糖尿病大鼠缺血再灌注脑组织MMP-9、RECK与VEGF蛋白表达的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立糖尿病合并急性脑缺血再灌注大鼠模型;观察缺血脑组织中基质金属蛋白酶-9(MMP-9)、RECK及血管内皮生长因子(VEGF)的表达特点;研究MMP-9、RECK及VEGF的相关性;探讨它们在糖尿病缺血再灌注脑组织损伤中的作用。
     方法
     (1)采用高脂高糖饮食加腹腔注射小剂量链脲霉素法建立实验性大鼠糖尿病模型,选择成模者进一步采用线栓法建立大鼠局灶性脑缺血再灌注模型。120只雄性wistar大鼠被随机分为正常对照组(6只)、假手术组(6只)、单纯急性脑缺血再灌注组(CI组,54只)、糖尿病合并急性脑缺血再灌注组(DM+CI组,54只);其中CI组和DM+CI组各分成缺血再灌注后1h、3h、6h、12h、24h、3d、7d共7个亚组;
     (2)采用Longa 5分制评分标准对各组脑缺血再灌注后大鼠进行神经功能评分;
     (3)采用TTC染色法观察并标记梗死区域;利用HE染色和免疫组织化学技术在光镜下观察缺血脑组织病理变化特点;观察并分类计数脑组织缺血中心区和半暗带区MMP-9、RECK及VEGF蛋白表达阳性细胞数;
     (4)各项计数指标均以均数±标准差((?)±s)表示,应用SAS12.0统计软件进行方差分析、q检验和直线相关分析。
     结果
     (1)神经功能评定结果CI组和DM+CI组大鼠麻醉清醒后均出现明显的右侧眼裂变小、眼球下陷等Horner征表现;CI组共有46只大鼠出现左侧前肢屈曲,向左侧转圈或向左侧倾倒,神经功能评分为1.54±0.71分;DM+CI组共有36只大鼠出现上述体征,神经功能评分为2.35±0.55分,两组相比有显著性差异(P<0.05)。假手术组动物也出现明显的Horner征表现,但无其他神经功能缺损体征。
     (2)TTC染色结果非梗死区脑组织被染成红色;梗死区呈现苍白色,与大脑中动脉供血分布区域一致;相同缺血再灌注时相点DM+CI组苍白区面积较CI组大。
     (3)MMP-9表达结果假手术组和正常对照组大鼠脑组织中MMP-9阳性表达较少、散在分布;CI组和DM+CI组脑组织中MMP-9的阳性表达主要分布于梗死中心和半暗带区神经胶质细胞、神经元、血管内皮细胞及中性粒细胞等处。CI组和DM+CI组大鼠脑组织中MMP-9表达均较正常对照组明显增加(P<0.05),其中DM+CI组较CI组明显增加(P<0.05);DM+CI组MMP-9于再灌注3h开始升高,24h达到高峰,3d后逐渐下降。
     (4)RECK蛋白表达结果假手术组和正常对照组大鼠脑组织中可见RECK蛋白阳性细胞主要表达在神经胶质细胞、神经元、血管内皮细胞等胞浆内;CI组和DM+CI组阳性表达散在分布于梗死周边区神经胶质细胞、神经元等处。CI组和DM+CI组大鼠脑组织中RECK蛋白表达均较正常对照组明显减少(P<0.01),与CI组相比,DM+CI组阳性表达明显降低(P<0.05)。DM+CI组RECK蛋白于再灌注3h表达开始降低,至24h达到最低,随后逐渐增加。
     (5)VEGF蛋白表达结果假手术组和正常对照组鼠脑中仅见微量VEGF表达;DM+CI组和CI组脑组织VEGF阳性表达主要分布于梗死周边区神经元、神经胶质细胞、血管内皮、脉络丛等处。CI组和DM+CI组大鼠脑组织中VEGF表达均较正常对照组明显增加(P<0.01),与CI组相比,DM+CI组阳性表达明显降低(P<0.01)。DM+CI组VEGF表达于再灌注1h开始升高,至6h达到高峰,随后逐渐降低。
     (6)直线相关分析表明,DM+CI组和CI组大鼠脑组织中MMP-9与RECK蛋白均呈直线负相关;DM+CI组和CI组大鼠脑组织中MMP-9与VEGF表达呈直线相关,其中DM+CI组于再灌注6~24h时段MMP-9与VEGF表达呈负相关。
     结论
     (1)高血糖条件下缺血再灌注后脑组织梗死面积较单纯脑缺血再灌注后显著增大,缺血后神经功能缺损症状较后者显著加重。
     (2)糖尿病大鼠脑缺血后表达MMP-9、RECK和VEGF蛋白的细胞种类与单纯脑缺血相同,提示这几种细胞可能通过参与对MMP-9、RECK和VEGF蛋白的分泌调节而影响脑缺血后组织病理生理变化的过程。
     (3)高血糖条件下,缺血再灌注后脑组织MMP-9表达较单纯脑缺血再灌注后表达明显升高,RECK和VEGF蛋白表达则明显减低,提示MMP-9参与调节RECK和VEGF蛋白表达变化过程。
     (4)MMP-9、RECK及VEGF表达在缺血区空间分布上的一致性,和随时相变化的线性相关关系,提示:糖代谢异常引起MMP-9表达升高,RECK、VEGF蛋白表达较单纯脑缺血后降低,而高表达的MMP-9对VEGF具负性调节作用,进而影响缺血区血管新生和血管重构等病理生理过程,这可能是糖尿病合并脑梗死后组织损害较非糖尿病患者严重及功能恢复较差的重要原因。
OBJECTIVES: To establish a model of acute cerebral ischemia-reperfusion in diabetic rats; To observe the expression of MMP-9, RECK and VEGF protein in the cerebral ischemic tissues; To observe the relationships between the expression of MMP-9, RECK and VEGF in the cerebral ischemic tissues; To investigate the involvement of MMP-9, RECK and VEGF in the diabetic rat brain after focal cerebral ischemia.
