实时三维超声心动图评价左室整体及局部收缩功能的临床观察和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分实时三维超声评价正常人的左室整体和局部收缩功能目的应用实时三维超声心动图结合半自动内膜边界探测技术,测量正常成人的左室整体及局部容积参数和收缩功能,探讨该方法的可行性、准确性、重复性,及正常成人左室各节段的局部收缩功能差异。
     方法健康志愿者36例,应用Philips iE33成像系统采集三维数据,使用Research-Arena 4D LV-Analysis CAP2.5分析软件脱机测量左室整体和节段容积及收缩功能参数,包括左室整体舒张末期容积(global end-diastolic volume, gEDV)、节段舒张末期容积(regional end-diastolic volume, rEDV)、整体收缩末期容积(global end-systolic volume, gESV)、节段收缩末期容积(regional end-systolic volume, rESV)、整体每搏量(global stroke volume, gSV)、节段每搏量(regional stroke volume, rSV)、整体射血分数(global ejection fraction, gEF)和节段射血分数(regional ejection fraction, rEF)。选取20例志愿者的左室整体容积及收缩功能参数的RT-3DE测值与二维超声心动图(two dimensional echocardiography, 2DE)的双平面Simpson’s法测值比较,并将全部志愿者的左室节段容积及收缩功能参数测值行各节段内比较。
     结果左室整体收缩功能检测:①RT-3DE与Simpson’s法所测gEDV、gESV、gSV和gEF差异均无统计学意义;②RT-3DE与Simpson’s法所测gEDV、gESV、gSV和gEF均高度相关;③检查者与复查者之间gEDV、gESV、gSV及gEF的RT-3DE测值高度相关,且变异小。
     左室局部收缩功能检测:①正常人左室各节段容积-时间曲线均显示为“U”型波状,形态较为一致。各节段波峰均在舒张末期时间点,波谷纵横坐标相近,均位于收缩末期时间点附近。各节段射血分数-时间曲线显示为倒“U”型曲线,其最低点为0,位于舒张末期时间点;其最高点纵横坐标相近,位于收缩末期时间点附近。②各室壁对应节段的rEDV、rESV和rSV测值从基底段向心尖段均呈递减趋势,基底段测值明显大于中间段和心尖段测值,而大部分中间段和心尖段的对应节段测值之间差异无统计学意义;③各室壁对应节段的rEF测值从基底段向心尖段呈逐渐递增趋势,但存在显著差异的节段数明显较前述容积参数减少;④沿左室长轴纵向比较,rEDV、rESV和rSV测值的演变规律为基底节段组大于中间和心尖节段组),而中间和心尖节段组测值之间差异无统计学意义。rEF测值的演变规律为基底节段组明显低于中间和心尖节段组,而中间和心尖节段组之间rEF测值差异无统计学意义;⑤沿左室短轴横向比较,rEDV、rESV和rSV测值的演变规律为:前壁、前间隔和侧壁节段组最大,后壁和后间隔节段组次之,下壁节段组最小。rEF测值的演变规律为前间隔、前壁节段组小于侧壁、后壁和下壁节段组。
     结论应用实时三维超声心动图结合半自动内膜边界探测技术可简便、准确、重复性高地评价正常人的左室整体和局部收缩功能。正常成人的左室各节段局部收缩功能存在差异,rEDV、rESV、rSV和rEF在左室基底段和中间、心尖段之间,以及左室短轴方向各节段之间有明显差异。
     第二部分实时三维超声评价冠心病患者的左室整体和局部收缩功能
     目的应用实时三维超声心动图(three-dimensional echocardiography, RT-3DE)结合半自动内膜边界探测技术,测量冠心病患者的左室整体及局部容积参数和收缩功能,探讨该方法评价冠心病患者左室收缩功能的的可行性、准确性、重复性,并揭示冠心病患者左室整体及节段收缩功能的变化特点及治疗后改善情况。
     方法冠心病患者42例,正常对照者36例,应用Philips iE33成像系统采集三维数据,使用Research-Arena 4D LV-Analysis CAP2.5分析软件脱机测量左室整体舒张末期容积(global end-diastolic volume, gEDV)、节段舒张末期容积(regional end-diastolic volume, rEDV)、整体收缩末期容积(global end-systolic volume, gESV)、节段收缩末期容积(regional end-systolic volume, rESV)、整体每搏量(global stroke volume, gSV)、节段每搏量(regional stroke volume, rSV)、整体射血分数(global ejection fraction, gEF)和节段射血分数(regional ejection fraction, rEF)。①选取其中25例患者的左室整体容积参数和射血分数RT-3DE测值与二维超声心动图(two dimensional echocardiography, 2DE)的双平面Simpson’s法测值比较。②根据冠脉造影的结果,将42例患者分成三组:A组为14例单纯左前降支病变患者,B组为12例左回旋支病变和/或右冠状动脉病变患者,C组为16例包含左前降支病变的双支或多支病变患者(冠脉狭窄程度≥75%定义为冠脉病变)。将A组、B组、C组和正常对照组所测的左室整体及节段容积和收缩功能参数比较。③采集其中20例行血运重建术患者术前1~3天、术后一周和术后三个月的RT-3DE左室图像,并分析患者术前和术后随访中左室整体和局部收缩功能变化情况。
     结果RT-3DE与2DE测值比较:①RT-3DE法与双平面Simpson’s法所测冠心病组gEDV、gESV、gSV和gEF均高度相关,但相关系数较正常组相应测值有所降低;②RT-3DE与双平面Simpson’s法所测冠心病组gEDV、gESV、gSV和gEF差异均无统计学意义;③检查者与复查者之间冠心病组gEDV、gESV、gSV及gEF的RT-3DE测值高度相关,且测值一致性好;④RT-3DE法与Simpson’s法的观察者间变异在冠心病组均较正常组有所增加,且冠心病组中Simpson’s法的观察者间变异增加更明显,大于RT-3DE法的观察者间变异。
     冠心病分组的收缩功能检测:①A组、C组的gEDV和gESV均较正常对照组增大,且C组的gEDV和gESV较A组和B组增大;②C组的gSV较正常对照组减小;gEF测值为正常对照组>B组>A组>C组;③冠心病组的左室节段容积-时间曲线杂乱,形态多样。病变节段曲线曲度变小,各节段曲线波谷纵横坐标远离。各节段射血分数-时间曲线也呈现类似变化,曲线杂乱,形态多样,病变节段曲线曲度变小,各节段曲线最高点纵横坐标远离;④在冠心病A组,前间隔、前壁、心尖部各节段rEF测值较正常组对应节段测值明显降低,后间隔基底段、后间隔中间段和侧壁中间段rEF测值稍有降低,且上述病变节段大部分出现rEDV、rESV增大和rSV减小;⑤在冠心病B组,后壁、下壁、后间隔各节段及侧壁中间段的rEF测值较正常组减低,且上述病变节段中,rEDV未见明显变化,大部分节段出现rESV增大和/或rSV减小;⑥在冠心病C组,左室各节段rEF测值均出现不同程度的降低,rEDV,rESV不同程度的增大。⑦在冠心病A组和B组内,病变节段的rEF测值较正常节段明显减低,差异有统计学意义。
     冠心病组血运重建术前后RT-3DE测值比较:①术后一周复查,gEDV、gESV、gSV及gEF测值较术前均未见明显改变,前壁基底段和前间隔基底段的rEF测值较术前升高;②术后三月随访,gEDV、gESV、gSV测值较术前无明显改变,而gEF测值较术前升高,前壁基底段和前间隔基底段rEF测值较术后一周时改善更明显,并出现更多节段的rEF测值较术前有不同程度的升高。
