ,2007 ,293(4):H2093-100.
    
    10 Bian JS, Yong QC, Pan TT, Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther, 2006. 316(2):670-8.
    
    11 Elrod JW, Calvert JW, Morrison J,et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A, 2007,104(39): 15560-5.
    
    12 Zhu XY, Yan XH, Chen SJ. H_2S protects myocardium against ischemia/reperfusion injury and its effect on c-Fos protein expression in rats. Sheng Li Xue Bao, 2008, 60(2):221-7.
    
    13 Pan TT, Neo KL, Hu LF,et al. H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol, 2008, 294(1):C169-77.
    
    14 Sivarajah A, Collino M, Yasin M,et al. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock, 2009,3.
    
    15 Hu Y, Chen X, Pan TT,et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch,2008,455(4):607-16.
    16 Ji Y, Pang QF, Xu G, et al.Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol, 2008, 587(1-3):1-7.
    
    17 Yong QC, Lee SW, Foo CS,et al. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol, 2008,25.
    
    18 Yi Zhun Zhu, Zhong Jing Wang, Peiying,et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats, J Appl Physiol, 102: 261-268, 2007.
    
    19 Geng B, Chang L, Pan C,et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun, 2004,318(3):756-63.
    
    20 Hu LF, Pan TT, Neo KL,et al. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch, 2008,455(6):971-8.
    
    21 Sodha NR, Clements RT, Feng J, et al.The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg, 2008,33(5):906-13.
    
    22 Yong QC, Pan TT, Hu LF, et al.Negative regulation of beta-adrenergic function by hydrogen sulphide in the rat hearts, J Mol Cell Cardiol, 2008 Feb 9.
    
    23 Qing H. Meng, Guangdong Yang,Wei Yang,et al. Protective Effect of Hydrogen Sulfide on Balloon Injury-Induced Neointima Hyperplasia in Rat Carotid Arteries.Am J Pathol,2007,170(4): 1406-1414.
    
    24 Chunyu Z, Junbao D, Dingfang B,er al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun, 2003, 302(4):810-6.
    
    25 Qingyou Z, Junbao D, Weijin Z,et al. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun, 2004, 317(1):30-7.
    
    26 Li X, Du J, Jin H,et al. The regulatory effect of endogenous hydrogen sulfide on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Life Sci, 2007, 81(10):841-9.
    
    27 Kubo S, Doe I, Kurokawa Y, Kawabata A. Hydrogen sulfide causes relaxation in mouse bronchial smooth muscle. J Pharmacol Sci, 2007,104(4):392-6.
    
    28 Fu Z, Liu X, Geng B, Fang L, Tang C. Hydrogen sulfide protects rat lung from ischemia-reperfusion injury. Life Sci, 2008, 82(23-24): 1196-202.
    
    29 Chen YH, Yao WZ, Geng B,et al. Endogenous hydrogen sulfide in patients with COPD. Chest, 2005,128(5):3205-ll.
    
    30 Chen YH, Yao WZ, Geng B,et al. Endogenous hydrogen sulfide in patients with chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi, 2005,28(10):694-7.
    
    31 Fiorucci S, Antonelli E, Mencarelli A,et al. The third gas: H_2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology, 2005,42(3):539-48.
    
    32 Nikolai Siebert, Daniel Cantre, Christian Eipel, and Brigitte Vollmar. H_2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K_(ATP) channels. Am J Physiol Gastrointest Liver Physiol, 2008, 295: G1266-G1273.
    
    33 Distrutti E, Mencarelli A, Santucci L,et al. The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology, 2008 Feb, 47(2):659-67.
    
    34 Fiorucci S, Distrutti E, Cirino G, The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology, 2006 Jul, 131(1):259-71.
    
    35 Wallace JL, Caliendo G, Santagada V,et al. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology, 2007,132(1):261-71.
    
    36 John L. Wallace, Michael Dicay, Webb McKnight and Gary R. Martin. Hydrogen sulfide enhances ulcer healing in rats. The FASEB Journal, 2007,21:4070-4076.
    
    37 Bhatia M, Sidhapuriwala J, Moochhala SM,et al. Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol, 2005, 145(2): 141-4.
    
    38 Renata C. O. Zanardo, Vincenzo Brancaleone, Eleonora Distrutti, Hydrogen, et al. sulfide is an endogenous modulator of leukocyte-mediated inflammation. The FASEB Journa, 2006, 20:2118-2120.
    
    39 Ling Li, Madhav Bhatia, Yi Zhun Zhu. et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J, 2005, 19(9): 1196-8.
    
    40 Liang Zhi, Abel Damien Ang, Huili Zhang,et al. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-KB pathway. J Leukoc Biol.2007,81(5): 1322-32.
    
    41 Tamizhselvi R, Moore PK, Bhatia M. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med, 2007,11 (2):315-26.
    
    42 Zhang H, Zhi L, Moochhala SM, et al. Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J Leukoc Biol, 2007,82(4):894-905.
    
    43 Blackstone E, Morrison M,Roth MK.H_2S induces a suspended animation-like state in mice. Science, 2005, 308:518.
    
    44 Volpato GP, Searles R, Yu B, Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology, 2008, 108(4):659-68.
    
    45 Chang L, Geng B, Yu F,et al. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats, Amino Acids, 2007 Dec 11.
    
    46 Yu S, Zhang R, Chen Y,et al. The role of hydrogen sulfide and cystathionine-gamma-lyase in allergic rhinitis guinea pigs. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2008, 22(14):654-7.
    
    47 Rossoni G, Sparatore A, Tazzari V,et al. The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br J Pharmacol, 2008,153(1):100-9.
    48 Baskar R, Sparatore A, Del Soldato P, Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur J Pharmacol, 2008 Jul 21.
    
    49 Bhatia M, Sidhapuriwala JN, Sparatore A,et al. Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury. Shock, 2008, 29(1):84-8.
    
    50 Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol, 2007,293(5):H2693-701.
    
    51 Ling Li, Matthew Whiteman, Yan Yi Guan,et al. Characterization of a Novel, Water-Soluble Hydrogen Sulfide-Releasing Molecule (GYY4137). Circulation, 2008,117:2351-2360.
    
    52 Julian D, April KL, Patel S,et al. Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate. J Exp Biol, 2005, 208(Pt 21):4109-22.
    
    53 Shibuya N, Tanaka M, Yoshida M,et al. Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal, 2008 Oct 14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700