     METHODS:
     (1) The rat models of diabetes mellitus were made by high sucrose, fat diet and streptozotion injection, in which the successful ones were selected to be made into focal cerebral ischemia-reperfusion rats. The models of the middle cerebral artery occlusion were made by improved zealong's method. 120 male wistar rats were assigned randomly into normal control group ([control I ],6 rats), sham-treated group ([control II],6 rats), cerebral ischemia-reperfusion and diabetic rats([DM+CI group] ,54 rats) and cerebral ischemia-reperfusion rats([CI group],54 rats). Middle cerebral artery occlusion models were made by DM+CI group and CI group, and the two groups were randomly assigned to 7 subgroups according to the reperfusion time (1h、3h、6h、12h、24h、3d、7d);
     (2) The neural function of the rats after cerebral ischemia-reperfusion were assessed with longa method;
     (3) TTC staining and HE staining were applied to observe and mark the clinical features of infarction zones; The pathologic characteristics of cerebral ischemic tissues were observed by HE staining and immunohistochemistry through microscope; Positive cells of MMP-9, RECK and VEGF protein in the infarction cores and penumbra zones of brain tissues were observed and counted;
     (4) Statistical analyses were performed with the results by use of the SPSS 12.0 package. Mean values and standard error of mean were calculated for all studied areas, and statistical significance for intergroup was assessed by Student t test or ANOVA. The Spearman coefficient was used to study correlations between continuous variables. P<0.05 was considered statistically significant.
     RESULTS:
     (1) The assessment results of the rats neural functions The models of MCAO from CI group and DM+CI group appeared Homer sign; There were 46 rats with Horner sign, and the assessment score was 1. 54±0. 71; There were 36 rats with Horner sign from DM+CI group, and the score was2. 35±0. 55. A significant difference showed between the two groups (P<0.05). In sham-treated group, neural dysfunction sign wasn't found.
     (2) TTC staining results of rat brain The non-infarcted areas of brain tissues were stained red. The infracted zones appeared pale in accordance with the distribution of the middle cerebral artery. Among samples from diabetic ischemic strokes, the infarct zones were larger and the damages were more severe than euglycemic ischemic strokes.
