血红素加氧酶-1基因转染在大鼠脑缺血再灌注损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察腺病毒介导的血红素加氧酶-1(heme oxygenase-1,HO-1)基因转染在大鼠脑缺血再灌注损伤中的作用;探讨调节血红素加氧酶基因表达对临床脑卒中的治疗前景。方法:建立携带血红素加氧酶-1基因的腺病毒载体:取大鼠脾脏细胞提取总RNA,参考GerieBank公布的大鼠HO-1序列(J02722)设计上下游引物,采用反转录-聚合酶链反应扩增HO-1基因;采用AdEasy System方法构建包含HO-1基因的重组腺病毒载体(Ad-HO-1)。测得Ad-HO-1和空载体腺病毒(Ad-GFP)滴度分别为2.5×1011PFU/ml、2.0×1011PFU/ml。健康雄性SD大鼠72只随机分为4组:假手术对照组(sham group,SH)、生理盐水组(vehicle group,V)、空载体组(adenovirus group,Ad)和Ad-HO-1转染组(HO group),各组18只。后3组在缺血前3d于大鼠右侧脑室分别注射20μl生理盐水、20μl生理盐水含空载体腺病毒(1.0×1010 Plaque-forming unit/ml,PFU/ml)和重组HO-1腺病毒(1.0×1010PFU/ml)1μl,注射方法部位参照Paxinos和Watson的大鼠脑立体定位图谱。连续注射3d后,参照zea—Longa线栓法建立大鼠大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)缺血再灌注模型,大鼠予以2%戊巴比妥钠腹腔注射麻醉,术中麻醉机控制持续吸入2%异氟烷,用线栓阻断右侧MCA的血液供应,阻断大脑中动脉2h后退出线栓,给予再灌注。术中以手术恒温设备将直肠温度控制在36.5-37.5℃,以探针监测大鼠颞温,多普勒探针检测脑缺血局部血流。每组大鼠在缺血再灌注后24小时测定Garcia神经功能评分,然后处死大鼠并取全脑标本,行脑切片采用TTC染色法测定大脑梗死体积,并计算梗死体积百分比。于脑缺血再灌注2h后取脑组织匀浆检测细胞凋亡指标Caspase-3活性;于再灌注2h后取脑切片行TUNEL染色检测细胞凋亡率。在荧光显微镜下观察连续转染后24h时脑组织荧光蛋白的表达情况,并计算转染率。Western blot检测转染后24h脑组织HO-1的表达。结果:转染后HO-1表达的变化:Western blot检测示:HO组大鼠脑内HO-1表达显著高于Ad组和V组,Ad组和V组比较HO-1表达无明显差异。绿色荧光蛋白示转染率:显微镜下观察Ad组和HO组的大鼠脑切片,均可见有绿色荧光蛋白表达且两组比较绿色荧光蛋白表达量无明显差异,并测定转染率为(34.5±3.4)%。神经功能评分:在脑缺血再灌注后24h, SH、V、Ad、HO四组大鼠的神经功能评分分别为18、9.571±0.254、9.857±0.149、12.75±0.211,HO组大鼠神经功能评分均显著优于Ad组和V组,差异有统计学意义(P<0:001);Ad组与V组比较神经功能评分无明显差异。梗死体积及细胞凋亡的检测:a.脑梗死体积:在脑缺血再灌注后24h, SH、V、Ad、HO四组大鼠的脑梗死体积百分比分别为0%、60.36±6.750%、61.80±7.544%、27.31±2.913%,与SH组比较,V组、Ad组脑梗死体积百分比显著增高;与V组及Ad组比较,HO组脑梗死体积百分比显著降低(P<0.01);Ad组与V组比较脑梗死体积百分比无显著差异。b.神经细胞凋亡:在脑缺血再灌注后2h, SH、V、Ad、HO各组中纹状体、海马(CA1区)、皮层(缺血半暗带)的凋亡细胞阳性率及Caspase-3活性分别为SH组:<0.1%/0.800±0.170、<0.1%/0.441±0.193、<0.10%/0.674±0.186。V组:(53.39±1.742)%/8.889±0.352、(34.81±1.206)%/7.750±0.446、(57.67±2.591)%/7.144±0.424。Ad组:(52.27±1.051)%/8.273±0.359、(36.31±2.210)%/8.284±0.264、(59.33±2.951)%/7.744±0.398。HO组:(43.83±1.15)%/6.217±0.313、(27.31±1.382)%/6.428±0.342、(48.94±2.12)%/6.472±0.347。与SH组比较,V组、Ad组神经细胞凋亡率及Caspase-3活性均显著增高;与V组及Ad组比较,HO组神经细胞凋亡率及Caspase-3活性均显著降低(P<0.01);Ad组与V组比较神经细胞凋亡率及Caspase-3活性均无明显差异。结论:通过AdEasy Sytem成功构建含有HO-1基因的腺病毒载体;通过zea—Longa线栓法建立稳定的MCAO模型;腺病毒携带的HO-1基因通过立体定向法脑室内转染能有效的转染脑组织,并在脑内稳定表达;Ad-HO-1对局灶性脑缺血再灌注大鼠脑组织有保护作用,其机制是外源性HO-1基因促使HO-1表达上调,高度表达的HO-1早期(2h)发挥抗凋亡作用并在晚期(24h)转化为具有临床意义的减少梗死的作用。
