基于掺硼金刚石(BDD)膜电极的COD测定方法和TiO_2-BDD异质结光催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺硼金刚石(BDD)作为电极材料具有众多优点,如电势窗口宽、析氧电位高、背景电流低、抗腐蚀、化学性质稳定等,从而被广泛应用于电化学水处理和污染物的电分析。在水污染监测中,COD,即化学需氧量,是衡量水体有机污染的重要指标。标准测量方法为重铬酸钾法,但此法存在很多内在缺点,而且很难实现自动测量和在线测量。近年来发展的电化学COD测量方法,克服了很多传统方法的不足,但缺乏合适的电极材料,阻碍了此方法在实际中的广泛应用。为此,本文尝试以环境友好的BDD材料为电极,采用电化学安培法进行COD的测定,并对COD的流动注射分析方法进行了探索。另外,TiO_2光催化技术是水处理研究中的热点之一,但由于光生电荷载流子的快速复合而导致量子效率较低,使得该技术还难于应用到实际当中。在解决此问题的方法中,利用异质结材料作为光催化剂被认为是一个很好的途径,因为异质结内建电场可以有效地减少光生电荷载流子的复合。所以,本论文利用具有p型半导体性质的BDD为基底,将其与n型TiO_2复合制备TiO_2-BDD异质结光催化剂,以期得到更高的光催化能力。围绕以上内容所开展的工作主要包括以下几个方面:
     (1)采用热丝化学气相沉积设备,在金属钛基底上制备了BDD膜。通过扫描电镜、拉曼光谱仪和X射线衍射仪对样品进行表征,显示所制备的BDD膜均匀、致密、连续,晶粒尺寸在1-1.5μm;膜中金刚石拉曼特征峰明显;XRD谱图中可以观察到金刚石的(111)、(220)和(311)晶面衍射峰。另外,通过循环伏安技术的研究,表明BDD膜电极具有很宽的电化学电势窗口、高的析氧电位和很低的背景电流,而且电化学稳定性良好。因此,所制备BDD膜是比较理想的电极材料。
     (2)以BDD膜为电极,利用电化学安培法进行了COD测试研究。优化的pH值和测量电位分别为2和2.5V(vs.SCE)。本研究方法的线性范围与检测限分别为20-9000mg·L~(-1)和7.5 mg·L~(-1)COD(S/N=3)。经过20天,共超过400次的测量使用,BDD膜电极性能依然保持稳定。在优化的测试条件下,本研究方法可以很好地用于模拟水样和实际废水COD的测定。与传统铬法相比,此方法操作简易,耗时短(<5min),且所采用的电极为环境友好的BDD材料,测试中不使用有毒物质,因此可以有效避免二次污染。
     (3)以BDD膜电极为检测元件,结合流动注射自动进样设备,组建成COD的流动注射分析(FIA)系统。优化的测试条件分别为,测量电位2.8V(vs.Ag/AgCl)、载液流速2.5 mL·min~(-1),电解质0.25MNa_2SO_4,pH6.5。在优化条件下,利用此FIA系统,可以很好地完成模拟水样和实际废水COD的测定。FIA系统测定COD的线性范围为2-150mg·L~(-1),检测限为1.0 mg·L~(-1)(S/N=3)。经过25天,共超过600次的测量使用,FIA系统仍运行稳定。通过与传统铬法在模拟水样和实际废水COD测定中的比较,表明二者之间具有较好的一致性。与传统铬法相比,FIA系统可以大大缩短分析时间,降低试剂用量,测定结果具有更好的重现性。另外,FIA系统中采用的电极材料为环境友好的BDD,且测试过程不使用有毒物质,所以不产生二次污染问题。更重要的是,FIA系统初步实现了COD的自动化测量,促进了环保、原位、在线型COD测试系统的发展。
     (4)采用两步化学气相沉积方法,制备出TiO_2-BDD复合材料,即先用热丝化学气相沉积系统制备BDD基底,再利用金属有机化学气相沉积方法于BDD基底上沉积TiO_2薄膜。通过扫描电镜、透射电镜、Raman光谱仪和X射线衍射仪对样品进行了结构表征,表明所制备的TiO_2-BDD复合材料表面均匀、连续,TiO_2为锐钛矿型;另外,采用半导体参数测试仪对样品进行了电学性质表征,证明TiO_2薄膜与BDD基底之间形成了异质结;光电压特性测量中,TiO_2-BDD异质结与化学气相沉积于钛片上的TiO_2膜(TiO_2-Ti)相比,具有更高的响应,表明异质结促进了光生电子与空穴的分离。在光催化实验中,选择偶氮染料活性黄15(RY15)与Cr(Ⅵ)作为目标物,分别以TiO_2-Ti和TiO_2-BDD为光催化剂,相同实验条件下,对比考察了二者的光催化能力。结果显示无论单独处理RY15或Cr(Ⅵ),还是同时光催化氧化RY15和光催化还原Cr(Ⅵ),TiO_2-BDD异质结光催化剂都表现出更高的光催化能力,这可能主要缘于异质结内建电场促进了光生电荷载流子的分离。另外,在同时光催化氧化和光催化还原反应中,观察到了明显的协同效应。这种双向促进作用使污染物可以被更有效地降解。实验中还对pH值和曝气条件进行了考察,结果表明偏酸性条件有利于RY15和Cr(Ⅵ)的光催化降解;氧气的连续曝入,对RY15的光催化氧化与Cr(Ⅵ)的光催化还原都有一定的促进作用。最后简要探讨了TiO_2-BDD异质结的光催化机珲。
As a versatile electrode material,boron-doped diamond(BDD)possesses many advantages such as wide electrochemical window,low voltammetric background current,high level of mechanical strength arid corrosion resistance.Therefore,BDD has been investigated widely in the fields of electrochemical wastewater treatments and the electroanalysis of pollutants.As for water pollution,chemical oxygen demand(COD)is an important measure of organic pollution in water.Unfortunately,the conventional dichromate method for COD tests includes several inherent drawbacks.More importantly,the conventional method is difficult to be conducted automatically.The electrochemical method developed in recent years could overcome many disadvantages involved in the conventional method.However, the lack of proper electrode materials might limit the widespread application of this method in practice.Considering what mentioned above,the environmentally friendly material,BDD, was adopted as an electrode to determine COD by amperometric method.Meanwhile,a flow injection COD testing system was also emplored.Additionally,the photocatalytic technique with TiO_2 as a photocatalyst has been studied frequently in wastewater treatments because TiO_2 is easily available,nontoxic,inexpensive and chemically stable.However,TiO_2 also suffers severe constraints in practical applications due to the bottleneck of poor quantum yield that is normally caused by the rapid recombination of photogenerated electrons and holes. Among the ways to settle this problem,the application of heterojunction materials as photocatalysts is a good method because the internal electrostatic field of heterojunctions can provide a potential driving force to reduce the recombination of photogenerated charge carriers.Consequently,the p type material of BDD was tried combining with the n type material of TiO_2 to form a heterojunction.Higher photocatalytic ability can be expected when this heterojunction is used as a photocatalyst.In this dissertation,some works were carried out as follows:
     (1)The BDD film was prepared on a titanium sheet in a hot filament chemical vapor deposition(HF CVD)reactor.The characterization of SEM,.Raman spectrum and XRD demonstrated that the BDD film was compact,continuous,and uniform.The crystallites were about 0.5-1.5μm with no evident cracks or extensive pitting.The characteristic peak of diamond in Raman spectrum appeared clearly and the diffraction peaks of diamond(111), (220)and(311)in XRD pattern were observed.Additionally,the results investigated in cyclic voltammetry indicated that the BDD electrode was electrochemically stable with a wide electrochemical potential window and a low voltammetric background current.It was believed that the BDD film was a good electrode material.
     (2)The amperometric determination of COD was conducted by using a BDD electrode. The optimum pH value and applied potential were 2 and 2.5 V(vs.SCE),respectively.The linear range was 20-9000 mg·L~(-1)and the detection limit was 7.5 mg·L~(-1)COD(S/N=3).The performance of the BDD electrode still kept stable after over 400 COD tests during a period of 20 days.Under the optimized testing conditions,the proposed method was successfully employed to determine the COD of synthetic water samples and real samples.As compared with the conventional dichromate method,the amperometric method presented here could be carried out easily and rapidly(<5 min).Moreover,the electrode material of BDD was environmentally friedly and no toxic chemicals were used in COD tests.Consequently,the problem of secondary pollution could be avoided efficiently.
     (3)A flow injection analysis(FIA)system for COD measurements was established successfully based on a flow injection apparatus with BDD as an electrode.The optimum applied potential,flow rate of carrier,electrolyte and pH value were 2.8 V(vs.Ag/AgCl),2.5 mL·min~(-1),0.25 M Na_2SO_4 and 6.5,respectively.Under the optimized testing conditions,the COD measurements for synthetic water samples and real wastewater samples could be well completed by using the proposed FIA System.The linear range and the detection limit were 2-150 and 1.0 mg·L~(-1)(S/N=3),respectively.The FIA system still performed stably after over 600 COD tests during a period of 25 days.In addition,the proposed method and the conventional method consisted well with each other in terms of the COD tests for both synthetic and real samples.The application of FIA system could not only shorten the analysis period but also cut down the dosage of reagents.Meanwhile,a better reproducibility could be obtained.Furthermore,the electrode material adopted in the FIA system was environmentally friendly,and no toxic chemicals were used in the process of COD determination,which was undoubtedly beneficial to the avoidance of secondary pollution.More importantly,the COD measurement could be conducted automatically,which would promot the development of an environmentally friendly,in situ,and on-line COD testing system.
     (4)A TiO_2-BDD heterojunction photocatalyst was fabricated via two phase of CVD processes.That is,this heterojunction material was prepared first by depositing a BDD film on a titanium sheet in a HF CVD reactor,followed by covering a layer of TiO_2 in a metal-organic CVD system.The morphology and structure were characterized by using SEM, TEM,and Raman spectrum and XRD,respectively.The results demonstrated that the composite of TiO_2-BDD appeared to be continuous and uniform,and the crystal phase of TiO_2 was anatase.Besides,theⅠ-Ⅴplot detected by a semiconductor characterization system indicated that a heterojunction was formed between the BDD substrate and TiO_2.In the measurement of surface photovoltage(SPV),the response of the heterojunction in UV region was stronger than that of TiO_2 deposited on a titanium sheet(TiO_2-Ti),suggesting that the heterojuncti0n could facilitate the separation of photogenerated electrons and holes.An azo dye C.I.reactive yellow 15(RY15)and Cr(Ⅵ)were selectedto investigate the photocatalytic ability of TiO_2-Ti and TiO_2-BDD heterojunction.The results indicated that the heterojunction photocatalyst exhibited higher photocatalytic ability than TiO_2-Ti in the degradation of systhetic wastewater samples either containing only RY15 or only Cr(Ⅵ)or both pollutants. This good photocatalytic ability might be benefited from the reduced recombination of photogenerated charge carriers due to the existence of heterojunction.At the same time,a distinct synergic effect was observed in the simultaneous oxidation of RY15 and reduction of Cr(Ⅵ).This mutual promoting effect could faciliated the efficient degradation of pollutants. Additionally,the effects of pH and gas sparging on photocatalysis were also studied.An acidic condition was beneficial to the photocatalytic oxidation of RY15 and the photocatalytic reduction of Cr(Ⅵ).Oxygen sparging promoted more or less the reactions of both photocatalytic oxidation and reduction.At last,the possible photocatalytic mechanism was discussed.
引文
[1]王兵,甘孔银,梅军等.用于二次电子发射阴极的纳米金刚石膜.功能材料.2008,39(1):158-161.
    [2]Subramanian K,Kang W P,Davidson J L et al.Nanocrystalline diamond lateral field emission diode fabrication by dual micropatterning technique.Diamond and Related Materials.2007,16(4-7):1408-1412.
    [3]李建国,刘实,李依依等.金刚石膜辐射探测器的研究进展.材料导报.2005,19(3):7-9.
    [4]王美,李和胜,李木森等.Ⅱb型与Ⅰb型金刚石热稳定性比较.山东大学学报(工学版).2007,37(6):41-43.
    [5]Angadi M A,Watanabe T,Bodapati A et al.Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films.Journal of Applied.Physics.2006,99(11):114301.
    [6]胡广,王林军,祝雪丰等.纳米光学金刚石薄膜的分析与改进.2007,22(5):548-552.
    [7]刘健敏,夏义本,王林军等.用于高频声表面波器件的CVD金刚石衬底的研究.材料科学与工艺.2006,14(4):408-411.
    [8]Assouar M B,Elmazria O,Kirsch P et al.High-frequency surface acoustic wave devices based On AN/diamond layered structure realized using e-beam lithography.Journal of Applied Physics.2007,101(11):114507.
    [9]Sreejith P S,Krishnamurthy R,Malhotra S K et al.Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites.Journal of Materials Processing Technology.2000,104(1-2):53-58.
    [10]陈光华,张阳.金刚石薄膜的制备与应用.北京:化学工业出版社,2004.
    [11]陈乾旺,娄正松,王强等.人工合成金刚石研究进展.物理.2005,34(3):199-204.
    [12]Pleskov Y V.Electrochemistry of diamond:a review.Russian Journal of Electrochemistry.2002,38(12):1275-1291.
    [13]Rao T N,Fujishima A.Recent advances in electrochemistry of diamond.Diamond and Related Materials.2000,9(3-6):384-389.
    [14]Kraft A.Doped diamond:a compact review on a new,wersatile electrode material.International Journal of Electrochemical Science.2007,2(5):355-385.
    [15]方宁,贾金平,钟登杰等.掺硼金刚石薄膜电极在水处理中应用的研究进展.环境污染与防治.2007,29(9):708-712.
    [16]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001.
    [17]顾长志,金曾孙.金刚石膜的性质、应用及国内外研究现状.功能材料.1997,28(3):232-236.
    [18]http://www.zszx.info/imagematerial/upload/hx/45JHWQYUNCIDVIPX.bmp
    [19]http://hxjd.xmu.edu.cn/wlkc/jiegou/chapter7/images/7-8.gif
    [20]陈安泽.第六讲金刚石概论.国外非金属矿与宝石.1990,7(4):55-60.
    [21]王松顺.特殊类型含硼、氮金刚石晶体的结构、性质与应用.珠宝科技.2004,16(4):28-32.
    [22]苟清泉.含硼黑金刚石的结构与合成机理及其特殊性能的探讨.金刚石与磨料磨具工程.1977,7(S2):26-36.
    [23]王松顺.含硼人造金刚石的结构、性质、及其应用.表面技术.1997,26(2):38-41.
    [24]Bustarret E,Achatz P,Sacepe B et al.Metal-to-insulator transition and superconductivity in boron-doped diamond.Philosophical Transactions of the Royal Society A.2008,366(1863):267-269.
    [25]Sitch P K,Kohler T,Jungnickel G et al.A theoretical study of boron and nitrogen doping in tetrahedral amorphous carbon.Solid State Communications.1996,100(8):549-553.
    [26]Mehandru S P,Anderson A B.The migration of interstitial H in diamond and its pairing with substitutional B and N:Molecular orbital theory.Journal Of Materials Research.1994,9(2):383-395.
    [27]Breuer S J,Briddon P R.Ab initio study of substitutional boron and the boron-hydrogen complex in diamond.Physical Review B.1994,49(15):10332-10336.
    [28]Mukuda H,Tsuchida T,Harada A et al.Microscopic evidence for evolution of superconductivity by effective carrier doping in boron-doped diamond:~(11)B-NMR study.Physical Review B.2007,75(3):033301.
    [29]刘卫平,余庆选,田宇全等.硼掺杂对金刚石薄膜生长特性的影响.无机材料学报.2005,20(5):1270-1274.
    [30]Kravets R,Vanecek M,Piccirillo C et al.A quantitative study of the boron acceptor in diamond by Fourier-transform photocurrent spectroscopy.Diamond and Related Materials.2004,13(10):1785-1790.
    [31]Barnard A.S,Sternberg M.Substitutional boron in nanodiamond,bucky-diamond,and nanocrystalline diamond grain boundaries.Journal of Physical Chemistry B.2006,110(39):19307-19314.
    [32]Polyakov V I,Rukovishnikov A I,Rossukanyi N M et al.Electrical properties of thick boron and nitrogen contained CVD diamond films.Diamond and Related Materials.2001,10(3-7):593-600.
    [33]Polo M C,Cifre J,Esteve J.Boron incorporation effects in CVD diamond film growth.Vacuum.1994,45(10-11):1013-1014.
    [34]Chen C F,Chen S H.Electrical properties of boron-doped diamond films after annealing treatment.Diamond and Related Materials.1995,4(4):451-455.
    [35]Hu X J,Dai Y B,Li R B et al.A molecular dynamics study of interstitial boron in diamond.Physica B.2003,327(1):39-42.
    [36]Brunet F,Deneuville A,Germi P et al.Effect of boron incorporation on the structure of polycrystalline diamond films.Diamond and Related materials.1997,6(5):774-777.
    [37]Brunet F,Deneuville A,Germi P et al.Variation of the cell parameter of polycrystalline boron doped diamond films.Journal of Applied Physics.1997,81(3):1120-1125.
    [38]王松顺.特殊类含硼金刚石合成的实验研究.珠宝科技.2003,15(5):9-12.
    [39]Liao X Z,Zhang R J,Lee C S et al.The influence of boron doping on the structure and characteristics of diamond thin films.Diamond and Related Materials.1997,6(2):521-525.
    [40]Shinar R,Leksono M,Shanks R.Effect of boron doping on the surfaces of diamond thin films.Journal of Vacuum Science and Technology A.1993,11(3):569-573.
    [41]张清福,苟清泉,刘履华等.天然金刚石形成透明硼皮金刚石的研究.高压物理学报.1989,3(1):11-17.
    [42]唐敬友,卢喜瑞,祖义忠.硼含量对合成金刚石的颜色和热稳定性的影响.2007,22(3):1-5.
    [43]Worner E,Pleuler E,Wild C et al.Thermal and optical properties of high purity CVD-diamond discs doped with boron and nitrogen.Diamond and Related Materials.2003,12(3-7):744-748.
    [44]Burgemeister E A.Thermal conductivity of natural diamond between 320 and 450 K.Physica B+C.1978,93(2):165-179.
    [45]Mort J,Machonkin A,Okumura K.Infrared absorption in boron-doped diamond thin films.Applied Physics Letters.1991,58(17):1908-1910.
    [46]张仿清,谢二庆,杨斌等.硼掺杂半导体金刚石薄膜的合成与红外吸收特性.半导体学报.1995,16(6):468-472.
    [47]Krivchenko V A,Lopaev D V,Minakov P V et al.Study of polycrystalline boron-doped diamond films by Raman spectroscopy and Optical absorption spectroscopy.Technical Physics.2007,52(11):1471-1474.
    [48]Kawarada H,Yokota Y,Mori Y et al.Cathodoluminescence and electroluminescence of undoped and boron-doped diamond formed by plasma chemical vapor deposition.Journal of Applied Physics.1990,67(2):983-989.
    [49]Prins J F.Ultraviolet cathodoluminescence from diamond layers after doping by means of boron-ion implantation.Applied Physics Letters.1998,73(6):2308-2310.
    [50]王传新,汪建华,满卫东等.硼浓度对沉积在刀具上的金刚石膜表面的影响.武汉化工学院学报.2004,26(3):51-53.
    [51]Pleskov Y V,Evstefeeva Y E,Krotova M D et al.Synthetic semiconductor diamond electrodes:a study of electrochemical behavior of boron-doped single crystals grown at a high temperature and high pressure.Electrochemica Acta.1999,44(19):3361-3366.
    [52]Ramesham R.Cyclic voltammetric response of boron-doped homoepitaxially grown single crystal and polycrystalline CVD diamond.Sensor and Actuators B.1998,50(2):131-139.
    [53]Witek M A,Swain G M.Aliphatic polyamine oxidation response variability and stability at boron-doped diamond thin-film electrodes as studied by flow-injection analysis.Analytica Chimica Acta.2001,440(2):119-129.
    [54]亓曾笃.人造金刚石中的氮和硼.人工晶体学报.1983,12(2):126-128.
    [55]Lee Y C,Lin S J,Lin I N et al.Effect of boron doping on the electron-field-emission properties of nanodiamond films.Journal of Applied Physics.2005,97(5):4310.
    [56]于三,邹广田,金曾孙.硼掺杂P-型半导体金刚石薄膜的气相合成及其掺杂行为的研究.1993,14(9):579-584.
    [57]Zhang Y,Yoshihara S.Cathodic stripping voltammetry of nickel on boron-doped diamond.Journal of Electroananlytical chemistry.2004,573(2):327-331.
    [58]Gu H,Su X,Lob P K.Conductive polymer-modified boron-doped diamond for DNA hybridization analysis.Chemical Physics Letters.2004,388(4-6):483-487.
    [59]Hege K V,Verhaege M,Verstraete W.Indirect electrochemical oxidation of reverse osmosis membrane concentrates at boron-doped diamond electrodes.Electrochemistry Communications.2002,4(4):296-300.
    [60]Sarada B V,Rao T N,Trykd Aet al.Electroanalytical applications of conductive diamond electrodes.New Diamond and Frontier Carbon Technology.1999,9(5):364-377.
    [61]Maeda Y,Sato K,Ramaraj R et al.The electrochemical response of highly boron-doped conductive diamond electrodes to Ce~(3+)ions in aqueous solution.EIectrochimica Acta.1999,44(20):3441-3449.
    [62]Honda K,Yamaguchi Y,Yamanaka Y et al.Hydroxyl radical-related electrogenerated chemiluminescence reaction for a ruthenium tris(2,2')bipyridyl/co-reactants system at boron-doped diamond electrodes.Electrochimica Acta.2005,51(4):588-597.
    [63]Holt K B,Forryan C,Compton R G et al.Anodic activity of boron-doped diamond electrodes in bleaching processes.New Journal of Chemistry.2003,27(4):698-703.
    [64]Marselli B,Garcia-Gomez J,Michaud P A et al.Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes.Journal of The Electrochemical Society.2003,150(3):D79-D83.
    [65]Yano T,Tryk D A,Hashimoto K et al.Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in alkaline solution.Journal of The Electrochemical Society.1998,145(6):1870-1876.
    [66]Xu J,Granger M C,Chen Q et at.Boron-doped diamond thin-film electrodes.Analytical Chemistry News and Features.1997,69(19):591A-597A.
    [67]只金芳,田如海.金刚石薄膜电化学.化学进展.2005,17(1):55-63.
    [68]胡陈果.高硼掺杂金刚石膜电极的电化学应用研究.物理.2002,31(2):93-97.
    [69]Ferro S.Synthesis of diamond.2002,12(10):2843-2855.
    [70]Guo L,Chen G H.Long-term stable Ti/BDD electrode fabricated with HFCVD method using two-stage substrate temperature.Journal of The electrochemical Society.2007,154(12):D657-D661.
    [71]潘鹏,常明,朱亚东.CVD金刚石膜的掺硼研究.天津理工大学学报.2005,21(1):43-45.
    [72]胡晓君,曹华珍,郑国渠等.掺硼浓度对金刚石薄膜电极电化学性能影响的研究.高校化学工程学报.2006,20(6):932-937.
    [73]Mort J,Kuhman D,Machonkin M et al.Boron doping of diamond thin films.Applied Physics Letters.1989,55(11):1121-1123.
    [74]王和照,姜柳笛.P-型金刚石半导体制备及其性能研究.微细加工技术.1995,10(2):51-55.
    [75]Li C Y,Li B,Lu X Y et al.Superconductivity in heavily boron-doped diamond films prepared by electron assisted chemical vapour deposition method.Chinese physics letters.2006,23(10):2856-2858.
    [76]Chen X,Chen G,Gao F et al.High-performance Ti/BDD electrodes for pollutant-oxidation.Environmental Science and Technology.2003,37(21):5021-5026.
    [77]Chen X,Chen G.Proper hot filament CVD conditions for fabrication of Ti-boron doped diamond electrodes.Journal of The Electrochemical Society.2004,151(4):B214-B219.
    [78]Goeting C H,Foord J S,Marken F et al.Sonoelectrochemistry at tungsten-supported boron-doped CVD diamond electrodes.Diamond and Related Diamond.1999,8(2):824-829.
    [79]Zhang Y,Asahina S,Yoshihara S.et al.Oxygen reduction on Au nanoparticle deposited boron-doped diamond films.Electrochimica Acta.2003,48(6):741-747.
    [80]Tsubota T,Fukui T,Saito T et al.Surface morphology and electrical properties of boron-doped diamond films synthesized by microwave-assisted chemical vapor deposition using trimethylboron on diamond(100)substrate.2000,9(7):1362-1368.
    [81]Wang W L,Polo M C,Sanchez G et al.Internal stress and strain in heavily boron-doped diamond films grown by microwave plasma and hot filament chemical vapor deposition.Journal of Applied physics.1996,80(3):1846-1850.
    [82]Goeting C H,Jones F,Foord J S et al.Electrochemistry at boron-doped diamond films grown on graphite substrates:redox-,adsorption and deposition processes.Journal of Electroanalytical Chemistry.1998,442(1-2):207-216.
    [83]Kalish R.Doping of diamond.Carbon.1999,37(5):781-785.
    [84]Huang B R,Wu C H,Ke W z.Surface analysis of boron-doped polycrystalline diamond films deposited by a microwave plasma chemical vapor deposition system.Materials Chemistry and Physics.1999,59(2):143-148.
    [85]Saha P,Kundoo S,Banerjee A N et al.Synthesis of boron-doped diamond films by De plasma CVD using a CH_4+CO_2+H_2 gas mixture at lower substrate temperature and formation of an n-Si/p-diamond heterojunction.2003,72(2):129-134.
    [86]朱建勇,梅炳初,李力等.CVD金刚石薄膜的制备方法及应用.炭素技术.2002,20(3):30-33.
    [87]Matsumoto S,Sato Y,Kamo M et al.Vapor Deposition of Diamond Particles from Methane.Japanese Journal of Appllied Physics.1982,21(4):L183-L185.
    [88]Werner M,Locher R.Growth and application of undoped and doped diamond films.Reports on Progress in Physics.1998,61(12):1665-1710.
    [89]Kamo M,Sato Y,Matsumoto S et al.Diamond synthesis from gas phase in microwave plasma.Journal of Crystal Growth.1983,62(3):642-644.
    [90]藏建兵,黄浩,赵玉成.含掺杂的金刚石.金刚石与磨具工程.2002,37(1):16-18.
    [91]Tsai W,Delfino M,Hodul D et-al.Diamond MESFET using ultrashallow RTP boron doping.IEEE Electron Device Letters.1991,12(4):157-159.
    [92]Wu D,Ma Y C,Wang Z L et al.XRD Optical properties of boron-doped diamond Physical Review B.2006,73(1):012501.
    [93]Zhang Y,Yoshihara S,Shirakashi T et al.Electrochemical characteristics Of boron-doped,undoped and nitrogen-doped diamond films.Diamond and Related materials.2005,14(2):213-219.
    [94]Chen Y H,Hu C T,Lin I N.Defect structure and electron field-emission properties of boron-doped diamond films.Applied Physics Letters.1999,75(18):2857-2859.
    [95]Bou P,Vandenbulcke L.Raman investigations on diamond films and crystals deposited by plasma-assisted CVD.Journal Of The Electrochemical Society.1991,138(10):2991-3000.
    [96]罗伯诚,罗湘捷,丁立业.高含硼金刚石的一阶Raman谱特性分析.原子与分子物理学报.2000,17(1):67-70.
    [97]廖克俊,王万录,张振刚等.热灯丝CVD金刚石膜硼掺杂效应研究.物理学报.1996,45(10):1771-1776.
    [98]Show Y,Witek M A,Sonthalia P et al.Characterization and electrochemical responsiveness of boron-doped nanocrystalline diamond thin-film electrodes.Chemistry of Materials.2003,15(4):879-888.
    [99]Steeds J W,Mora A E,Butler J E et al.Transmission electron microscopy investigation of boron-doped polycrystalline chemically vapour-deposited diamond.Philosophical Magazine A.2002,82(9):1741-1768.
    [100]Thonke K.The boron acceptor in diamond.Semiconductor Science and Technology.2003,18(3):S20-S26.
    [101]杨小倩,胡晓君,沈荷生等.CVD金刚石薄膜的掺硼研究.机械工程材料.2002,26(1):16-18.
    [102]Panizza M,Duo I,Michaud P A et al.Electrochemical detection of 2-naphthol on boron-doped diamond.Electrochemical and Solid-Stale Letters.2000,3(9):429-430.
    [103]Pedrosa V A,Codognoto L,Machado S A et al.Is the boron-doped diamond electrode a suitable substitute for mercury in pesticide analyses? A comparative study of.4-nitrophenol quantification in pure and natural waters.Journal of Electroanalytical chemistry.2004,573(1):11-18.
    [104]Prado C,Murcott G G,Marken F et al.Detection of chlorophenols in aqueous solution via hydrodynamic channel flow cell voltammetry using a boron-doped diamond electrode.Electroanalysis.2002,14(14):975-979.
    [105]Saterlay A J,Foord J S,Compton R G.An ultrasonically facilitated boron-doped diamond voltammetric sensor for analysis of the priority pollutant 4-chlorophenol.Electroanalysis.2001,13(13):1065-1070.
    [106]Garbellini G S,Salazar-banda G R,Avaca L A.Sonovoltammetric Determination of 4-Nitrophenol on Diamond Electrodes.Journal of the Brazilian Chemical Society.2007,18(6):1095-1099.
    [107]Muna G W,Quaiserova-Mocko V,Swain G M.The analysis of chlorinated phenol solutions by capillary electrophoresis coupled with direct and indirect amperometric detection using a boron-doped diamond microelectrode.Electroanalysis.2005,17(13):1160-1170.
    [108]Muna G W,Quaiserova-Mocko V,Swain G M.Chlorinated phenol analysis using off-line solid-phase extraction and capillary electrophoresis coupled with amperometric detection and a boron-doped diamond microelectrode.Analytical Chemistry.2005,77(20):6542-6548.
    [109]Codognoto L,Zuin V G,Souza D et al.Electroanalytical and chromatographic determination of pentachlorophenol and related molecules in a contaminated soil:a real case example.Microchemical Journal.2004,77(2):177-184.
    [110] Terashima C, Rao T N, Sarada B V et al. Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Analytical Chemistry. 2002, 74(4): 895-902.
    [111] Muna G W, Tasheva N, Swain G M. Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes: a comparison of microcrystalline and nanocrystalline thin films. Environmental Science and Technology. 2004, 38(13): 3674-3682.
    [112] Spataru N, Sarada B V, Popa E et al. Voltammetric determination of L-cysteine at conductive diamond electrodes. Analytical Chemistry. 2001,73(3): 514-519.
    [113] Chailapakul O, Siangproh W, Sarada B V et al. The electrochemical oxidation of homocysteine at boron-doped diamond electrodes with application to HPLC amperometric detection. The Analyst. 2002, 127(9): 1164-1168.
    
    [114] Nekrassova O, Lawrence N S, Compton R G. Selective electroanalytical assay for cysteine at a boron doped diamond electrode. Electroanalysis. 2004,16(16): 1285-1291.
    [115] Nekrassova O, Lawrence N S, Compton R G. Electrochemically initiated catalytic oxidation of 5-thio-2-nitrobenzoic acid (TNBA) in the presence of thiols at a boron doped diamond electrode: implications for total thiol detection. Electroanalysis. 2003,15(21): 1655-1660.
    [116] Lawrence N S, Thompson M, Prado C et al. Amperometric detection of sulfide at a boron doped diamond electrode: the electrocatalytic reaction of sulfide with ferricyanide in aqueous solution. Electroanalysis. 2002,14(7-8): 499-503.
    [117] Spataru T, Spataru N, Fujishima A. Detection of aniline at boron-doped diamond electrodes with cathodic stripping voltammetry. Talanta. 2007,73(2): 404-406.
    [118] