复方双苓止泻散对腹泻大鼠小肠黏膜修复及AQP4表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腹泻是许多疾病都可引起的一种症状,其病理基础为肠道在感染或非感染因素刺激下,黏膜发炎、水肿,肠分泌及运动功能亢进。短期剧烈腹泻可引起脱水和电解质紊乱,危及生命;持久腹泻则严重影响机体消化吸收功能。适当给予止泻药物,可尽快缓解症状、减少并发症的发生,研究治疗腹泻的药物对防治腹泻具有重要意义。
     复方双苓止泻散是一种纯中药制剂,具有抗炎、抑菌、免疫调节、治腹泻及腹痛等功效。万鑫母仔快康已在畜牧业中推广使用,临床主要应用于细菌、病毒等引起的肠炎及仔猪痢疾等病证。本研究参照周干南法建立SD大鼠腹泻模型,将60只SD大鼠随机分为:腹泻模型组(DM),低(0.31 g/kg,L)、中(0.62 g/kg,M)、高(1.24 g/kg,H)剂量复方双苓止泻散治疗组、万鑫母仔快康治疗组(阳性对照药物0.62 g/kg, PC)及正常对照组(NC),每组10只。用药48 h后,取材近段小肠组织,通过观察比较各组大鼠小肠黏膜组织形态及AQP4的表达水平,初步探讨复方双苓止泻散的作用机制、确定该有效部位的药用价值和适宜药量。旨在利用天然中草药替代抗生素治疗腹泻,减少排泄物对环境的污染,为畜牧业健康养殖技术的推广提供重要理论基础。本实验分为二部分:
     一复方双苓止泻散促进腹泻大鼠小肠黏膜组织形态恢复
     目的
     肠黏膜不仅是肠道发挥正常消化吸收功能的物质基础,还是保护机体免受细菌、毒素等有害物质侵袭的内在屏障。肠黏膜屏障功能首先依赖于肠黏膜的完整性,上皮细胞的形态结构和功能对肠黏膜机械屏障的完整性有重要作用。本部分研究观察比较各组大鼠小肠黏膜组织形态学变化,为揭示复方双苓止泻散的作用机制及适宜剂量提供实验依据。
     方法
     应用HE染色、扫描电镜和透射电镜技术分别观察腹泻模型及各治疗组大鼠小肠黏膜组织形态和上皮细胞的超微结构变化,并应用Motic 6.0数码医学图像分析系统测量并比较各组小肠绒毛的平均高度、宽度和面积。
     结果
     1 HE染色观察结果
     NC组大鼠近端小肠绒毛形态规整,绒毛中轴内少量间质,绒毛单层柱状上皮排列整齐、极少量嗜酸性变,上皮之间或绒毛顶端偶有淋巴细胞浸润。DM组中多数小肠绒毛明显水肿,部分绒毛融合;绒毛中轴间质明显水肿、充血、渗出、大量淋巴细胞等炎性细胞浸润;柱状上皮细胞之间界限不清、有较多嗜酸性变以及淋巴细胞浸润,部分绒毛上皮坏死、脱落;黏膜固有层肠腺之间的间质内也有较多炎性细胞浸润,但未见隐窝脓肿;肌层、浆膜完整。L组肠绒毛水肿、毛细血管充血和炎性细胞浸润现象仍较明显,肠腔内可见脱落的绒毛组织。PC组大鼠小肠绒毛受损结构明显恢复,部分绒毛顶端仍可见柱状细胞与间质分离,甚至缺失,少量毛细血管充血、淋巴细胞浸润。M组、H组大部分小肠绒毛内仅见极少量渗出及淋巴细胞浸润,柱状上皮细胞排列整齐。
     2小肠绒毛测量结果
     2.1绒毛宽度:DM组大鼠小肠绒毛宽度较其余5组,明显增大(P<0.01);各治疗组绒毛宽度均减小:M组、H组、PC组与NC组之间无显著性差异(P>0.05),但L组大鼠小肠绒毛宽度仍明显大于NC组(P<0.01)。
     2.2绒毛高度:DM组、L组、M组和PC组,四组大鼠小肠绒毛高度无显著性差异(P>0.05),均大于NC组小肠绒毛高度(P<0.01);而H组与NC组之间无显著性差异(P>0.05)。
     2.3绒毛面积:DM组大鼠小肠绒毛面积明显大于其余5组(P<0.01),差异显著;各治疗组小肠绒毛面积均减小,其中M组、H组与NC组无显著性差异(P>0.05),但L组、PC组大鼠小肠绒毛面积明显大于NC组(P<0.01);PC组大鼠小肠绒毛面积明显大于L组(P<0.01)。
     3扫描电镜观察小肠绒毛形貌特征
     NC组小肠绒毛大小较一致、排列整齐,表面光滑;柱状细胞分布均匀,微绒毛排列整齐。DM组大量小肠绒毛破损、结构紊乱;大量柱状细胞缺失,微绒毛结构破坏。经药物治疗后,各组小肠绒毛破损少见,L组肠绒毛明显水肿,表面附有较多粘液;PC组小肠绒毛水肿不明显,但排列欠规则;M组、H组小肠绒毛呈舌状,大小较一致、排列较规则,偶见绒毛破损;大部分柱状细胞微绒毛排列整齐。
     4透射电镜观察绒毛上皮细胞超微结构结果