Abstract:bjective:To observe the effects on cerebral ischemia-reperfusion(CIR) injury after transfection of heme oxygenase-1 gene in rat for discussing the therapy prospect of regulating the heme oxygenase gene to stroke in practice. Methods:Adenovirus Vector Production:HO-1 gene was cloned by using the reverse-transcription polymerase chain reaction (RT-PCR) method from the total RNA extracted from rat spleen cells.According to published GeneBank sequence of rat HO-1(J02722) the primer sequence was designed. Adenoviral vectors carrying a rat HO-1 gene were constructed by Adenovirus-bacterial recombination system (AdEasy).The viral titers of Ad-Ho-1 and Ad-GFP were 2.5×1011 pfu/ml and 2.0×1011 pfu/ml.Male Sprague Dawley (SD) rats (n=78) were randomly divided into four groups: sham group (SH),vehicle group (V), empty adenovirus vector group (Ad) and Ad-HO-1 transfection group(18 each group).Rats of V, Ad and Ad-HO-1 groups were respectively injected with 20μl saline,20μl saline containing 1μl of empty vector adenovirus or 1μl of recombinant HO-1 adenovirus through the right ventricle for three days before ischemia. Injection site was reference to Paxinos and Watson rat brain stereotactic atlas.Then,cerebral ischemia-reperfusion was established by middle cerebral artery occlusion (MCAO) according to a method Zea—Longa described.Under halothane anesthesia (induction 2%, maintenance:2% in an oxygen and nitrous oxide 30:70 mixture), a nylon monofilament was introduced into internal carotid artery to occlude the middle cerebral artery. Two hours later, the filament was withdrawn and the wound was sutured.Rectal temperature was maintained at physiological levels (36.5-37.5℃) using a thermal blanket. Regional cerebral blood flow (rCBF) was measured using a laser Doppler flow meter probe.