     (3) Expression of MMP-9 In ischemic areas, MMP-9 was mainly located in the neuroglial, neurons and endothelial cells together with immunoreactive neutrophils. Positive cells are increased over time in diabetic and euglycemic ischemic rats but not in sham-treated or normal rats (P<0.05). However, at the same reperfusion time, the expression of MMP-9 was significantly higher in diabetic brains than in euglycemic ones (P<0.05). MMP-9 expression showed similar patterns in DM+CI and CI group: Increased at 3h, maximized at 24h, and gradually decreased after 3d.
     (4) Expression of RECK protein RECK protein expressed mainly in the neuroglial, neurons in the normal rat brains and peri-infarct zones, barely in the ischemic cores. RECK protein expression significantly decreased compared to normal and sham-treated rat brain (P<0.01). At the same reperfusion time, there were less RECK positive cells in DM+CI group than CI group (P<0.05). RECK protein expressed similarly in DM+CI and CI group: Decreased at 3h, minor at 24h, and gradually increased after 3d
     (5) Expression of VEGF VEGF mainly localized in the neurons, neuroglial and endothelial cells in the ischemic penumbra. It significantly increased in diabetic and euglycemic ischemic rats (P<0.01). At the same reperfusion time, VEGF expression in euglycemic ischemic rats is more than diabetic ischemic rats(P<0.01). In diabetic ischemic rats, VEGF expression peaked at 6h; in euglycemic ischemic rats, it peaked at 24h.
     (6) A correlation study in diabetic ischemic rats between MMP-9 and RECK, MMP and VEGF demonstrated a strong relation between MMP-9 and RECK protein(r=-0.880, P <0.01), MMP-9 and VEGF (r=0.758, P <0.05).
     CONCLUSIONS:
     (1) There were significantly larger infarction areas in DM+CI group after ischemia-reperfusion compared with CI group. The signs of neural dysfunction after ischemia in diabetic rats were more severe than euglycemic rats.
     (2) The categories of cells in which MMP-9, RECK and VEGF protein were expressed plentifully in the brain after cerebral ischemia in diabetic rats were the same with those in euglycemic rats. It indicated that the several cells mentioned above were likely to played roles in the courses after ischemia-reperfusion.
     (3) There were significantly higher expression of MMP-9 in the ischemic tissues after ischemia-reperfusion in diabetic rats paralleled with lower expressions of RECK and VEGF. It suggested MMP-9 might be involved in the regulation of RECK and VEGF expression.
     (4) The coherence between MMP-9 and RECK, MMP-9 and VEGF in the space distribution and the correlation between them along with the reperfusion time indicated that hyperglycemia caused increased MMP-9 and decreased VEGF and RECK protein ,while increased MMP-9 was involved in VEGF regulation. This mechanism probably was one of the reasons for the larger infarction areas and the worse outcome in cerebral ischemia of diabetic patients.
引文
1.王维治,罗祖明主编.神经病学[M].第5版.北京:人民卫生出版社,2004,147-153
    2.Stegmayr B,Asplund K,Kuulasmaa K et al.Stroke incidence and mortality correlated to stroke risk factors in the WHO MONICA Project[J].Stroke,2001,4(28):1362-1367.
    3.Hein KD,King GL:Vascular abnormalities in diabetes mellitus.In Contemporary Endocrinology:Endocrinology of the Vasculature.Sowers JR,Ed.Totowa,NJ,Humana Press,1996
    4.王希佳,刘庆宪,宋永建,等.糖尿病合并脑梗死60例临床分析[J].浙江临床医学,2004,2(6):4:31-34.
    5.屈传强,郭洪志.糖尿病中枢神经病变特征及发病机制新进展[J].临床神经病学杂志,2003,3(16):18-22.
    6.李琳.糖尿病并发缺血性脑卒中研究进展[J].中西医结合心脑血管病杂志,2004,8(2):35-38.
    7.Anna Rosell,Arantxa Ortega-Aznar,José Alvarez-Sabín et al.Increased Brain Expression of Matrix Metalloproteinase-9 After Ischemic and Hemorrhagic Human Stroke[J].Stroke.2006,37:1399.