     结论应用实时三维超声心动图结合半自动内膜边界探测技术可简便、准确、重复性高地评价冠心病患者的左室整体和局部收缩功能,并可用于血运重建术的疗效随访。冠心病患者可出现左室整体和局部收缩功能的降低,且左室收缩功能改变受冠状动脉受累支数及血运重建术的影响。
     第三部分实时三维超声评价急性心肌梗塞犬整体和局部收缩功能
     目的应用实时三维超声心动图(RT-3DE)结合半自动内膜边界探测技术,测量冠脉结扎后急性心梗犬的左室整体及局部收缩功能变化,探讨该方法评价急性心梗犬左室收缩功能的的可行性和准确性,以及冠脉结扎部位不同对于左室收缩功能的影响。
     方法能成功建立犬的急性心肌梗塞模型并进入统计分析的实验犬20只。根据冠脉结扎部位将全部实验犬分为两组:①左前降支(LAD)结扎组11只;②左回旋支(LCX)结扎组9只。分别于结扎前、结扎后10分钟内、1小时和3小时行RT-3DE检查,并使用Research-Arena 4D LV-Analysis CAP2.5分析软件脱机测量左室整体和节段容积参数和收缩功能,包括左室整体舒张末期容积(global end-diastolic volume, gEDV)、节段舒张末期容积(regional end-diastolic volume, rEDV)、整体收缩末期容积(global end-systolic volume, gESV)、节段收缩末期容积(regional end-systolic volume, rESV)、整体每搏量(global stroke volume, gSV)、节段每搏量(regional stroke volume, rSV)、整体射血分数(global ejection fraction, gEF)和节段射血分数(regional ejection fraction, rEF)。
     结果急性心梗犬左室整体收缩功能变化:①LAD结扎组中,冠脉结扎后10分钟内和结扎后1小时分别出现了gESV和gEDV增大,并持续到结扎后3小时;②LAD结扎组中,结扎10分钟内出现gEF降低,并在结扎后1小时继续降低,3小时后有所改善,但无统计学意义;③LCX结扎组中,冠脉结扎后10分钟内出现gESV增大,并持续到结扎后3小时,结扎后1小时出现gEDV增大,结扎后3小时有所回缩;④LCX结扎组中,冠脉结扎后10分钟内出现gEF降低,并在结扎后1小时继续降低,3小时后有所改善;⑤冠脉结扎后10分钟内、1小时和3小时,LAD结扎组所测gEF均较LCX结扎组gEF测值低。
     急性心梗犬左室局部收缩功能变化:①基础态犬的节段左室容积-时间曲线呈“U”型曲线,各曲线形态一致。各节段波峰均位于舒张末期时间点,波谷纵横坐标靠近,位于收缩末期时间点附近。各节段射血分数-时间曲线显示为倒“U”型曲线,最低点为0,位于舒张末期时间点,最高点纵横坐标靠近,位于收缩末期时间点附近;②冠脉结扎后,左室各节段容积-时间曲线变得杂乱,形态多样。病变节段曲线曲度变小,各节段曲线波谷纵横坐标离散,病变节段波谷较浅。各节段射血分数-时间曲线也出现类似变化,曲线杂乱,形态多样,病变节段曲线曲度变小,最高点纵坐标减少,各节段曲线最高点纵横坐标离散;③LAD结扎主要累及左室前壁、前间隔和心尖节段心肌,结扎10分钟内即出现前间隔、前壁及心尖节段rEF测值减低,结扎后1小时上述节段中部分出现rEF测值继续减低,同时侧壁基底段、侧壁中间段及后间隔中间段也出现rEF测值减低,结扎后3小时少数受累节段rEF测值较结扎后1小时有所上升;④LCX结扎主要累及左室基底部、下壁和后壁节段的心肌,结扎后10分钟内即出现基底部各节段、后壁中间段和下壁中间段的rEF测值减低,结扎后1小时上述节段中部分出现rEF测值继续减低,同时后间隔中间段和下壁心尖段也出现rEF测值减低,结扎后3小时少数受累节段rEF测值较结扎后1小时有所上升。
     结论应用实时三维超声心动图结合半自动内膜边界探测技术可简便、准确地评价急性心肌梗塞犬左室整体和局部收缩功能变化,左前降支和左回旋支结扎对于犬的左室整体和局部收缩功能影响有所不同。
Part 1. Assessment of global and regional normal left ventricular systolic function by real time three dimensional echocardiography
     Objective: To explore the feasibility, accuracy and reproducibility of real-time three dimensional echocardiography(RT-3DE) combined with semi-automatic boundary detection method in evaluating global & regional volume parameters and systolic function of normal left ventricle(LV), and to explore the heterogeneity of regional normal left ventricle systolic function.
     Methods: Thirty-six normal volunteers were studied, and all the three-dimensional echocardiographic datasets were acquired by Philips iE33 medical system. Then a series of LV parameters, namely, global end diastolic volume (gEDV), regional end diastolic volume (rEDV), global end systolic volume (gESV), regional end systolic volume (rESV), global stroke volume (gSV) , regional stroke volume (rSV), global ejection fraction (gEF) and regional ejection fraction (rEF), were off-line measured by Research-Arena 4D LV-Analysis CAP2.5 software. In 20 volunteers, global LV volume parameters acquired from RT-3DE were compared with corresponding values measured by biplane Simpson’s method using two-dimensional echocardiography(2DE). Then all the regional LV volume parameters in different LV segments were compared respectively.
     Results: Evaluation of global LV systolic function:①No statistical differences are found between RT-3DE and Simpson’s method in gEDV, gESV, gSV and gEF calculations.②gEDV, gESV, gSV and gEF measured by RT-3DE strongly correlate with those measured by Simpson’s method.③Using RT-3DE, gEDV, gESV, gSV and gEF measured by the first examinator strongly correlate with those values measured by the second examinator, and inter-observer variabilities of RT-3DE are small.