     NC组小肠上皮细胞排列整齐,细胞器结构清晰,细胞微绒毛长而密集、排列整齐;偶见凋亡的上皮细胞。DM组小肠上皮细胞明显水肿,大部分线粒体明显肿胀,可见嵴断裂、减少、消失,甚至外膜溶解导致空泡化;部分内质网扩张;柱状细胞微绒毛断裂、脱落、数量减少。L组、PC组小肠黏膜上皮细胞的细胞器结构较DM组有较大改善:只有细胞游离端的胞质水肿、细胞器少;大部分线粒体双层单位膜清晰,嵴数量有所增加,但部分嵴模糊不清,部分线粒体仍明显肿胀;小肠上皮微绒毛较DM组数量增多,排列较整齐。M组、H组上皮细胞内大部分细胞器结构恢复,微绒毛结构恢复,排列整齐。
     二复方双苓止泻散对腹泻大鼠小肠黏膜AQP4表达的影响
     目的
     探讨AQP4在腹泻过程中的作用及复方双苓止泻散对AQP4表达的影响。
     方法
     本部分实验应用免疫组织化学、Western blot方法比较各组大鼠小肠黏膜内AQP4的表达。
     结果
     1免疫组织化学染色结果
     AQP4免疫阳性表达产物为棕黄色颗粒。全部实验大鼠近段小肠黏膜组织中均有AQP4表达的阳性细胞,AQP4蛋白极性表达在小肠黏膜深部肠腺细胞的细胞膜上,杯状细胞未见到阳性着色。DM组大鼠小肠黏膜中AQP4的表达明显减少;各治疗组大鼠小肠黏膜中AQP4表达增多。
     2 Western blot分析结果
     DM组小肠黏膜中AQP4表达最少(P<0.01),各药物治疗组大鼠小肠黏膜中AQP4表达增多。L组大鼠小肠黏膜中AQP4表达水平明显高于DM组(P<0.01),但低于M组和PC组(P<0.01)。M组和PC组大鼠小肠黏膜中AQP4的表达量低于NC组,具有显著性差异(P<0.01),H组大鼠小肠黏膜中的AQP4蛋白表达量增多最明显,与NC组无显著性差异(P>0.05)。
     结论
     复方双苓止泻散有效地使大鼠腹泻症状消失,能明显促进恢复小肠绒毛的损伤结构,其主要作用包括使炎性细胞浸润减少,绒毛中轴间质内充血、渗出减轻及绒毛水肿减轻;促进绒毛上皮细胞器的超微结构恢复正常,促进黏膜上皮细胞的增殖与恢复,从而加快腹泻大鼠小肠黏膜结构与功能的恢复。在促进小肠黏膜修复过程中,中、高剂量复方双苓止泻散及万鑫母仔快康的治疗效果优于低剂量复方双苓止泻散;中剂量与高剂量复方双苓止泻散的治疗效果无明显差异;但中、高剂量复方双苓止泻散的治疗效果优于万鑫母仔快康。
     AQP4蛋白极性表达在小肠黏膜深部肠腺细胞的细胞膜上,杯状细胞未见到阳性着色。AQP4参与调节SD大鼠小肠的液体转运。腹泻大鼠小肠黏膜中的AQP4表达明显减少。复方双苓止泻散有效停止腹泻,各治疗组大鼠小肠黏膜中的AQP4表达上调,推测AQP4还可能与参与腹泻大鼠肠黏膜的恢复过程。
Diarrhea is one symptom which many diseases may cause, and its pathological basis includes mucosal inflammation, edema, and transepithelial hypersecretion of fluid and hyperfunction of intestinal movement by the stimulation of infections or non-infective factors. Short-term severe diarrhea may cause dehydration and electrolyte disorders which are life-threatening; while lasting diarrhea can damage the function of digestion and absorption severely. To provide appropriate antidiarrhea medicine can allevate symptoms of diarrhea and reduce the incidence of complications as soon as possible, thus the research of drugs for the prevention and treatment of diarrhea is of great importance.