    8.朱梅佳,刘磊,贾茜,等.血管内皮生长因子在糖尿病大鼠局在性脑缺血再灌注模型中的表达[J].中国糖尿病杂志,2007,8(15):509-510.
    9.Birkedal-Hansen,H.Proteolytic remodeling of extracellular matrix[J].Curr.Opin.Cell Biol.1995;7:728-735.
    10.Nagase H,Woessner JF Jr.Matrix metalloproteinases[J].Biol Chem,1999;274:21491-21494.
    11.Díaz-Gil JJ,García-Monzón C,Rǘa C,Martin-Sanz P,Cereceda RM,Miquilena-Colina ME,Machín C,Fernández-Martínez A,García-Canero R.The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats[J].Histol Histopathol,2008;23(5):553-591.
    12. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology [J]. Genes Dev, 2000, 14:2123-2133.
    13. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore [J]! Curr Opin Cell Biol, 2001; 13:534-540.
    14. Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM, Noda M, Sogayar MC. Transcriptional control of the RECK metastasis/angiogenesis suppressor gene[J]. Cancer Detect Prev, 2002; 26:435-443.
    15. Takahashi C, Sheng Z, Horan TP et al. Regulation of matrix metallop roteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK [J]. Proc Natl Acad Sci USA, 1998; 95 (22):13221213226.
    16. Egeblad M, Werb Z. New roles for matrix metalloproteinases in cancer [J]. Nat Rev Cancer, 2002:2 (2): 1632176.
    17. SternlichtMD, Bergers G Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects [J]. Emerg Therapeut Targets, 2000; 4 (3):6092633.
    18. Rhee JS, Coussens LM. RECK in MMP function: implications for cancer development [J]. Trends Cell Biol, 2002; 12 (5):2092211.
    19. Y. Sun, K. Jin, L. Xie, J. Childs, X. O. Mao, A. Logvinova, and D. A. Greenberg VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia[J]. Clin.Invest, 2003; 111(12): 1843 - 1851
    20. Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia [J]. Cereb. Blood Flow Metab, 1998; 18:887-895.
    21. Van Bruggen N, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain [J]. Clin. Invest, 1999; 104:1613-1620.
    22. Zhang ZG, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain [J]. Clin. Invest, 2000; 106:829-838.
    23.Harry LE,Paleolog EM.From the cradle to the clinic:VEGF in developmental,physiological and pathological angiogenesis[J].Birth D CtS Res Part C Embryo To-day,2003;69(4):363-74
    24.Carmeliet P,Jain R K._Angiogenesis in cancer and other diseases[J].Nature,2000;407(6801):249-257.
    25.Schiekofer S,Galasso G,Sato K,et al.Impaired revascularization in a mouse model of type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network[J].Arterioscler Thromb Vasc Biol,2005;25(8):1603-1609.
    26.Rosenberg G A,Cunningham L A,Wallace J,et al.Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain:activation of MMP-9 linked to stromelysin- 1 and microglia in cell cultures[J].Brain Res,2001,893(1-2):104-112.
    27.Cornelius LA,Nehring LC,Harding E,Bolanowski M,Welgus HG,Kobayashi DK,Pierce RA,Shapiro SD.Matrix metalloproteinases generate angiostatin,effects on neovascularization[J].Immunol,1998;161:6845-6852.
    28.Ada W.Y.Chung,York N.Hsiang,Lise A.Matzke,et al.Reduced Expression of Vascular Endothelial Growth Factor Paralleled With the Increased Angiostatin Expression Resulting From the Upregulated Activities of Matrix Metalloproteinase-2and -9 in Human Type 2 Diabetic Arterial Vasculature[J].Circulation Research,2006;99(2):140.
    29.李爱卿,王志慧,赵跃斌.高糖高脂饲料诱导2型糖尿病大鼠模型[J].临床医药实践杂志,2005;14:2-3.
    30.刘立新;刘好文;刘力强.实验性2型糖尿病大鼠模型及其周围神经病变特点[J].脑与神经疾病杂志,2005;2:20-21.
    31.郭啸华,刘志红,李恒,朱加明,黎磊石.实验性2型糖尿病大鼠模型的建立[J].肾脏病与透析肾移植杂志,2000;9(4):351-355.
    32.刘磊,朱梅佳.实验性慢性糖尿病大鼠局灶性脑缺血再灌注模型的制作[J].中国现代神经疾病杂志,2005;5(9):40-45.
    33.屈秋民,曹振玲,杨剑波.线栓法大鼠大脑中动脉闭塞局灶性脑缺血模型longa法和小泉法的比较[J].中华神经科杂志,2000;5(33):289-291.
    34.胡建鹏,王键.线栓法大鼠局灶性脑缺血模型研究中的几个问题[J].中国比较医学杂志,2004;2(14):115-117.
    35.孙以方主编.《医学实验动物》.第1版,兰州:兰州大学出版社,2005:63-72.
    36.孙青,张传森主编.《病理诊断与操作技术手册》.第1版,济南:山东大学出版社,2002:38-44.
    37.张蕙芬,迟家敏,王瑞萍主编.《实用糖尿病学》.第2版,北京:人民卫生出版社,2001;45.
    38.Taylor SI,Accili D,Imai Y.Insulin resistance or insulin deficiency.Which is the primary cause of NIDDM[J]? Diabetes,1994;43(6):735-740.
    39.Picarel-Blanchot F,Berthelier C,Builbe D,et al.Imparied insulin secretion and excessive hepativ glucose production are both early events in the diabetic GK rat[J].Am J Physiol,1996;271(4):755.
    40.Proietto J,Filippis A,Nakhla C et al.Nutrient-induced insulin resistance.Mol Cell Endocrinol,1999;151(1-2):143.
    41.田士强,王任直,李桂林等.大鼠局灶性脑缺血模型的改进[J].基础医学与临床,2004;24(4):30-32.
    42.Longa EZ,Weinstein PR,Carlson S,Cummins R.Reversible middle cerebral artery occlusion without craniectomy in rats[J].Strok,1989;20(1):84-91.
    43.ZarowGJ,KaribeH,States BA,et al.Endovascular sutureocclusion of the middle cerebral artery in rats:effect of suture insertion distance on cerebral blood flow infarct distribution and infarct volume[J].Neurol Res,1997;24(9):409-416.
    44.Carica TH.A reliable method to occlude middle cerebral in Wistar rats[J].Stroke,1993;24(9):1423-1423.
    45.Kawamura S,Li YP,ShirasawaM,et al.Reversible middle cerebral artery occlusion in rats using an intraluminal thread technqiue[J].Surg Neurol,1994;41(2):368-370.
    46.Roeb E,Matem S.Matrix metalloproteinases and colorectal cancer[J].Med Klin (Munich),2003;98:763-770.
    47.Matrix metalloproteinase expression increases after cerebral focal ischemia in rats:inhibition of matrix metalloproteinase-9 reduces infarct size[J].Stroke,1998;29(5):1020-1030.
    48. F.X. Gomis-Ruth, Structural aspects of the metzincin clan of metalloendopeptidases [J]. Mol Biotechnol, 2003; 24:157-202.
    49. Visse R, Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry [J]. Circ Res, 2003; 92:827-839.
    50. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments [J]. Biol Chem, 1995; 270:5872-5876.
    51. Patterson ML, Atkinson SJ, Knauper V, Murphy G Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain [J]. FEBS Lett. 2001; 503: 158-162.
    52. H. Haro, H.C. Crawford, B. Fingleton, K. Shinomiya, D.M. Spengler and L.M. Matrisian, Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption [J]. Clin Invest, 2000; 105:143-150.
    53. C.C. Lynch, A. Hikosaka, H.B. Acuff, M.D. Martin, N. Kawai and R.K. Singh et al., MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL [J].Cancer Cell, 2005;7 :485-496.
    54. L. Hao, M. Du, A. Lopez-Campistrous and C. Fernandez-Patron, Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway [J]. Circ Res, 2004; 94:68-76.