     Neurological deficits were evaluated at 24 hours after ischemia using the scoring system reported by Garcia. Then the brain tissue was removed and was sectioned into slices, infarct volume was evaluated with 2,3,5-triphenyltet-razolium hydrochloride (TTC) staining.Infarct volumes were expressed as percentage of the contralateral hemisphere.Two hours after ischemia, brain tissue was homogenized.The homogenates were using to detect neuronal caspase-3 activity.24h after ischemia, brain tissue sections were using to detect apoptotic cells by TUNEL stain, GFP expression was observed by fluorescence microscope, and calculated the transfection rate.The expressions of HO-1 in brain tissue were detected by Western blot. Results:Western blot show the change of heme oxygenase-1 level after transfection:In HO gene treated rats, heme oxygenase-1 expression was significantly increased compared with that in vehicle and Ad groups.The HO-1 expression in Ad group was no difference than those in and V group.Expression of green fluorescent protein show transfection rate:Fluorescent protein expression was seen in brain tissue in both Ad group and HO group with no significant difference,and the transfection rate was 34.5%±3.4%. The neurological behavior score:The neurological behavior score among 4 groups:18、9.571±0.254、9.857±0.149、12.75±0.211.The neurological behavior score of HO group were significantly higher than those in Ad group and V group (P<0.001).It is no significant difference between Ad group and V group.Infarction volume and neuronal apoptosis:a. Percentage of infarction volume among 4 groups:0%、60.36±6.750%、61.80±7.544%、27.31±2.913%.Compared with the SH group, volume of cerebral infarction in V group and Ad group increased. Compared with V group or Ad group, these indexes in HO group significant reduced (P< 0.01).Compared with V group or Ad group, these indexes in HO group significant reduced (P<0.01).Those indexes were no significant difference between Ad group and V group.b.Neuronal apoptosis:Rate of apoptosis positive staining cell and Caspase-3 activity in caudate putamen,CAl of hippocampal and cortex among 4 groups:SH group:<0.1%/0.800±0.170, <0.1%/0.441±0.193,<0.1%/0.674±0.186.V group:(53.39±1.742)%/8.889±0.352,(34.81±1.206)%/7.750±0.446,(57.67±2.591)%/7.144±0.424.Ad group: (52.27±1.051)%/8.273±0.359,(36.31±2.210)%/8.284±0.264,(59.33±2.951)%/ 7.744±0.398。HO group:(46.55±1.001)%/6.217±0.313,(27.31±1.382)%/ 6.428±0.342, (48.94±2.120)%/6.472±0.347.Compared with the SH group, the. neuronal apoptosis in V group and Ad group increased.Compared with V group or Ad group,these indexes in HO group significant reduced (P<0.01). Compared with V group or Ad group, these indexes in HO group significant reduced (P<0.01).Those indexes were no significant difference between Ad group and V group.Conclusion:Adenoviral vectors carrying a rat HO-1 gene were constructed by AdEasy Vector System; the stabled animal models were established by transient occlusion of MCA according to a method Zea—Longa described. Brain stereotactic intraventricular injection of HO-1 gene carried by adenovirus can be effectively transfected into the brain tissue and express stably in vivo.Ad-HO-lhas neuroprotective effect against cerebral ischemic reperfusion in rats.The neuroprotective role of them to CIR may contribute to the increased expression of HO-1 protein. High expression of HO-1 can play an early (2h after reperfusion)anti-apoptosis effect may translate into clinically meaningful infarct reduction at a later time point (24h after reperfusion).
引文
1.Amantea D, Nappi G, Bernardi G,et al.Post-ischemic brain damage: pathophysiology and role of inflammatory mediators[J].FEBS J,2009, 276(1):13-26.
    2.Qu Y, Chen J, Benvenisti-Zarom L, et al.Effect of targeted deletion of the heme oxygenase-2 gene on hemoglobin toxicity in the striatum [J].J Cereb Blood Flow Metab,2005,25(11):466-1475.
    3.Qu Y, Chen-Roetling J, Benvenisti-Zarom L,et al.Attenuation of oxidative injury after induction of experimental intracerebral hemorrhage in heme oxygenase-2 knockout mice[J].J Neurosurg,2007,106(3):428-435.
    4.Attuwaybi BO, Kozar RA, Moore-Olufemi SD, et al.Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury [J].J Surg Res,2004,118(1):53-57.
    5.Chen-Roetling J, Benvenisti-Zarom L, Regan RF.Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury [J].J Neurosci Res,2005,82(6):802-810.
    6.Benvenisti-Zarom L, Regan RF.Astrocyte-specific heme oxygenase-1 hyperexpression attenuates heme-mediated oxidative injury [J].Neurobiol Dis,2007,26(3):688-695.