     Compound shuang-ling antidiarrhea powder is a pure Chinese traditional medical herb, with effects of anti-inflammatory, bacteriostasis, diuresis, immunoregulation and curing abdominal pain and emetocathartic. This study referred to Zhou Gannan's research to establish the diarrhea model of Sprague-Dawley(SD) rats. The experimental design was as follows: 60 SD rats weighing between 180 and 220 g were randomly assigned into 6 groups(n = 10 in each group) including diarrhea model (DM)group, low dose-(0.31 g/kg, L), middle dose-(0.62 g/kg,M), and high dose-(1.24 g/kg,H) compound shuang-ling antidiarrhea powder treatment group, Wan-xin-mu-zi-kuai-kang(positive control drug 0.62 g/kg,PC)treatment group, and normal control (NC)group. After 48 hours’treatment,rats were sacrificed and the proximal small intestine was removed. The present study is to explore the possible mechanism of action and appropriate dose of compound shuang-ling antidiarrhea powder by comparing the small intestinal mucosal morpHology and the level of aquaporin-4 (AQP4) protein expression of different groups for the purpose of using pure natural plant ingredients to replace the use of antibiotics and reduce environmental pollution caused by the excreta. This study provides important theoretical basis for the promotion of animal husbandry healthy cultivation technology. The study is divided into two parts: 1 Compound shuang-ling antidiarrhea powder promotes the recovery of small intestinal villous morpHology
     Objective
     Small intestinal mucosa is not only the basis for digestion and absorption function of the body, but an internal mechanical barrier against bacteria, toxins and the invasion of other harmful substances. The mucosal barrier function depends on the integrity of intestinal mucosa. What's more, the structure of intestinal epithelial cells is vital to the intestinal mucosal integrity. The objective of this part of research is to compare the small intestinal villus morphology in different groups in order to explore the possible mechanism of action of compound shuang-ling antidiarrhea powder on the recovery of the intestinal mucosae and provide an appropriate for its application.
     Methods
     Hematoxylin and eosin(HE)staining, the scanning electron microscope and transmission electron microscope are employed to observe small intestinal villus morpHology and the ultrastructure of small intestinal epithelial cells respectively. And Motic 6.0 digital medical image analysis system is used to measure and compare the average height, width and surface area.
     Results
     1.1 HE staining observation
     In NC group, the small intestinal villi of the rats arrange regularly and a little of mesenchymal was seen in the central axis of the villi; the columnar absorptive cells align continuously with a small number of acidopHilic change; lympHocytes infiltration could be occasionally seen among the epithelial cells or at the top of villi. In DM group, however, the majority of small intestinal villi were edema, some villus fusion appeared and the mesenchymal in the central axis of the villi was edema, with capillary hyperemia, exudation and a large number of inflammatory cells infiltrations. And the boundaries between columnar epithelial cells became unclear; acidopHilic change of epithelial cells increased; lympHocytes infiltration could be frequently seen among the epithelial cells; and a lot of epithelial cells got necrosis and exfoliated. What’s more, lots of inflammatory cells infiltrated in the mesenchymal of intestinal glands in lamina propria. But muscularis mucosae and serosa were not damaged. In the rats of L group, it was still obvious that intestinal villi edema, capillary hyperemia and inflammatory cells infiltration; and a little of exfoliated villi tissue could be seen in the lumens. In PC group, the damaged structure of intestinal villi recovered a lot; some columnar cells separated from the musenchymal at the top of the villi, even exfoliated; capillary hyperemia and inflammatory cells infiltration decreased greatly. Columnar epithelial cells aligned continuously in M and H groups, with a small number of inflammatory cells infiltration and exudation in the intestinal villi.
     1.2 Intestinal villous measurement results
     1.2.1 Comparison of villus width: The intestinal villous width of DM group increased significantly compared with that of the other 5 groups(P<0.01). The intestinal villus width of each treatment group decreased greatly and there was no significant difference among M、H、PC and NC groups (P>0.05). But the villus width of L group was still wider than that of NC group(P<0.01).
     1.2.2 Comparison of villus height: There was no significant difference among the villus height of PC、L、M and DM groups(P>0.05), either of which was significantly higher than that of NC group(P<0.01). And the difference of the villus height between H group and NC group was not remarkable(P>0.05).
     1.2.3 Comparison of villus surface area: The intestinal villous surface area of DM group increased strikingly compared with that of the other 5 groups(P<0.01). The intestinal villus surface area of each treatment group decreased obviously and there was no significant difference among M、H and NC groups(P>0.05), though either the villus surface area of L group or PC group was significantly larger than that of NC group(P<0.01).
     1.3 Intestinal villi morpHology shown by the scanning electron microscope
     In NC group, the sizes of small intestinal villi were consistent; the surface of the villi was neat and the absorptive cells distributed evenly; villi and microvilli arranged regularly. In DM group, however, most of the villi and microvilli were damaged with a lot of mucus adhesion and massive epithelial cells exfoliated. The damaged structure was improved a lot after drug treatment. Though the villi were still edema and they arranged less regularly in L group, the villus edema was not obvious in PC group. The villi of M group and H group were tongue-shaped with good arrangement, damaged villi could be seen seldom and most microvilli aligned regularly.
     1.4 The ultrastructure of epithelial cells shown by transmission electron microscope
     In NC group, the epithelial cells aligned continuously and their ultrastructure was normal; the microvilli were long and arranged well; apoptosis of epithelial cells could be seen occasionally. But in DM group, the majority of epithelial cells were obviously edema and most mitochondrial swelled and cristae and outer membrane were damaged; many endoplasmic reticulums expanded; the microvilli varied in length and got sparse. It was obvious that the intestinal epithelium edema was attenuated in L and PC groups and the microvilli of them became better than that of DM group, though some mitochondria were still edema. Most ultrastructure of the epithelial cells recovered and microvilli arranged regularly in M and H groups.