     Evaluation of regional LV systolic function:①Regional volume-time curves of normal LV are“U-shaped”and uniform. Corresponding phases of all curve peaks are end diastole, and phases of valleys are in the neighborhood of end systole. Regional EF-time curves of normal LV are inversely“U-shaped”. The valleys are zero, with corresponding phases being end diastole. The phases of peaks are in the neighborhood of end systole.②rEDV, rESV and rSV decrease from basal segment to apical segment in every LV wall. All the basal segments and apical segments are statistical differences, while in most of walls, there are no statistical differences between middle segments and apical segments.③rEF arise from basal segment to apical segment in every LV wall, but less segments are statistically different.④Comparing along LV longitude, rEDV, rESV, rSV of basal-segment group are larger than those of mid-segment group and apical-segment group, howerer, there are no statistical differences between mid-segment group and apical-segment group. rEF of basal-segment group are smaller than those of other two groups, howerer, there are no statistical differences between mid-segment group and apical-segment group.⑤Comparing along LV circumference, rEDV, rESV, rSV of anterior, anteroseptal and lateral segment group are largest, those of posterior and septal segment group take 2nd place, and those of inferior segment group are smallest. rEF in anterior and anteoseptal segment group is smaller than that in lateral, posterior and inferior segment group.
     Conclusions The new method of RT-3DE combined with semi-automatic boundary detection method can conveniently, feasibly, accurately and high-repeatedly measure globe and regional normal LV systolic function. Regional systolic function of normal LV is heterogeneity, rEDV, rESV, rSV and rEF show statistical differences between LV middle, apical segment and basal segment, and between LV walls in circumferential sectors.
     Part 2. Assessment of global and regional left ventricular systolic function in patients with coronary artery disease by real time three dimensional echocardiography
     Objective: To explore the feasibility, accuracy and reproducibility of real-time three dimensional echocardiography(RT-3DE) combined with semi-automatic boundary detection method in evaluating global & regional left ventricular(LV) volume parameters and systolic function in patients with coronary artery disease(CAD), and to explore the characteristic of systolic function in CAD together with functional improvement after revascularization. Methods: Forty-two patients with CAD and 36 normal volunteers were studied, and all the three-dimensional echocardiographic datasets were acquired by Philips iE33 medical system. Then a series of LV parameters, namely, global end diastolic volume (gEDV), regional end diastolic volume (rEDV), global end systolic volume (gESV), regional end systolic volume (rESV), global stroke volume (gSV) , regional stroke volume (rSV), global ejection fraction (gEF) and regional ejection fraction (rEF), were off-line measured by Research-Arena 4D LV-Analysis CAP2.5 software.①In 25 patients, global LV volume parameters acquired from RT-3DE were compared with corresponding values measured by biplane Simpson’s method using two-dimensional echocardiography(2DE).②According to angiography findings, 42 patients were divided into 3 groups. Group A consists of 14 patients with isolated left anterior descending artery(LAD) stenosis, group B consists of 12 patients with left circumflex artery(LCX) stenosis, and group C consists of 16 patients with LAD stenosis and other main coronary artery stenosis (a percent area stenosis of≥75%). Global and regional LV volume parameters of group A, group B, group C and normal contrast group were compared.③In 20 patients undergone revascularization therapy, RT-3DE images were acquired 1~3 days preoperatively, 1 week postoperatively and 3 months postoperatively respectively, and analyzed to reveal changes of global and regional LV systolic function after revascularization.
     Results: Comparison of global LV systolic function values from RT-3DE and 2DE:①In CAD group, gEDV, gESV, gSV and gEF measured by RT-3DE strongly correlate with those measured by Simpson’s method, but the correlation coefficients are lower than those in normal group.②In CAD group, no statistical differences are found between RT-3DE and Simpson’s method in gEDV, gESV, gSV and gEF calculations.③In CAD group, using RT-3DE, gEDV, gESV, gSV and gEF measured by the first examinator are consistent with and strongly correlate with those values measured by the second examinator.④Comparing with normal group, inter-observer variability of RT-3DE and Simpson’s method increase in CAD group, and inter-observer variability of Simpson’s method increased markedly, which is much larger than that of RT-3DE.
     Evaluation of regional LV systolic function of CAD group:①gEDV and gESV in group A and C incearse than normal group, besides, gEDV and gESV in group C are larger than group A and B.②gSV in group C is smaller than normal group, and relationship of gEF in different groups is normal group>group B>group A>group C.③In CAD group, regional LV volume-time curves are disuniform. Curvatures of ischemic segments decrease, and coordinates of curve valleys are disperse. Regional LV EF-time curves show similar changes, becoming disuniform. Curvatures of ischemic segments decrease, and coordinates of curve peaks are disperse.④In group A, rEF in anteroseptal, anterior and apical segments are much lower than corresponding segments values in normal group. rEF in basal septal, mid septal and mid lateral segments are slightly lower than corresponding segments values in normal group. However, in most of above-mentioned segments, rEDV, rESV increase and rSV decrease.⑤In group B, rEF in posterior, inferior, septal segments and mid lateral segments are lower than corresponding segments values in normal group. In above-mentioned segments, rEDV show no evident change, while in most of the segments, rESV increase and/or rSV decrease.⑥In all segments of group C, rEF are lower than corresponding segments values in normal group, moreover rESV and rEDV increase.⑦ In group A and B, rEF of ischemic segments is much lower than that of normal segments, and there is statistical difference between them.
     Comparison of LV systolic function before and afte revascularization:①Comparing with pre-operation, 1 week after revascularization, gEDV, gESV, gSV and gEF show unobvious change, but rEF of basal anterior and basal anteroseptal segments increase.②Comparing with pre-operation, 3 months after revascularization, gEDV, gESV, gSV show unobvious change, but gEF increases. rEF of basal anterior and basal anteroseptal segments much more increase, and rEF of other segments become increased.
     Conclusions The new assessment method of RT-3DE combined with semi-automatic boundary detection method can conveniently, feasibly, accurately and high-repeatedly measure globe and regional LV systolic function of patients with CAD, and it can be used in follow-up study of revascularization therapy. Global and regional LV systolic function of patients with CAD decrease, and the decrease is affected by number of stenostic coronary artery and revascularization therapy.
     Part 3. Assessment of global and regional left ventricular systolic function in acute myocardial infarction canine by real time three dimensional echocardiography
     Objective: To explore the feasibility and accuracy of real-time three dimensional echocardiography(RT-3DE) combined with semi-automatic boundary detection method measure global and regional left ventricular(LV) volume parameters and systolic function in acute myocardial infarction(AMI) canine, and to explore the effect of coronary artery ligation site on global and regional LV systolic function.
     Methods: Twenty canines were successfully undergone coronary artery ligation and suffered from AMI. According to coronary artery ligation site, all the canines were divided into 2 groups: left anterior descending artery(LAD) ligation group(11 canines)and left circumflex artery(LCX) ligation group(9 canines). They were taken RT-3DE examination before ligation, 10 minutes, 1 hour and 3 hour after ligation. Then a series of LV parameters, namely, global end diastolic volume (gEDV), regional end diastolic volume (rEDV), global end systolic volume (gESV), regional end systolic volume (rESV), global stroke volume (gSV) , regional stroke volume (rSV), global ejection fraction (gEF) and regional ejection fraction (rEF), were off-line measured by Research-Arena 4D LV-Analysis CAP2.5 software.