    7.Leszl-Ishiguro M, Horvath B, Johnson RA, et al.Influence of the heme-oxygenase pathway on cerebrocortical blood flow[J].Neuroreport, 2007,18(11):1193-1197.
    8.Bishop A, Yet SF, Lee ME,ea tl.A key role for heme oxygenase-1 in nitric oxide resistance in murine motor neurons and glia[J].Biochem Biophys Res Commun,2004,325(1):3-9.
    9.Zhen-Wei X, Jian-Le S,Qi Q, Wen-Wei Z, Xue-Hong Z, Zi-Li Z. Heme oxygenase-1 improves the survival of discordant cardiac xenograft through its anti-inflammatory and anti-apoptotic effects[J].Pediatr Transplant,2007, 11(8):850-859.
    10.Shi Q, Zhang P, Zhang J, Chen X, Lu H, Tian Y, et al.Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett 2009; 465(3):220-225.
    11.黄培堂,主编.分子克隆实验指南[M].第3版.北京:北京科学出版社;2002:230-265.
    12.Shen F, Fan Y, Su H, et al.Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice[J].Gene Ther,2008,15(1):30-39..
    13.Paxinos G,Watson CR, Emson PC.AChE-stained horizontal sections of the rat brain in stereotaxic coordinates [J].J Neurosci Methods,1980, 3(2):129-149.
    14.Longa EZ, Weinstein PR, Carlson S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats[J].Stroke,1989,20(1):84-91.
    15.Pantoni L, Bartolini L, Pracucci G, Inzitari D.Interrater agreement on a simple neurological score in rats[J]. Stroke,1998,29(4):871-2.
    16.蔡文琴,主编.现代实用细胞与分子生物学实验技术[M].北京:北京人民军医出版社;2003:265-298.
    17.Nagasawa H, KogureK.Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion [J].Stroke,1989,20(8):1037-1043
    18.Jolly D.Viral vector systems for gene therapy[J].Cancer Gene Ther,1994,1 (1):51-64
    19. Li T, Yu HM, Sun YF, Song YJ, Zhang GY, Pei DS.Inhibition of cerebral ischemia/reperfusion-induced injury by adenovirus expressed C-terminal amino acids of GluR6.Brain Res 2009; 1300:169-176.
    20.Warren JE, Crinion JT, Lambon Ralph MA, Wise RJ.Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain 2009;132(Pt 12):3428-3442.
    21.Bellner L, Martinelli L, Halilovic A, et al.Heme oxygenase-2 deletion causes endothelial cell activation marked by oxidative stress, inflammation, and angiogenesis.J Pharmacol Exp Ther 2009; 331(3):925-932.
    22.Stocker, R.,Yamamoto,Y,McDonagh, A.F.,Glazer, A.N. and Ames, B.N., Bilirubin is an antioxidant of possible physiologic significance [J].Science, 1987(235).
    23.Brad A. Sutherland, Rosanna M.A. Rahman, Andrew N. et al.Cerebral heme oxygenase 1 and 2 spatial distribution is modulated following injury from hypoxia-ischemia and middle cerebral artery occlusion in rats. Neurosci Res.2009, (65); 326-334
    24.Powell FL. Heme oxygenase is necessary for the excitatory response of cultured neonatal rat rostral ventrolateral medulla neurons to hypoxia by D'Agostino D, Mazza E, and Neubauer JA. Am J Physiol Regul Integr Comp Physiol 2009; 296(1):R100-101.
    25.Woo SW, Lee SH, Ko G, Kim YC, Sohn DH. Isoliquiritigenin inhibits cell proliferation by a heme oxygenase-dependent pathway in rat hepatic stellate cells.Planta Med 2008; 74(8):834-839.
    26.Tang YL, Qian K, Zhang YC, et al.A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.J Cardiovasc Pharmacol Ther 2005; 10(4):251-263.