    55. Seiki M. Membrane-type metalloproteinases. APMIS,1999; 107:137-143.
    56. Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J.Mechanisms for pro matrix metalloproteinase activation[J]. APMIS, 1999; 107:38-44.
    57. Zorina S. Galis, Jaikirshan J. Khatri. Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis[R]. Circulation Research, 2002; 90:251.
    58. A. Remacle, G Murphy and C. Roghi, Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface [J]. Cell Sci, 2003; 116:3905-3916.
    59. Lo EH, Wang X, Cuzner ML. Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases [J]. Neurosci Res., 2002; 69:1-9.
    60. W.R. English, X.S. Puente, J.M.P. Freije, V. Knauper, A. Amour. Merry weather A et al. Membrane type 4 matrix metalloproteinase (MMP-17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP-2[J]. Biol Chem, 2000; 275: 14046-14055.
    61. E. Ohuchi, K. Imai, Y. Fujii, H. Sato, M. Seiki and Y. Okada, Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules [J]. Biol Chem, 1997; 272:2446-2451.
    62. Seiki M. Membrane type I matrix metalloproteinase: a key enzyme for tumor invasion[R]. Cancer Lett, 2003; 194:1-11.
    63. Haas TL, Davis SJ, Madri JA. Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells [J]. Biol Chem, 1998; 273: 3604-3610.
    64. Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N, Aoki T, Seiki M. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion[J]. EMBO, 2001; 20: 4782-4793.
    65. Marc A Lafleur et al. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs) [J]. Journal of Cell Science, 2002; 115: 3427-3438.
    66. Galvez B G, Matias-Roman S, Albar JP, Sanchez-Madrid F, ArroyoA. Membrane type-1 matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling [J].Biol.Chem, 2001; 40:37491-37500.
    67. Hidalgo M, Eckhardt S.G et al. Development of matrix metalloproteinase inhibitors in cancer therapy [J]. Natl. Cancer Inst, 2001; 93:178-193.
    68. Solveig Horstmann et al. Profiles of Matrix Metalloproteinases, Their Inhibitors, and Laminin in Stroke Patients [J]. Stroke. 2003; 34:2165.
    69.Brew K,Dinakarpandian D,Nagase H.Tissue inhibitors of metalloproteinases:evolution,structure and function[J].Biochim Biophys Acta,2000;1477:267-283.
    70.Will H,Atkinson SJ,Butler GS,Smith B,Murphy G.The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation:regulation by TIMP-2 and TIMP-3[J].Biol Chem,1996;271:17119-17123.
    71.Dong Z,Kumar R,Yang X,Fidler IJ.Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma[J].Cell,1997;88:801-810.
    72.Patterson BC,Sang QA.Angiostatin-converting enzyme activities of human matrilysin (MMP-7)and gelatinase B/type Ⅳ collagenase(MMP-9)[J].Biol Chem,1997;272:28823-28825.
    73.Cornelius LA,Nehring LC,Harding E,Bolanowski M,Welgus HG,Kobayashi DK,Pierce RA,Shapiro SD.Matrix metalloproteinases generate angiostatin:effects on neovascularization[J].Immunol.1998;161:6845-6852.
    74.Lijnen HR,Ugwu F,Bini A,Collen D.Generation of an angiostatin-like fragment from plasminogen by stromelysin-1(MMP-3)[J].Biochemistry.1998;37:4699-4702.
    75.Allen DL,Teitelbaum DH,Kurachi K.Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro[J].Physiol Cell Physiol,2003;284(4):805-815.
    76.袁发焕,李惊子.细胞外基质、基质金属蛋白酶及其抑制因子的研究进展[J].国外医学·临床生物化学与检验学分册,2000;21(2):62-65.
    77.David P.Basile et al.Angiostatin and matrix metalloprotease expression following ischemic acute renal failureAm J Physiol,1985;249:540-546.
    78.Cossins JA,Clements JM,Ford J,Miller KM,Pigott R,Vos W,Van der Valk P,De Groot CJ.Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions[J].Acta Neuropathol,1997;94(6):590-598.
    79.Liedtke W,Cannella B,Mazzaccaro RJ,Clements JM,Miller KM,Wucherpfennig KW,Gearing AJ,Raine CS.Effective treatment of models of multiple sclerosis by matrix metalloproteinase inhibitors[J].Ann Neurol,1998;44(1):35-46.
    80. Kieseier BC, Giovannoni G, Hartung HP. Immunological surrogate markers of disease activity in multiple sclerosis.Electroencephalogr[J].Clinn Neurophysiol Suppl,1999;50:570-583.
    81. Anna M. Planas, So' nia Sole', and Carles Justicia. Expression and Activation of Matrix Metalloproteinase-2 and -9 in Rat Brain after Transient Focal Cerebral Ischemia [J]. Neurobiology of Disease, 2001; 8:834-846.
    82. Johnson JL et al. Matrix metalloproteinases; influence on smooth muscle cells and atherosclerotic plaque stability [R] .Expert Rev Cardiovasc Ther,2007; 5(2):265-282.
    83. Gheeyoung Choe, Jun K. Park, Lisa Jouben-Steele, et al.Active matrix metalloproteinase-9 expression is associated with primary glioblastoma sub-type [J].Clin Cancer Research, 2002; 8(9):2894-2901.
    84. Yao JS, Chen Y, Zhai W, Xu K, Young WL, Yang GY. Minocycline Exerts Multiple Inhibitory Effects on Vascular Endothelial Growth Factor-Induced Smooth Muscle Cell Migration [J]. Circ Res, 2004; 95(4):364-371.
    85. Basile DP, Fredrich K, Weihrauch D, Hattan N, Chilian WM. Angiostatin and matrix metalloprotease expression following ischemic acute renal failure [J].Am J Physiol Renal Physiol, 2004; 286(5):893-902.
    86. Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes [J]. Atherosclerosis, 2003; 168(2):263-269.
    87. Michael T. Engsig et al. Matrix Metalloproteinase 9 and Vascular Endothelial Growth Factor Are Essential for Osteoclast Recruitment into Developing Long Bones [J]. The Journal of Cell Biology, 2000;4(151): 879-890.
    88. Eisenberg I,Hochner H,Sadeh M,et al.Establishment of the genomic structure and identification of thirteen single-nucleotide polymorphisms in the human RECK gene[J].CytogenetRes,2002;97(1-2):58-61.
    89. Liew CT, Li HM, Lo KW et al. Frequent allelic loss on chromosome 9 in hepatocellular carcinoma [J]. Int J Cancer, 1999;81(4): 192-194.
    90. Kim SK, Ro JY, Kemp BL et al. Identification of three distinct tumor suppressor loci on the short arm of chromosome9 in small cell lung cancer[J]. Cancer Res, 1997;57 biological behavior in esophageal squamous cell carcinoma[J].World J Gastroenterol 2007;13(45):6076-6081.
    102.Ann HO,Bart LA,Martin S,et al.Vascular Endothelial Growth Factor and Angiogenesis[J].Pharmacol Rev,2004;56(11):549-580.
    103.Das B,Yeger H,Tsuchiga R,et al.A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-lalpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma[J].Cancer Res,2005;65(16):7267-7275.
    104.周进,张朝东,王军.MMP-2及MMP-9在缺血性脑损伤中的表达及意义[J].中国临床康复,2002:21:50-53.
    105.Zhang ZG,Zhang L,Tsang W.Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia[J].Cereb Blood Flow Metab,2002;22(4):379-392.
    106.Weihrauch D,Lohr N L,Mraovic B,et al.Chronic hyperglycemia attenuates coronary collateral development and impairs proliferative properties of myocardial interstitial fluid by production of angiostatin[J].Circulation,2004;109(19):2343-2348.
    107.Ya-Huey Chen,Hua-Lin Wu,Chi-Kwan Chen,Ya-Hui Huang,Bei-Chang Yang and Li-Wha Wu.Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways[J].Biochem Biophys Res Commun,2003;24;310(3):804-810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700