     Results: Changes of LV global systolic function in AMI canine:①In LAD ligation group, 10min and 1h after ligation, gESV and gEDV increase respectively, and the increase last into 3h post-ligation.②In LAD ligation group, 10min after ligation, gEF decrease and last into 1h post-ligation. Three hours after ligation, gEF slightly improve but without statistical significance.③In LCX ligation group, 10min after ligation, gESV increase and last into 3h post-ligation. One hour after ligation, gEDV increase and slightly recover 3h after ligation.④In LCX ligation group, 10min after ligation, gEF decrease and last into 1h post-ligation. Three hours after ligation, gEF improve and with statistical significance.⑤ Ten minutes, 1 hour and 3 hour after ligation, gEF of LAD ligation group are all lower than rEF of LCX ligation group.
     Changes of LV regional systolic function in AMI canine:①In baseline, regional volume-time curves of canine LV are“U-shaped”and uniform. Corresponding phases of curve peaks are all end diastole, and phases of valleys are in the neighborhood of end systole. Regional EF-time curves of baseline canine are inversely“U-shaped”. The valleys are zero, with corresponding phases being end diastole. The phases of peaks are in the neighborhood of end systole.②After coronary artery ligation, regional LV volume-time curves become disuniform. Curvatures of ischemic segments decrease, curve valleys of ischemic segments are shallow, and coordinates of valleys are disperse. Regional LV EF-time curves show similar changes, becoming disuniform. Curvatures of ischemic segments decrease, curve peak of ischemic segments fall, and coordinates of peaks are disperse.③LAD ligation primarily affect LV anterior, anteroseptal and apical segments.
     Ten minutes after ligation, rEF of anterior, anteroseptal and apical segments decrease. One hour after ligation, rEF of above segment decrease partly, and rEF of basal lateral, mid lateral and mid septal segments decrease too. Three hours after ligation, rEF in minority of abnormal segments slightly recover.④LCX ligation primarily affect LV basal, inferior and posterior segments. Ten minutes after ligation, rEF of basal segments, mid inferior segment and mid posterior segment decrease. One hour after ligation, rEF of above segment decrease partly, and rEF of mid septal and apical inferior segments decrease too. Three hours after ligation, rEF in minority of abnormal segments slightly recover.
     Conclusions The new assessment method of RT-3DE combined with semi-automatic boundary detection method can conveniently and accurately measure globe and regional LV systolic function of AMI canine. LAD ligation and LCX ligation affect canine LV global and regional systolic function differently.
引文
[1] Bontemps L, Nazzi M, Gabain M, et al. Theoretical model for myocardial functional characterization: application to a group of patients evaluated before and after surgical revascularization. Journal of Nuclear Cardiology, 1998, 5(2): 134-143
    [2] Dujardin K S, Enriquez-sarano M, Rossi A, et al. Echocardiographic assessment of left ventricular remodeling: are left ventricular diameters suitable tools? J Am Coll Cardiol, 1997, 30(6): 1534-1541
    [3] Wahr D W, Wang Y S, Schiller N B. Left ventricular volumes determined by two-dimensional echocardiography in a normal adult population. J Am Coll Cardiol, 1983, 1(3): 863-868
    [4] Zeng X, Shu X H, Pan C Z, et al. Assessment of left ventricular systolic synchronicity by real-time three-dimensional echocardiography in patients with dilated cardiomyopathy. Chin Med.J.(Engl.), 2006, 119(11): 919-924
    [5] Gopal A S, Shen Z, Sapin P M, et al. Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation, 1995, 92(4): 842-853
    [6] Sandstede J J, Lipke C, Kenn W, et al. Cine mr imaging after myocardial infarction--assessment and follow-up of regional and global left ventricular function. Int.J.Card Imaging, 1999, 15(6): 435-440
    [7]王新房.有关实时三维超声心动图的几个问题.中国医学影像技术, 2003, 19(05):526-528
    [8] Jenkins C, Bricknell K, Hanekom L, et al. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol, 2004, 44(4): 878-886
    [9] Bu L, Munns S, Zhang H, et al. Rapid full volume data acquisition by real-time 3-dimensional echocardiography for assessment of left ventricular indexes in children: a validation study compared with magnetic resonance imaging. Journal of the American Society of Echocardiography, 2005, 18(4): 299-305
    [10] Zeidan Z, Erbel R, Barkhausen J, et al. Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography. Journal of the American Society of Echocardiography, 2003, 16(1): 29-37
    [11] Schindera S T, Mehwald P S, Sahn D J, et al. Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model. Journal of Ultrasound in Medicine, 2002, 21(10): 1069-1075
    [12] Chen G, Sun K, Huang G. In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography., 2006, 23(5): 395-399
    [13] Fei H W, Wang X F, Xie M X, et al. Validation of real-time three-dimensional echocardiography for quantifying left and right ventricular volumes: an experimental study. Chin Med.J.(Engl.), 2004, 117(5): 695-699
    [14] Iwase M, Kondo T, Hasegawa K, et al. Three-dimensional echocardiography by semi-automatic border detection in assessment of left ventricular volume and ejection fraction: comparison with magnetic resonance imaging. J Cardiol, 1997, 30(2): 97-105
    [15] Caiani E G, Corsi C, Sugeng L, et al. Improved quantification of left ventricular mass based on endocardial and epicardial surface detection with real time three dimensional echocardiography. Heart, 2006, 92(2): 213-219
    [16] Corsi C, Lang R M, Veronesi F, et al. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation, 2005, 112(8): 1161-1170
    [17]王雪,张梅,张运,等.实时三维超声对心肌梗死患者左心室局部心肌容量和收缩功能的分析.中华超声影像学杂志, 2006, 15(05): 325-328
    [18]李秀昌,张运,李素梅,等.三维超声心动图定量左室局部射血分数对诊断室壁瘤的价值:与左室X-线造影的对照研究.中国超声医学杂志, 2006, 20(09): 102-105
    [19] Silverman N H, Ports T A, Snider A R, et al. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation, 1980, 62(3): 548-557
    [20] Sugeng L, Mor-avi V, Weinert L, et al. Quantitative assessment of left ventricular size and function:side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation, 2006, 114(7): 654-661
    [21] Kapetanakis S, Kearney M T, Siva A, et al. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation, 2005, 112(7): 992-1000
    [22] Haendchen R V, Wyatt H L, Maurer G, et al. Quantitation of regional cardiac function by two-dimensional echocardiography. I. Patterns of contraction in the normal left ventricle. Circulation, 1983, 67(6): 1234-1245