    27.Lin H, Lin TN, Cheng WM,et al.Cyclooxygenase-1 and bicistronic cyclooxygenase-1/prostacyclin synthase gene transfer protect against ischemic cerebral infarction[J].J Circulation,2002,105 (16):1962-1969
    28.Stec DE, Vera T, Storm MV, McLemore GR, Jr.,Ryan MJ.Blood pressure and renal blow flow responses in heme oxygenase-2 knockout mice. Am J Physiol Regul Integr Comp Physiol 2009;297(6):R1822-1828.
    29.Dennery, P.A.,Visner, G.,Weng, Y.-H.,et al.,Resistance to hyperoxia with heme oxygenase-1 disruption:role of iron [J].Free Radic.Biol. Med.,2003, (34);124-133.
    30.Wu,J.,Hua, Y,Keep, R.F.,et al.Iron and iron-handling proteins in the brain after intracerebral hemorrhage [J].Stroke,2003, (34);2964-2969.
    31.Rogers, B.,Yakopson, V.,Teng, Z.P.,et al.Heme oxygenase-2 knockout neurons are less vulnerable to hemoglobin toxicity [J].Free Rad. Biol.Med., 2003, (35); 872-881.
    32.Chen J, Regan RF.Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin[J].Biochem Biophys Res Commun,2004,318(1): 88-94.
    1. Dhodda V.K.,Sailor K.A.,Bowen K.K.,et al.Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis.J Neurochem.2004.89(1).73-89
    2.Tang Y,Pacary E.,Freret T.,et al.Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke.Neurobiol Dis.2006.21(1).18-28
    3.Gidday J.M.Cerebral preconditioning and ischaemic tolerance.Nat Rev Neurosci.2006.7(6).437-448
    4.Kariko K.,Weissman D.,Welsh F.A.Inhibition of toll-like receptor and cytokine signaling--a unifying theme in ischemic tolerance.J Cereb Blood Flow Metab.2004.24(11).1288-1304
    5.Kondo Y.,Takano F.,Hojo H.Inhibitory effect of bisbenzylisoquinoline alkaloids on nitric oxide production in activated macrophages.Biochem Pharmacol.1993.46(11).1887-1892
    6.何素冰,何丽娜.赤芍总苷对PC12细胞缺血性损伤的保护作用.华西药学杂志.2000.15(6).409-412
    7. Onoue S.,Endo K.,Yajima T.,et al.Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide attenuate glutamate-induced nNOS activation and cytotoxicity.Regul Pept.2002.107(1-3).43-47
    8.Ikonomidou C.,Turski L.Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?.Lancet Neurol.2002. 1(6).383-386
    9.Ban J.Y.,Yoon K.L.,Kim S.K.,et al.Promoter Polymorphism (rs3755724,-55C/T) of Tissue Inhibitor of Metalloproteinase 4 (TIMP4)as a Risk Factor for Kawasaki Disease with Coronary Artery Lesions in a Korean Population.Pediatr Cardiol.2008.
    10.邓秀玲,钱之玉,等.3,6-[二甲氨基]-二苯骈碘杂六环葡萄糖酸盐(Ⅰ—93)对大鼠全脑缺血灌注时RyR mRNA表达的影响.中国药理学会通讯.2000.17(3).58
    11.Valko M.,Morris H.,Cronin M.T.Metals,toxicity and oxidative stress.Curr Med Chem.2005.12(10).1161-1208
    12.Valko M.,Rhodes C.J.,Moncol J.,et al.Free radicals, metals and antioxidants in oxidative stress-induced cancer.Chem Biol Interact.2006.160(1).1-40
    13.Liao S.L.,Chen W.Y.,Raung S.L.,et al.Association of immune responses and ischemic brain infarction in rat.Neuroreport.2001.2(9).1943-1947
    H.Yang G.Y.,Schielke G.P.,Gong C.,et al.Expression of tumor necrosis factor-alpha and intercellular adhesion molecule-1 after focal cerebral ischemia in interleukin-lbeta converting enzyme deficient mice.J Cereb Blood Flow Metab.1999.19(10).1109-1117
    15.Danton G.H.,Dietrich W.D.Inflammatory mechanisms after ischemia and stroke.J Neuropathol Exp Neurol.2003.62(2).127-136
    16.Garau A.,Bertini R.,Colotta F.,et al.Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine.2005.30(3). 125-131
    17.Ginsberg MD,Busto R.Combating hyperthermia in acute stroke:a significant clinical concern [J]. Stroke,1998,29:529-534.
    18.Jiang H.,Koubi D.,Zhang L.,et al.Inhibitors of iNOS protects PC12 cells against the apoptosis induced by oxygen and glucose deprivation.Neurosci Lett.2005.375(1).59-63
    19.Phanithi P.B.,Yoshida Y.,Santana A.,et al.Mild hypothermia mitigates post-ischemic neuronal death following focal cerebral ischemia in rat brain:immunohistochemical study of Fas, caspase-3 and TUNEL Neuropathology.2000.20(4).273-282
    20.Schwab S.,Spranger M.,Aschoff A.,et al.Brain temperature monitoring and modulation in patients with severe MCA infarction.Neurology.1997.48(3). 762-767
    121.Clifton GL,Miller ER,Choi SC,et al.Lack of effect of induction of hypothermia after acute brain injury [J].N Engl J Med,2001,344: 556-563.
    22.Maier C.M.,Ahern K.,Cheng M.L.,et al.Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia:effects on neurologic outcome,infarct size, apoptosis,and inflammation. Stroke.1998. 29(10).2171-2180
    23.Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group.Stroke.1997.28(11).2109-2118
    24.Phan T.G.,Wijdicks E.F.Intra-arterial thrombolysis for vertebrobasilar circulation ischemia.Crit Care Clin.l999.15(4).719-742
    25.Akins PT,Atkinson RP.Glutamate AMPA receptor antagonist treatmen-tfor ischemic stmke[J].Curt Med Res Opin,2002,18(2):9-13.
    26.Lyden P.,Shuaib A.,Ng K.,et al.Clomethiazole Acute Stroke Study in ischemic stroke(CLASS-I):final results.Stroke.2002.33(1).122-128
    27.LoPachin RM,Gaughan CL,Lehning EJ,et al.Effects of ion channel blockade on the distribution of Na,K,Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons[J].Neuroscience,2001,103 (4):971-983.
    28.Horn J.,Limburg M.Calcium antagonists for ischemic stroke:a systematic review.Stroke.2001.32(2).570-576
    29.Muir Kw,LeesKR,FordI,etal.Magnesiumfor acute stroke(Intra-venous Magnesium Efficacy in Stroke trial):randomised controlled trial [J].The Lancet,2004,363(9407):439-445.
    30.Use of anti-ICAM-1 therapy in ischemic stroke:results of the Enlimomab Acute Stroke Trial.Neurology.2001.57(8).1428-1434
    31.Furuya K.,Takeda H.,Azhar S.,et al. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab,a murine anti-human intercellular adhesion molecule-1 antibody:a bedside-to-bench study.Stroke.2001.32(11).2665-2674
    32.Engelhard K.,Werner C.,Reeker W.,et al.Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats.Br J Anaesth.1999.83(3).415-421
    33.Arai N.,Furukawa N.,Miyamae T.,et al.DOPA cyclohexyl ester,a competitive DOPA antagonist,protects glutamate release and resultant delayed neuron death by transient ischemia in hippocampus CA1 of conscious rats.Neurosci Lett.2001.299(3).213-216 [31
    34.O'Neill M.J,Hicks C.A.,Ward M.A.,et al.LY393615,a novel neuronal Ca(2+)and Na(+)channel blocker with neuroprotective effects in models of in vitro and in vivo cerebral ischemia.Brain Res.2001.888(1).[32]
    1.Majno G, Joris I.Apoptosis, oncosis, and necrosis.An overview of cell death[J].Am J Pathol 1995;146(1):3-15.
    2.Flynn RW, MacWalter RS,Doney AS.The cost of cerebral ischaemia[J]. Neuropharmacology 2008;55(3):250-256.
    3.Doyle KP, Simon RP, Stenzel-Poore MP.Mechanisms of ischemic brain damage[J].Neuropharmacology 2008;55(3):310-318.
    4.Zhang ZQ Chopp M, Zaloga C, et al.Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats[J].Stroke 1993;24(12):2016-2021; discussion 2021-2012.
    5.Eliasson MJ, Huang Z, Ferrante RJ, et al.Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage[J].J Neurosci 1999;19(14):5910-5918.
    6.Iadecola C, Forster C, Nogawa S,et al.Cyclooxygenase-2 immunor-eactivity in the human brain following cerebral ischemia[J].Acta Neuropathol 1999;98(1):9-14.
    7.O'Brien PJ.Peroxidases.Chem Biol Interact 2000;129(1-2):113-139.
    8.Galluzzi L, Morselli E,Kepp O, et al.Targeting post-mitochondrial effectors of apoptosis for neuroprotection[J].Biochim Biophys Acta 2009;1787(5):402-413.
    9.Reed JC, Kroemer G. Mechanisms of mitochondrial membrane permeabil- ization. Cell Death Differ 2000;7(12):1145.
    10.Zamzami N, Kroemer G.The mitochondrion in apoptosis:how Pandora's box opens[J].Nat Rev Mol Cell Biol 2001;2(1):67-71.
    11.Joza N, Susin SA, Daugas E, et al.Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death[J].Nature 2001;410 (6828):549-554.
    12.Nielsen M, Lambertsen KL, Clausen BH, et al.Nuclear translocation of endonuclease G in degenerating neurons after permanent middle cerebral artery occlusion in mice[J].Exp Brain Res 2009;194(1):17-27.
    13.Sugawara T, Noshita N, Lewen A, et al.Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation[J].J Neurosci 2002;22(1):209-217.
    14.Siegelin M, Touzani O, Toutain J, et a. Induction and redistribution of XAF1,a new antagonist of XIAP in the rat brain after transient focal ischemia[J].Neurobiol Dis 2005;20(2):509-518.
    15.Koumenis C, Wouters BG. "Translating" tumor hypoxia:unfolded protein response (UPR)-dependent and UPR-independent pathways[J].Mol Cancer Res 2006;4(7):423-436.
    16.Andrabi SA, Sayeed I, Siemen D, et a. Direct inhibition of the mitochondrial permeability transition pore:a possible mechanism responsible for anti-apoptotic effects of melatonin[J].FASEB J 2004; 18(7): 869-871.
    17.Boveris A, Chance B.The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen[J].Biochem J 1973;134(3):707-716.
    18.Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B,et al. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion[J].J Neurosci 1998;18(20):8292-8299.
    19.Crack PJ, Taylor JM, de Haan JB,et a. Glutathione peroxidase-1 contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic mouse in response to ischemia/reperfusion injury[J].J Cereb Blood Flow Metab 2003;23(1):19-22.
    20.O'Neill MJ, Murray TK, McCarty DR, et al.ARL 17477,a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia[J]. Brain Res 2000;871(2):234-244.
    21.Cash D, Beech JS,Rayne RC,et al.Neuroprotective effect of aminoguanidine on transient focal ischaemia in the rat brain[J].Brain Res 2001;905(1-2):91-103.
    22.Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics[J].Brain Res Rev 2007;54(1):34-66.
    23.Potts PR, Singh S,Knezek M, et al.Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis[J].J Cell Biol 2003;163(4):789-799.
    24.Zhao H, Yenari MA, Cheng D, et al.Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 2003;85(4):1026-1036.
    25.Abe T, Takagi N, Nakano M, et al.The effects of monobromobimane on neuronal cell death in the hippocampus after transient global cerebral ischemia in rats[J].Neurosci Lett 2004;357(3):227-231.
    26.Li X, Stark GR. NFkappaB-dependent signaling pathways[J].Exp Hematol 2002;30(4):285-296.
    27.Feng Y, Fratkin JD, LeBlanc MH. Inhibiting caspase-9 after injury reduces hypoxic ischemic neuronal injury in the cortex in the newborn rat[J]. Neurosci Lett 2003;344(3):201-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700