     2 Compound shuang-ling antidiarrhea powder promotes the expression of AQP4 in small intestinal mucosa of diarrhea rats Objective
     The objective of this part of the study is to explore the possible role of AQP4 in the process of diarrhea and the effect of compound shuang-ling antidiarrhea powder on the expression of AQP4.
     Methods
     The expression of AQP4 in small intestinal tissue of rats in different groups is determined by immunohistochemistry and Western blot.
     Results
     2.1 Immunohistochemical staning result
     The immunoreactive protein was detected as yellow-brown deposits. AQP4 was immunolocalized to the basolateral membrane of deep glands of the small intestine of all the rats, but positive staining could not be observed in the goblet cells. The expression of AQP4 in intestinal mucosa of rats of DM group was obviously less than that of each treatment group.
     2.2 Western blot analysis result
     The expression of AQP4 in intestinal mucosa of rats in DM group strikingly decreased compared with that of each treatment group(P<0.01). The expression of AQP4 in intestinal mucosa of rats in L group was significantly lower than that in M or PC group respectively(P<0.01), and the expression of AQP4 in M or PC group was significantly lower than that in NC group( P<0.01 ) . There was no significant difference in the expression of AQP4 between H group and NC group(P>0.05). Conlusion
     Compound shuang-ling antidiarrhea powder can stop the symptoms of diarrhea effectively and promote the recovery of damaged structure of intestinal villi. Its main mechanism includes reducing the inflammatory cells infiltration and capillary hypermia and exudation in the mesenchymal of the villi and villus edema, promoting the restoration of ultrastructure of epithelial cells and the proliferation of epithelium in order to restore the structure and function of intestinal mucosa as soon as possible. And the effect of middle dose- or high dose-compound shuang-ling antidiarrhea powder or Wan-xin-mu-zi-kuai-kang (positive control drug) on the restoration of intestinal mucosa is better than that of low dose-compound shuang-ling antidiarrhea powder; the effect of middle dose-compound shuang-ling antidiarrhea powder on the restoration of intestinal mucosa is better than that of Wan-xin-mu-zi-kuai-kang; but there is no remarkable difference of the effect between middle dose- and high dose-compound shuang-ling antidiarrhea powder.
     AQP4 has been immunolocalized to the basolateral membrane of deep glands of the small intestine, but positive staining could not be observed in the goblet cells. AQP4 may play a role in the water transport of small intestine. The expression of AQP4 in the rats of DM group decreased strikingly, while compound shuang-ling antidiarrhea powder upregulates the expression of AQP4 protein. These results indicate that AQP4 may also participate in the restoration process of intestinal mucosa.
引文
1 周干南,胡芝华,汪亚先,等.小鼠腹泻模型的制备与腹泻指数的应用.中草药,1994,25(4):195~199
    2 Yuksek YN,Kologlu M,Daglar G,et al. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats. Hepatogastroenterology,2004,51(55):171~175
    3 Al-Ghoul WM,Khan M,Fazal N,et al. Mechanisms of postburn intestinal barrier dysfunction in the rat:roles of epithelial cell renewal , E-cadherin , and neutrophil extravasation. Crit Care Med,2004,32(8):1730~1739
    4 Choudhry MA,Rana SN,Kavaneuyh MJ,et a1. Impaired intestinal immunity and barrier function: a cause for enhanced bacterial translocation in alcohol intoxication and burn injury. Alcohol,2004,33(3):199~208
    5 Moore FA. The role of gastrointestinal tract in post-injury multiple organ failure. Am J Surg, 1999,178(6):449~453
    6 黄继汉,黄晓晖,陈志扬, 等.药理试验中动物间和动物与人体间的等效剂量换算.中国临床药理学与治疗学,2004,9(9):1069~1072
    7 Beubler E,Schirgi-Degen A. Serotonin antagonists inhibit sennoside-induced fluid secretion and diarrhea. Pharmacology,1993:47(suppl 1):64
    8 张明发,赵更生.泻药与炎症介质. 西北药学杂志,1993, 8(1):40
    9 Haruo Nukaya,Hirokazu Yamashiro. Isolation of inhibitors of TPA-induced mouse ear edema from Holen, Poria cocos. Chem. Pharm. Bull,1996,44(4):847~849
    10 江苏新医学院.中药大辞典下册,上海:上海科学技术出版社,1986,2191
    11 候家玉,主编.中药药理学(新世纪全国高等中医药院校规划教材),北京:中国中医药出版社,2002,1:96~98,212~215
    12 梅 力, 王少伯,严述常, 等. 猪苓多糖对免疫功能低下的体弱儿童疗效观察. 中医杂志,1990,(3):40
    13 候 敢, 黄迪南,祝其锋,等. 猪苓多糖对巨噬细胞一氧化氮生成和细胞内还原型谷胱甘肽的影响. 上海免疫学杂志,2001,21(2):98~99
    14 吕世静,黄槐莲,吴宋厦,等. 当归对实验动物红细胞黏附功能及BIL-2 免疫调节作用. 中国实验临床免疫学杂志,1997,9(5): 66~71
    15 焦 艳,闻杰,于晓红,等. 膜荚黄芪茎叶总黄酮对小鼠细胞免疫功能的影响. 中国中西医结合杂志,1999,19(6):356~357
    16 张建新,邱世翠,李波清,等. 黄芪对小鼠免疫功能影响的研究. 时珍国医国药,2000,11(6):488
    17 叶淑静. 中药葛根研究进展. 浙江中医学院学报,2003, 27(6):94~96
    18 任建平. 陈蔓芙. 茯苓对消化系统疾病影响的研究概述. 中国中医药科技,1999,6(1):6
    19 张子理,陈蔚文. 党参、黄茂、白术、甘草提取部位对小肠上皮细胞增殖的影响. 广州中医药大学学报,2002,19 (2):137~140
    20 王茵萍,查玮,孙茂峰,等. 穴注黄芪、当归注射液对大鼠胃癌前病变胃黏膜上皮细胞影响的定量分析. 天津中医,2000,19(5):5 8~60
    21 陈玉其,艾炳蔚,李玉堂.黄芪注射液穴位注射夹脊穴对胆汁反流性胃炎大鼠胃黏膜保护作用的影响. 上海针灸杂志,2004,3(9): 4 2~44
    22 Min Zhu,Katherine T Lew,Polau Leung,et al. Protective of a plant formula on ethanol-induced gastric lesions in rats. Phytother Res,2002,16(3): 276~280
    1 Pappenheimer JR, Reiss KZ. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol,1987,100(2): 123~136
    2 Pappenheimer JR. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol,1987,100(2):137~148
    3 Itoh T,Rai T,Kuwahara M,et al. Identification of a novelaquaporin,AQP12,expressed in pancreatic acinar cells. Biochemical and Biophysical Research Communications,2005,13,330(3):832~838
    4 Gorelick P,Sechenova O,Hennekens CH,et al. Evolving perspectives on clopidogrel in the treatment of ischemic stroke. Cardiovasc Pharmacol Ther,2006,11(4):245~248
    5 Matsuzaki T,Tajika Y,Ablimit A,et al. Aquaporins in the digestive system. Medical Electron Microscopy,2004,37(2):71~80
    6 Solenov E,Watanabe H,Manley G.T.,et al. Seven-fold reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice , measured by a fluorescence quenching method. Am J Physiol Cell Physiol,2004,286(2):426~432
    7 Kunzelmann K , Mall M. Electrolyte transport in the mammalian colon:Mechanisms and implications for disease. Physiological Reviews,2002,82(1):245~289
    8 Murata K , Mitsuoka K , Hirai T , et al. Structural determinants of water permeation through aquaporin-1. Nature,2000,407(6804):599~605
    9 Koyama T,Yamamoto T,Tani T,et al. Expression and localization of aquaporins in rat gastrointestinal tract. Am J Physiol Cell Physiol,1999,276(3):621~627
    10 Agre P,King LS,Yasui M,et al. Aquaporin water channels—from atomic structure to clinical medicine. J Phsiol,2002,542 (Pt 1): 3~16
    11 张明发,赵更生.泻药与炎症介质. 西北药学杂志,1993,8(1):40
    12 Tsujikawa T,Itoh A,Fukunaga T,et al. Alteration of aquaporin mRNA expression after small bowel resection in the rat residual ileum and colon. J Gastroenterol Hepatol,2003,18(7):803~808
    13 Radhakrishnan RS, Radhakrishnan HR, Xue H, et al. Hypertonic saline redistributes intestinal tissues water and is associated with aquaporin 4 upregulation. J Gastroenterol Hepatol,2000,13(4):77~81
    14 Bódis B, Nagy G, Németh P, et al. Active water selective channels in the stomach: investigation of aquaporins after ethanol and capsaicin treatment in rats. Physiol Paris, 2001,95(1-6):271~275
    15 Amiry-Moghaddam M,Williamson A,Palomba M,et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A 2003,100(23):13615~13620
    16 Puwarawuttipanit W,Bragg AD,Frydenlund DS,et al. Differential effect of alpha-syntrophin knockout on aquaporin-4 and Kir4.1 expression in retinal macroglial cells in mice. Neuroscience,2006,137(1):165~175
    17 Zeng XN,Sun XL,Gao L,et al. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci,2007,34(1):34~39
    18 Nicchia GP,Srinivas M,Li W,et al. New possible roles for aquaporin-4 in astrocytes:cell cytoskeleton and functional relationship with connexin43. FASEB J,2005,19(12):1674~1676
    19 Zelenina M,Zelenin S,Bondar A,et al. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal PHysiol,2002,283(2): 309~318
    1 Gorelick P,Sechenova O,Hennekens CH,et al. Evolving perspectives on clopidogrel in the treatment of ischemic stroke. Cardiovasc Pharmacol Ther,2006,11(4):245~248
    2 Murata K , Mitsuoka K , Hirai T , et al. Structural determinants of water permeation through aquaporin-1. Nature,2000,407(6804):599~605
    3 Yoko Hiroaki,Kazutoshi Tani,Akiko Kamegawa,et al. Implications of the aquaporin-4 structure on array formationand cell adhesion. Mol Biol,2006,355(4):628~639
    4 Solenov E,Watanabe H,Manley GT,et al. Seven-fold reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice measured by a fluorescence quenching method. Am J Physiol,2004,286(2):426~432
    5 Zelemin S,Gunnarson E,Alikina T,et al. Identification of a new form of AQP4 mRNA that is developmentally expressed in mouse brain. Pediatr Res,2000,48(3):335~339
    6 Lehmann GL , Gradilone SA , Marinelli RA , et al. Aquaporinwater channels in central nervous system. Curr. Neurovasc. Res.,2004,1(4):293~303
    7 Nicchia GP,Nico B,Camassa L,et al. The role of aquaporin-4 in the blood–brain barrier development and integrity : studies in animal and cell culture models. Neuroscience,2004,129(4):935~944
    8 Manley GT,Binder DK,Papadopoulos MC,et al. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience,2004,129(4):983~991
    9 Papadopoulos MC , Verkman AS. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. Biol. Chem,2005,280(14):13906~13912
    10 Papadopoulos MC, Manley GT,Krishna AS,et al.Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. J FASEB,2004,18(11):1291~1293
    11 Bloch O,Papadopoulos MC,Manley GT,et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. Neurochem,2005,95(1):254~262
    12 Binder DK,Yao X,Sick TJ,et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. J. Glia,2006,53(6):631~636
    13 Nathan C. Connors,Marvin E. Adams,Stanley C. Froehner,et al. The Potassium Channel Kir4.1 Associates with the Dystrophin-Glycoprotein Complex via -Syntrophin in Glia. Biol. Chem.,2004,279(27):28387~28392
    14 Zeng XN,Sun XL,Gao L,et al. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci,2007,34(1):34~39
    15 Nicchia GP,Srinivas M,Li W,et al. New possible roles for aquaporin-4 in astrocytes:cell cytoskeleton and functional relationship with connexin43. J FASEB,2005,19(12):1674~1676
    16 Saadoun S , Papadopoulos MC , Watanabe H , et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci,2005,118(24): 5691~5698
    17 Fan Y,Zhang J,Sun XL,et al. Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice. Neurosci. Res.,2005,82(4):458~464
    18 Xiu-Lan Sun,Jian-Hua Ding,Yi Fan,et al. Aquaporin 4 regulates the effects of ovarian hormones on monoamine neurotransmission. Biochemical and Biophysical Research Communications,2007,353(2):457~462
    19 Nesic O,Lee J,Ye Z,et al. Acute and chronic changes in aquaporin 4 expression after spinal cord injury. Neuroscience,2006,143(3):779~792
    20 Pittock SJ,Weinshenker BG,Lucchinetti CF,et al. Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol,2006,63(7): 964~968 Kaakinen M,Salmela P,Zelenin S,et al. Distribution of aquaporin 4 on sarcolemma of fast-twitch skeletal myofibres. Cell Tissue Res,2007,329(3):529~539
    21 Frigeri A,Nicchia GP,Balena R,et al. Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4. J. FASEB,2004,18(7):905~907
    22 Yang B,Verbavatz JM,Song Y,et al. Skeletal muscle function and water permeability in aquaporin-4 deficient mice. Am J Physiol Cell Physiol,2000,278(6):1108~1115
    23 Wakayama Y,Jimi T,Inoue M,et al. Reduced aquaporin 4 expressionin the muscle plasma membrane of patients with Duchenne muscular dystrophy. Arch. Neurol,2002,59(3):431~437
    24 Wakayama Y,Jimi T,Inoue M,et al. Altered aquaporin 4 expression in muscles of Fukuyama-type congenialmuscular dystrophy. Virchows Arch,2003,443(6):761~767
    25 Wakayama Y,Takahashi J,et al. Generation of muscle aquaporin 4 overexpressing transgenic mouse: its characterization at RNA and protein levels including freeze-fracture study. Micron,2007,38(3):257~267
    26 Huang Y,Tola VB,Fang P,et al. Partitioning of aquaporin-4 water channel mRNA and protein in gastric glands. Dig Dis Sci,2003,48(10):2027~2036
    27 Wang KS,Komar AR,Tonghui Ma,et al. Gastric acid secretion in aquaporin-4 knockout mice. Cell Physiol,2000,279(2):448~453
    28 Bodis B,Nagy G,Nemeth P,et al. Active water selective channels in the stomach: investigation of aquaporins after ethanol and capsaicin treatment in rats. Physiol Paris,2001,95(1-6):271~275
    29 Wang KS,Ma T,Filiz F,et al. Colon water transport in transgenic mice lacking aquaporin4 water channels. Am J Physiol Gastrointest Liver Physiol,2000,279(2): 463~470
    30 Lopez IA,Ishiyama G,Lee M,et al. Immunohistochemical localization of aquaporins in the human inner ear. J Cell Tissue Res.,2007,328(3):453~460
    31 Mhatre AN,Stren RE,Li J,et al. Aquaporin 4 expression in the mammalian inner ear and its role in hearing. Biochem Biophys Res Commun,2002,297(4):987~996
    32 Connors NC , Kofuji P , Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia,2006,53(2):124~131
    33 Da T,Verkman AS. Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest Ophthalmol Vis Sci,2004,45(12):4477~4483
    34 Pannicke T,Iandiev I,Uckermann O,et al. A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci,2004,26(1):493~502
    35 Nielsen S,Frokiaer J,Marples D,et al. Aquaporins in the kidney:From molecules to medicine. Physiol Rev.,2002,82(1):205~244
    36 Yuanlin Song,Sujatha Jayaraman,Baoxue Yang,et al. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration. The Journal of General Physiology,2001,117(6):573~582
    37 Wang Ke-Jian,Sun Shan-Quan,Chen Ha,et al. Expression of aquaporin-4 in rat throid. Chinese Journal of Anatomy,2006,29(2):153~156
    38 Zelenina M.,Zelenin S.,Bondar A.A.,et al. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol,2002,283(2):309~318
    39 Grazia Paola Nicchia,Antonio Frigeri,Grazia Maria Liuzzi,et al. Inhibition of AQP4 expression in astrocytes by RNAi determines alterations in cell morphology,growth,and watertransport and induces changes in ischemia related genes. J FASEB,2003,17(11):1508~1510
    40 Hajime Arima,Naoki Yamamoto,Kazuya Sobue,et al. Hyperosmolar Mannitol Stimulates Expression of Aquaporins 4 and 9 through a p38 Mitogen-activated Protein Kinase-dependent Pathway in Rat Astrocytes. Biol. Chem,2003,278(5):44525~44534
    41 Rama Rao KV,Chen M,Simard JM,et al. Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport,2003,14(18):2379~2392
    42 Gunnarson E,Axehult G,Baturina G,et al. Lead induces increased water permeability in astrocytes expressing aquaporin 4. Neuroscience,2005,136(1):105~114
    43 Miyajima M,Arai H,Okuda O,et al. Effect of C-type natriuretic peptide(CNP)on water channel aquaporin-4 expression in cultured astrocytes. Brain Res Mol Brain Res,2004,122(2):109~115
    1 Gorelick P,Sechenova O,Hennekens CH,et al. Evolving perspectives on clopidogrel in the treatment of ischemic stroke. Cardiovasc Pharmacol Ther,2006,11(4):245~248
    2 Murata K , Mitsuoka K , Hirai T , et al. Structural determinants of water permeation through aquaporin-1. Nature,2000,407(6804):599~605
    3 Yoko Hiroaki,Kazutoshi Tani,Akiko Kamegawa,et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. Mol Biol,2006,355(4):628~639
    4 Solenov E,Watanabe H,Manley GT,et al. Seven-fold reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice measured by a fluorescence quenching method. Am J Physiol,2004,286(2):426~432
    5 Zelemin S,Gunnarson E,Alikina T,et al. Identification of a new form of AQP4 mRNA that is developmentally expressed in mouse brain. Pediatr Res,2000,48(3):335~339
    6 Lehmann GL , Gradilone SA , Marinelli RA , et al. Aquaporinwater channels in central nervous system. Curr. Neurovasc. Res.,2004,1(4):293~303
    7 Nicchia GP,Nico B,Camassa L,et al. The role of aquaporin-4 in the blood–brain barrier development and integrity: studies in animal and cell culture models. Neuroscience,2004,129(4):935~944
    8 Manley GT,Binder DK,Papadopoulos MC,et al. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience,2004,129(4):983~991
    9 Papadopoulos MC , Verkman AS. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. Biol. Chem,2005,280(14):13906~13912
    10 Papadopoulos MC, Manley GT,Krishna AS,et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. J FASEB,2004,18(11):1291~1293
    11 Bloch O,Papadopoulos MC,Manley GT,et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. Neurochem,2005,95(1):254~262
    12 Binder DK,Yao X,Sick TJ,et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. J. Glia,2006,53(6):631~636
    13 Nathan C. Connors,Marvin E. Adams,Stanley C. Froehner,et al. The Potassium Channel Kir4.1 Associates with the Dystrophin-Glycoprotein Complex via -Syntrophin in Glia. Biol. Chem.,2004,279(27):28387~28392
    14 Zeng XN,Sun XL,Gao L,et al. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci,2007,34(1):34~39
    15 Nicchia GP,Srinivas M,Li W,et al. New possible roles for aquaporin-4 in astrocytes:cell cytoskeleton and functional relationship with connexin43. J FASEB,2005,19(12):1674~1676
    16 Saadoun S , Papadopoulos MC , Watanabe H , et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci,2005,118(24): 5691~5698
    17 Fan Y,Zhang J,Sun XL,et al. Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice. Neurosci. Res.,2005,82(4):458~464
    18 Xiu-Lan Sun,Jian-Hua Ding,Yi Fan,et al. Aquaporin 4 regulates the effects of ovarian hormones on monoamine neurotransmission. Biochemical and Biophysical Research Communications,2007,353(2):457~462
    19 Nesic O,Lee J,Ye Z,et al. Acute and chronic changes in aquaporin 4 expression after spinal cord injury. Neuroscience,2006,143(3):779~792
    20 Pittock SJ,Weinshenker BG,Lucchinetti CF,et al. Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol,2006,63(7): 964~968 Kaakinen M,Salmela P,Zelenin S,et al. Distribution of aquaporin 4 on sarcolemma of fast-twitchskeletal myofibres. Cell Tissue Res,2007,329(3):529~539
    21 Frigeri A,Nicchia GP,Balena R,et al. Aquaporins in skeletal muscle:reassessment of the functional role of aquaporin-4. J. FASEB,2004,18(7):905~907
    22 Yang B,Verbavatz JM,Song Y,et al. Skeletal muscle function and water permeability in aquaporin-4 deficient mice. Am J Physiol Cell Physiol,2000,278(6):1108~1115
    23 Wakayama Y,Jimi T,Inoue M,et al. Reduced aquaporin 4 expressionin the muscle plasma membrane of patients with Duchenne muscular dystrophy. Arch. Neurol,2002,59(3):431~437
    24 Wakayama Y,Jimi T,Inoue M,et al. Altered aquaporin 4 expression in muscles of Fukuyama-type congenial muscular dystrophy. Virchows Arch,2003,443(6):761~767
    25 Wakayama Y,Takahashi J,et al. Generation of muscle aquaporin 4 overexpressing transgenic mouse: its characterization at RNA and protein levels including freeze-fracture study. Micron,2007,38(3):257~267
    26 Huang Y,Tola VB,Fang P,et al. Partitioning of aquaporin-4 water channel mRNA and protein in gastric glands. Dig Dis Sci,2003,48(10):2027~2036
    27 Wang KS,Komar AR,Tonghui Ma,et al. Gastric acid secretion in aquaporin-4 knockout mice. Cell Physiol,2000,279(2):448~453
    28 Bodis B,Nagy G,Nemeth P,et al. Active water selective channels in the stomach: investigation of aquaporins afterethanol and capsaicin treatment in rats. Physiol Paris,2001,95(1-6):271~275
    29 Wang KS,Ma T,Filiz F,et al. Colon water transport in transgenic mice lacking aquaporin4 water channels. Am J Physiol Gastrointest Liver Physiol,2000,279(2): 463~470
    30 Lopez IA,Ishiyama G,Lee M,et al. Immunohistochemical localization of aquaporins in the human inner ear. J Cell Tissue Res.,2007,328(3):453~460
    31 Mhatre AN,Stren RE,Li J,et al. Aquaporin 4 expression in the mammalian inner ear and its role in hearing. Biochem Biophys Res Commun,2002,297(4):987~996
    32 Connors NC , Kofuji P , Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia,2006,53(2):124~131
    33 Da T,Verkman AS. Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest Ophthalmol Vis Sci,2004,45(12):4477~4483
    34 Pannicke T,Iandiev I,Uckermann O,et al. A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Mol Cell Neurosci,2004,26(1):493~502
    35 Nielsen S,Frokiaer J,Marples D,et al. Aquaporins in the kidney:From molecules to medicine. Physiol Rev.,2002,82(1):205~244
    36 Yuanlin Song,Sujatha Jayaraman,Baoxue Yang,et al. Roleof Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration. The Journal of General Physiology,2001,117(6):573~582
    37 Wang Ke-Jian,Sun Shan-Quan,Chen Ha,et al. Expression of aquaporin-4 in rat throid. Chinese Journal of Anatomy,2006,29(2):153~156
    38 Zelenina M.,Zelenin S.,Bondar A.A.,et al. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol,2002,283(2):309~318
    39 Grazia Paola Nicchia,Antonio Frigeri,Grazia Maria Liuzzi,et al. Inhibition of AQP4 expression in astrocytes by RNAi determines alterations in cell morphology,growth,and water transport and induces changes in ischemia related genes. J FASEB,2003,17(11):1508~1510
    40 Hajime Arima,Naoki Yamamoto,Kazuya Sobue,et al. Hyperosmolar Mannitol Stimulates Expression of Aquaporins 4 and 9 through a p38 Mitogen-activated Protein Kinase-dependent Pathway in Rat Astrocytes. Biol. Chem,2003,278(5):44525~44534
    41 Rama Rao KV,Chen M,Simard JM,et al. Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport,2003,14(18):2379~2392
    42 Gunnarson E,Axehult G,Baturina G,et al. Lead induces increased water permeability in astrocytes expressing aquaporin 4. Neuroscience,2005,136(1):105~114
     43 Miyajima M,Arai H,Okuda O,et al. Effect of C-type natriuretic peptide(CNP)on water channel aquaporin-4 expression in cultured astrocytes. Brain Res Mol Brain Res,2004,122(2):109~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700