    [23] Lewinter M M, Kent R S, Kroener J M, et al. Regional differences in myocardial performance in the left ventricle of the dog. Circulation Research, 1975, 37(2): 191-199
    [24]李秀昌,张运,李素梅,等.三维超声心动图定量左室局部射血分数对诊断室壁瘤的价值:与左室X-线造影的对照研究.中国超声医学杂志, 2006, 22(09): 668-670
    [25] Bogaert J, Rademakers F E. Regional nonuniformity of normal adult human left ventricle. Am.J.Physiol Heart Circ.Physiol, 2001, 280(2): H610-H620
    [26] Buchi M, Hess O M, Murakami T, et al. Left ventricular wall stress distribution in chronic pressure and volume overload: effect of normal and depressed contractility on regional stress-velocity relations. Basic Research in Cardiology, 1990, 85(4): 367-383
    [27] Price D J, Wallbridge D R, Stewart M J. Tissue doppler imaging: current and potential clinical applications. Heart, 2000, 84 Suppl 2: II11-II18
    [28] Lorenz C H, Pastorek J S, Bundy J M. Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J.Cardiovasc.Magn Reson., 2000, 2(2): 97-108
    [29] Buckberg G D. Basic science review: the helix and the heart. Journal of Thoracic and Cardiovascular Surgery, 2002, 124(5): 863-883
    [30] Moore C C, Lugo-olivieri C H, Mcveigh E R, et al. Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged mr imaging. Radiology, 2000, 214(2): 453-466
    [1] Strauer B E, Brehm M, Zeus T, et al. [intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Deutsche Medizinische Wochenschrift, 2001, 126(34-35): 932-938
    [2] Asin C E, Yuste P, Senor J, et al. [echocardiographic evaluation of ischemic cardiopathy]. Archivos del Instituto de Cardiologia de Mexico, 1976, 46(1): 46-58
    [3] Dujardin K S, Enriquez-sarano M, Rossi A, et al. Echocardiographic assessment of left ventricular remodeling: are left ventricular diameters suitable tools? J Am Coll Cardiol, 1997, 30(6): 1534-1541
    [4] Wahr D W, Wang Y S, Schiller N B. Left ventricular volumes determined by two-dimensional echocardiography in a normal adult population. J Am Coll Cardiol, 1983, 1(3): 863-868
    [5] Weidemann F, Jamal F, Kowalski M, et al. Can strain rate and strain quantify changes in regional systolic function during dobutamine infusion, b-blockade, and atrial pacing--implications for quantitative stress echocardiography. Journal of the American Society of Echocardiography, 2002, 15(5): 416-424
    [6] Gopal A S, Shen Z, Sapin P M, et al. Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation, 1995, 92(4): 842-853
    [7] Butera A, Pelaggi P, Palmieri G L, et al. [the observation by echocardiographic monitoring of the behavior of the main morphofunctional parameters of the left ventricle after an acute myocardial infarct]. Cardiologia, 1995, 40(7): 489-495
    [8] Jenkins C, Bricknell K, Hanekom L, et al. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol, 2004, 44(4): 878-886
    [9] Bu L, Munns S, Zhang H, et al. Rapid full volume data acquisition by real-time 3-dimensional echocardiography for assessment of left ventricular indexes in children: a validation studycompared with magnetic resonance imaging. Journal of the American Society of Echocardiography, 2005, 18(4): 299-305
    [10] Gutierrez-chico J L, Zamorano J L, Perez I, et al. Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies. American Journal of Cardiology, 2005, 95(6): 809-813
    [11] Qin J X, Jones M, Shiota T, et al. Validation of real-time three-dimensional echocardiography for quantifying left ventricular volumes in the presence of a left ventricular aneurysm: in vitro and in vivo studies. J Am Coll Cardiol, 2000, 36(3): 900-907
    [12] Smith M D, Macphail B, Harrison M R, et al. Value and limitations of transesophageal echocardiography in determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol, 1992, 19(6): 1213-1222
    [13] Opie L H. Myocardial metabolism and heart disease. Japanese Circulation Journal, 1978, 42(11): 1223-1247
    [14] Demaison L, Grynberg A. Cellular and mitochondrial energy metabolism in the stunned myocardium. Basic Research in Cardiology, 1994, 89(4): 293-307
    [15] Barbato R, Menabo R, Dainese P, et al. Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circulation Research, 1996, 78(5): 821-828
    [16] Williamson J R, Schaffer S W, Ford C, et al. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation, 1976, 53(3 Suppl): I3-14
    [17] Ihara T, Komamura K, Shen Y T, et al. Left ventricular systolic dysfunction precedes diastolic dysfunction during myocardial ischemia in conscious dogs. Am.J.Physiol, 1994, 267(1 Pt 2): H333-H343
    [18] White M, Rouleau J L, Hall C, et al. Changes in vasoconstrictive hormones, natriuretic peptides, and left ventricular remodeling soon after anterior myocardial infarction. American Heart Journal, 2001, 142(6): 1056-1064
    [19] Hutchins G M, Bulkley B H. Infarct expansion versus extension: two different complications ofacute myocardial infarction. American Journal of Cardiology, 1978, 41(7): 1127-1132
    [20] Pfeffer M A, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 1990, 81(4): 1161-1172
    [21] White H D, Norris R M, Brown M A, et al. Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. New England Journal of Medicine, 1987, 317(14): 850-855
    [22] Mckay R G, Pfeffer M A, Pasternak R C, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation, 1986, 74(4): 693-702
    [23] Ilia R, Carmel S, Gueron M. Patients with coronary collaterals and normal left ventricular systolic function: clinical, hemodynamic, and angiographic characteristics. Angiology, 1998, 49(8): 631-635
    [24] Nesto R W, Kowalchuk G J. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. American Journal of Cardiology, 1987, 59(7): 23C-30C
    [25] Picano E. Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation, 1992, 85(4): 1604-1612
    [26] Gallagher K P, Matsuzaki M, Osakada G, et al. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circulation Research, 1983, 52(6): 716-729
    [27] Krahwinkel W, Haltern G, Gulker H. Echocardiographic quantification of regional left ventricular wall motion with color kinesis. American Journal of Cardiology, 2000, 85(2): 245-250
    [28] Jamal F, Kukulski T, Sutherland G R, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? An ultrasonic strain rate and strain study. Journal of the American Society of Echocardiography, 2002, 15(7): 723-730
    [29] Frielingsdorf J, Franke A, Kuhl H P, et al. Evaluation of regional systolic function in hypertrophic cardiomyopathy and hypertensive heart disease: a three-dimensional echocardiographic study. Journal of the American Society of Echocardiography, 1998, 11(8): 778-786
    [30] Maehle J, Bjoernstad K, Aakhus S, et al. Three-dimensional echocardiography for quantitative left ventricular wall motion analysis: a method for reconstruction of endocardial surface and evaluation of regional dysfunction. Echocardiography., 1994, 11(4): 397-408
    [31] Guyer D E, Foale R A, Gillam L D, et al. An echocardiographic technique for quantifying and displaying the extent of regional left ventricular dyssynergy. J Am Coll Cardiol, 1986, 8(4): 830-835
    [32] Fine D G, Sapoznikov D, Mosseri M, et al. Three-dimensional echocardiographic reconstruction: qualitative and quantitative evaluation of ventricular function. Computer Methods and Programs in Biomedicine, 1988, 26(1): 33-43
    [33] Bashein G, Sheehan F H, Nessly M L, et al. Three-dimensional transesophageal echocardiography for depiction of regional left-ventricular performance: initial results and future directions. Int.J.Card Imaging, 1993, 9(2): 121-131
    [34] Corsi C, Lang R M, Veronesi F, et al. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation, 2005, 112(8): 1161-1170
    [35]王雪,张梅,张运,等.实时三维超声对心肌梗死患者左心室局部心肌容量和收缩功能的分析.中华超声影像学杂志, 2006, 15(05): 325-328
    [36] Zhang H, Zhang Z X, Yang L, et al. Mechanisms of the acute ischemia-induced arrhythmogenesis--a simulation study. Mathematical Biosciences, 2006, 203(1): 1-18
    [37] Voigt J U, Lindenmeier G, Exner B, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. Journal of the American Society of Echocardiography, 2003, 16(5): 415-423
    [38] Feigenbaum H, Armstrong WF, Ryan T. Feigenbaum’s Echocardiography. Sixth Edition. USA: Lippincott Williams & Wilkins, 2004. 441
    [39] Linderer T, Guhl B, Spielberg C, et al. Effect on global and regional left ventricular functions by percutaneous transluminal coronary angioplasty in the chronic stage after myocardial infarction. American Journal of Cardiology, 1992, 69(12): 997-1002
    [40] Braunwald E, Kloner R A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation, 1982, 66(6): 1146-1149
    [41] Shivalkar B, Flameng W, Szilard M, et al. Repeated stunning precedes myocardial hibernation in progressive multiple coronary artery obstruction. J Am Coll Cardiol, 1999, 34(7): 2126-2136
    [42] Gibson C M. Has my patient achieved adequate myocardial reperfusion? Circulation, 2003, 108(5): 504-507
    [43]殷仁富,陈金明.心脏能量学:代谢与治疗.上海:第二军医大学出版社, 2002. 123
    [1] Doering L V. Pathophysiology of acute coronary syndromes leading to acute myocardial infarction. Journal of Cardiovascular Nursing, 1999, 13(3): 1-20
    [2] Edvardsen T, Skulstad H, Aakhus S, et al. Regional myocardial systolic function during acute myocardial ischemia assessed by strain doppler echocardiography. J Am Coll Cardiol, 2001, 37(3): 726-730
    [3]郭薇,王春,陈德伟,等.实时三维超声心动图的局部容积-时间曲线评价冠心病患者的局部心肌功能.福建医科大学学报, 2006, 40(06): 583-586
    [4]李秀昌,张运,李素梅,等.三维超声心动图定量左室局部射血分数对诊断室壁瘤的价值:与左室X-线造影的对照研究.中国超声医学杂志, 2006, 22(09): 668-670
    [5]田玉旺,沈志刚. RT组织化学方法在心肌梗死定位中的应用.中国组织化学与细胞化学杂志, 1999, 8(02): 177
    [6]杨惠玲,潘景轩,吴伟康.高级病理生理学.第二版.北京:科学出版社, 2006:193
    [7] Opie L H. Myocardial metabolism and heart disease. Japanese Circulation Journal, 1978, 42(11): 1223-1247
    [8] Demaison L, Grynberg A. Cellular and mitochondrial energy metabolism in the stunned myocardium. Basic Research in Cardiology, 1994, 89(4): 293-307
    [9] Barbato R, Menabo R, Dainese P, et al. Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circulation Research, 1996, 78(5): 821-828
    [10] Fahmy E M, Mahfouz B H, Helmy Abo E T, et al. Asynchrony of left ventricular systolic performance after the first acute myocardial infarction in patients with narrow qrs complexes: doppler tissue imaging study. Journal of the American Society of Echocardiography, 2006, 19(12): 1449-1457
    [11] Perez,de I, Ortiz O P, Florit J, et al. Usefulness of clinical, electrocardiographic, and echocardiographic parameters to detect cardiac asynchrony in patients with left ventricular dysfunction secondary to ischemic or nonischemic heart disease. Journal of the American Societyof Echocardiography, 2006, 19(11): 1338-1344
    [12] Corsi C, Lang R M, Veronesi F, et al. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation, 2005, 112(8): 1161-1170
    [13] Bu L, Munns S, Zhang H, et al. Rapid full volume data acquisition by real-time 3-dimensional echocardiography for assessment of left ventricular indexes in children: a validation study compared with magnetic resonance imaging. Journal of the American Society of Echocardiography, 2005, 18(4): 299-305
    [14] Zeidan Z, Erbel R, Barkhausen J, et al. Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography. Journal of the American Society of Echocardiography, 2003, 16(1): 29-37
    [15] Mckay R G, Pfeffer M A, Pasternak R C, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation, 1986, 74(4): 693-702
    [16] Kronenberg M W, Wooten N E, Friesinger G C, et al. Scintigraphic characteristics of experimental myocardial infarct extension. Circulation, 1979, 60(5): 1130-1140
    [17] Deboer L W, Rude R E, Davis R F, et al. Extension of myocardial necrosis into normal epicardium followng hypotension during experimental coronary occlusion. Cardiovascular Research, 1982, 16(8): 423-427
    [18] Hirzel H O, Nelson G R, Sonnenblick E H, et al. Redistribution of collateral blood flow from necrotic to surviving myocardium following coronary occlusion in the dog. Circulation Research, 1976, 39(2): 214-222
    [19] Schaper W, Nienaber C, Gottwik M. The importance of the collateral circulation for myocardial survival. Acta Med.Scand.Suppl, 1981, 651: 29-35
    [20] White M, Rouleau J L, Hall C, et al. Changes in vasoconstrictive hormones, natriuretic peptides, and left ventricular remodeling soon after anterior myocardial infarction. American Heart Journal, 2001, 142(6): 1056-1064
    [21] Pfeffer M A, Braunwald E. Ventricular remodeling after myocardial infarction. Experimentalobservations and clinical implications. Circulation, 1990, 81(4): 1161-1172
    [22] Schneider R M, Chu A, Akaishi M, et al. Left ventricular ejection fraction after acute coronary occlusion in conscious dogs: relation to the extent and site of myocardial infarction. Circulation, 1985, 72(3): 632-638
    [23] Schneider R M, Morris K G, Chu A, et al. Relation between myocardial perfusion and left ventricular function following acute coronary occlusion: disproportionate effects of anterior vs. Inferior ischemia. Circulation Research, 1987, 60(1): 60-71
    [24] Ning X H, Zweng T N, Gallagher K P. Ejection- and isovolumic contraction-phase wall thickening in nonischemic myocardium during coronary occlusion. Am.J.Physiol, 1990, 258(2 Pt 2): H490-H499
    [25] Marino P N, Kass D A, Becker L C, et al. Influence of site of regional ischemia on nonischemic thickening in anesthetized dogs. Am.J.Physiol, 1989, 256(5 Pt 2): H1417-H1425
    [26] Theroux P, Ross,j. J, Franklin D, et al. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circulation Research, 1977, 40(2): 158-165
    [27] Corr P B, Pearle D L, Hinton J R, et al. Site of myocardial infarction. A determinant of the cardiovascular changes induced in the cat by coronary occlusion. Circulation Research, 1976, 39(6): 840-847
    [28] Nesto R W, Kowalchuk G J. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. American Journal of Cardiology, 1987, 59(7): 23C-30C
    [29]周晓东,刘翠华,朱妙章,等.犬不同冠脉狭窄部位和心肌缺血范围对左室收缩功能的影响.心脏杂志, 2000, 12(06): 440-442
    [1] Yang H, Sun J P, Lever H M, et al. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography, 2003, 16(3): 233-239
    [2] Cardim N, Oliveira A G, Longo S, et al. Doppler tissue imaging: regional myocardial function in hypertrophic cardiomyopathy and in athlete's heart. Journal of the American Society of Echocardiography, 2003, 16(3): 223-232
    [3] Feigenbaum H, Armstrong WF, Ryan T. Feigenbaum’s Echocardiography. Sixth Edition. USA: Lippincott Williams & Wilkins, 2004. 447-448
    [4] Moynihan P F, Parisi A F, Feldman C L. Quantitative detection of regional left ventricular contraction abnormalities by two-dimensional echocardiography. I. Analysis of methods. Circulation, 1981, 63(4): 752-760
    [5] Fujii J, Sawada H, Aizawa T, et al. Computerized processing of two-dimensional echocardiograms for the quantification of left ventricular regional contractility. Japanese Heart Journal, 1984, 25(1): 31-43
    [6] Zoghbi W A, Charlat M L, Bolli R, et al. Quantitative assessment of left ventricular wall motion by two-dimensional echocardiography: validation during reversible ischemia in the conscious dog. J Am Coll Cardiol, 1988, 11(4): 851-860
    [7] Mor-avi V, Vignon P, Koch R, et al. Segmental analysis of color kinesis images: new method for quantification of the magnitude and timing of endocardial motion during left ventricular systole and diastole. Circulation, 1997, 95(8): 2082-2097
    [8]吴巧英,钱蕴秋,张军,等.彩色室壁运动小剂量多巴酚丁胺负荷试验检测存活心肌的研究.中华超声影像学杂志, 2002,11(02):75-77
    [9] Lang R M, Vignon P, Weinert L, et al. Echocardiographic quantification of regional left ventricular wall motion with color kinesis. Circulation, 1996, 93(10): 1877-1885
    [10] Mor-avi V, Collins K A, Korcarz C E, et al. Detection of regional temporal abnormalities in leftventricular function during acute myocardial ischemia. Am.J.Physiol Heart Circ.Physiol, 2001, 280(4): H1770-H1781
    [11] Vandenberg B F, Oren R M, Lewis J, et al. Evaluation of color kinesis, a new echocardiographic method for analyzing regional wall motion in patients with dilated left ventricles. American Journal of Cardiology, 1997, 79(5): 645-650
    [12] Krahwinkel W, Haltern G, Gulker H. Echocardiographic quantification of regional left ventricular wall motion with color kinesis. American Journal of Cardiology, 2000, 85(2): 245-250
    [13] Mor-avi V, Korcarz C E, Collins K A, et al. Simultaneous real-time echocardiographic imaging of myocardial perfusion and regional function using color-encoded, contrast-enhanced power modulation. Journal of the American Society of Echocardiography, 2003, 16(12): 1258-1266
    [14] Mor-avi V, Spencer K, Gorcsan J, et al. Normal values of regional left ventricular endocardial motion: multicenter color kinesis study. Am.J.Physiol Heart Circ.Physiol, 2000, 279(5): H2464-H2476
    [15]林红,陆堃,李晓原,等.健康成人彩色室壁动态RFAC时间累积曲线的特征.中国医学物理学杂志, 2000, 17(03): 170-172
    [16] Koch R, Lang R M, Garcia M J, et al. Objective evaluation of regional left ventricular wall motion during dobutamine stress echocardiographic studies using segmental analysis of color kinesis images. J Am Coll Cardiol, 1999, 34(2): 409-419
    [17] Decara J M, Mor-avi V, Weinert L, et al. Automated quantitative assessment of wall motion in patients with poor acoustic windows. Journal of the American Society of Echocardiography, 2004, 17(7): 723-731
    [18] Kostis J B, Mavrogeorgis E, Slater A, et al. Use of a range-gated, pulsed ultrasonic doppler technique for continuous measurement of velocity of the posterior heart wall. Chest, 1972, 62(5): 597-604
    [19] Isaaz K, Thompson A, Ethevenot G, et al. Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. American Journal of Cardiology, 1989, 64(1): 66-75
    [20]李秀兰,邓又斌,杨好意,等.定量组织速度成像对肥厚型心肌病患者左心室局部收缩功能的研究.中华超声影像学杂志, 2004, 13(2): 88-91
    [21] Derumeaux G, Ovize M, Loufoua J, et al. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation, 1998, 97(19): 1970-1977
    [22] Oki T, Tabata T, Mishiro Y, et al. Pulsed tissue doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in healthy subjects. Journal of the American Society of Echocardiography, 1999, 12(5): 308-313
    [23] Oki T, Mishiro Y, Yamada H, et al. Detection of left ventricular regional relaxation abnormalities and asynchrony in patients with hypertrophic cardiomyopathy with the use of tissue doppler imaging. American Heart Journal, 2000, 139(3): 497-502
    [24] Onose Y, Oki T, Mishiro Y, et al. Influence of aging on systolic left ventricular wall motion velocities along the long and short axes in clinically normal patients determined by pulsed tissue doppler imaging. Journal of the American Society of Echocardiography, 1999, 12(11): 921-926
    [25] Garcia E H, Perna E R, Farias E F, et al. Reduced systolic performance by tissue doppler in patients with preserved and abnormal ejection fraction: new insights in chronic heart failure. International Journal of Cardiology, 2006, 108(2): 181-188
    [26] Sabbah H N, Marzilli M, Stein P D. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am.J.Physiol, 1981, 240(6): H920-H926
    [27] Gallagher K P, Osakada G, Matsuzaki M, et al. Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am.J.Physiol, 1985, 249(2 Pt 2): H241-H248
    [28] Gallagher K P, Stirling M C, Choy M, et al. Dissociation between epicardial and transmural function during acute myocardial ischemia. Circulation, 1985, 71(6): 1279-1291
    [29] Derumeaux G, Ovize M, Loufoua J, et al. Assessment of nonuniformity of transmural myocardial velocities by color-coded tissue doppler imaging: characterization of normal, ischemic, and stunned myocardium. Circulation, 2000, 101(12): 1390-1395
    [30] Marcos-alberca P, Garcia-fernandez M A, Ledesma M J, et al. Intramyocardial analysis of regional systolic and diastolic function in ischemic heart disease with doppler tissue imaging: role of the different myocardial layers. Journal of the American Society of Echocardiography, 2002, 15(2):99-108
    [31] Poerner T C, Goebel B, Vilardi S, et al. A way to improve the reproducibility of measurements of myocardial velocity gradients. Int.J.Cardiovasc.Imaging, 2004, 20(3): 183-188
    [32] Marwick T H, Case C, Leano R, et al. Use of tissue doppler imaging to facilitate the prediction of events in patients with abnormal left ventricular function by dobutamine echocardiography. American Journal of Cardiology, 2004, 93(2): 142-146
    [33] Sengupta P P, Mohan J C, Pandian N G. Tissue doppler echocardiography: principles and applications. Indian Heart Journal, 2002, 54(4): 368-378
    [34] D'hooge, J; Heimdal, A; Jamal, F; Kukulski, T; Bijnens, B; Rademakers, F; Hatle, L; Suetens, P; Sutherland G R. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. 2000, 1(3): 154-170
    [35]王金锐,杨颖,杨敬英,等.心肌应变率成像对心梗病人左室心肌局域功能的研究.中国医学影像技术, 2001,17(09): 830-833
    [36] Slordahl S A, Bjaerum S, Amundsen B H, et al. High frame rate strain rate imaging of the interventricular septum in healthy subjects. European Journal of Ultrasound, 2001, 14(2-3): 149-155
    [37] Jamal F, Kukulski T, Sutherland G R, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? An ultrasonic strain rate and strain study. Journal of the American Society of Echocardiography, 2002, 15(7): 723-730
    [38] Kukulski T, Jamal F, D H J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. Journal of the American Society of Echocardiography, 2002, 15(1): 1-12
    [39] Katz W E, Gulati V K, Mahler C M, et al. Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue doppler echocardiography. American Journal of Cardiology, 1997, 79(8): 1036-1042
    [40] Greenberg N L, Firstenberg M S, Castro P L, et al. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation, 2002, 105(1): 99-105
    [41] Dekker D L, Piziali R L, Dong E J. A system for ultrasonically imaging the human heart in three dimensions. Computers and Biomedical Research, 1974, 7(6): 544-553
    [42] Buck T, Hunold P, Wentz K U, et al. Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation, 1997, 96(12): 4286-4297
    [43] Lee D, Fuisz A R, Fan P H, et al. Real-time 3-dimensional echocardiographic evaluation of left ventricular volume: correlation with magnetic resonance imaging--a validation study. Journal of the American Society of Echocardiography, 2001, 14(10): 1001-1009
    [44] Van Den B A, Robbers-visser D, Krenning B J, et al. Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. Journal of the American Society of Echocardiography, 2006, 19(1): 1-6
    [45] Frielingsdorf J, Franke A, Kuhl H P, et al. Evaluation of regional systolic function in hypertrophic cardiomyopathy and hypertensive heart disease: a three-dimensional echocardiographic study. Journal of the American Society of Echocardiography, 1998, 11(8): 778-786
    [46] Maehle J, Bjoernstad K, Aakhus S, et al. Three-dimensional echocardiography for quantitative left ventricular wall motion analysis: a method for reconstruction of endocardial surface and evaluation of regional dysfunction. Echocardiography., 1994, 11(4): 397-408
    [47] Bjornstad K, Maehle J, Aakhus S, et al. Evaluation of reference systems for quantitative wall motion analysis from three-dimensional endocardial surface reconstruction: an echocardiographic study in subjects with and without myocardial infarction. Am.J.Card Imaging, 1996, 10(4): 244-253
    [48] Fine D G, Sapoznikov D, Mosseri M, et al. Three-dimensional echocardiographic reconstruction: qualitative and quantitative evaluation of ventricular function. Computer Methods and Programs in Biomedicine, 1988, 26(1): 33-43
    [49] Guyer D E, Foale R A, Gillam L D, et al. An echocardiographic technique for quantifying and displaying the extent of regional left ventricular dyssynergy. J Am Coll Cardiol, 1986, 8(4): 830-835
    [50] Guyer D E, Gibson T C, Gillam L D, et al. A new echocardiographic model for quantifying three-dimensional endocardial surface area. J Am Coll Cardiol, 1986, 8(4): 819-829
    [51] Picard M H, Wilkins G T, Ray P A, et al. Progressive changes in ventricular structure and function during the year after acute myocardial infarction. American Heart Journal, 1992, 124(1): 24-31
    [52] Bashein G, Sheehan F H, Nessly M L, et al. Three-dimensional transesophageal echocardiography for depiction of regional left-ventricular performance: initial results and future directions. Int.J.Card Imaging, 1993, 9(2): 121-131
    [53] Corsi C, Lang R M, Veronesi F, et al. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation, 2005, 112(8): 1161-1170
    [54]郭薇,王春,陈德伟,等.实时三维超声心动图的局部容积-时间曲线评价冠心病患者的局部心肌功能.福建医科大学学报, 2006, 40(06): 583-586
    [55]李秀昌,李素梅,张运,等.三维超声心动图评价心肌梗死患者左室局部心功能.中国超声医学杂志, 2005, 21(04): 270-273
    [56]王雪,张梅,张运,等.实时三维超声对心肌梗死患者左心室局部心肌容量和收缩功能的分析.中华超声影像学杂志, 2006, 15(05): 325-328
    [57] Sutherland G R. Colour doppler myocardial imaging: potential applications in acquired and congenital heart disease. Acta Paediatr.Suppl, 1995, 410: 40-48
    [58] Erbel R, Wallbridge D R, Zamorano J, et al. Tissue doppler echocardiography. Heart, 1996, 76(3): 193-196
    [59] Azevedo J, Garcia-fernandez M A, Puerta P, et al. [three-dimensional echocardiography reconstruction of the left ventricle using 3 different myocardial encoding techniques with doppler tissue imaging]. Revista Portuguesa de Cardiologia, 1996, 15(11): 841-846
    [60] Azevedo J, Garcia-fernandez M A. [cardiac tissue doppler. A new noninvasive technic for analysing myocardial wall function]. Revista Portuguesa de Cardiologia, 1995, 14(9): 597-606
    [61] Garcia-fernandez M A, Azevedo J, Moreno M, et al. Doppler tissue imaging. Revista Portuguesa de Cardiologia, 2001, 20 Suppl 1: I33-I47
    [62]王慧芳, Xiaokui Li, David J. Sahn,等.三维重建超声组织多普勒成像测量左室功能:活体动物实验研究.中国医学影像技术, 2002, 18(12): 1224-1226
    [63] Schwartz S L, Cao Q L, Vannan M A, et al. Automatic backscatter analysis of regional left ventricular systolic function using color kinesis. American Journal of Cardiology, 1996, 77(15): 1345-1350
    [64]张运,邢艳秋,季晓平,等.三维彩色室壁运动技术的临床研究.中华超声影像学, 1997, 6(5): 241-244
    [65]邢艳秋,张运,季晓平,等.经食管三维彩色室壁动态技术(ck)评价室壁运动准确性的研究.中国超声医学杂志, 1998, 14(4): 5-7
    [66]邢艳秋,张运,季晓平,等.测量梗死区和非梗死区心搏量和射血分数的新方法.中华超声影像学杂志, 2001, 10(6): 337-340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700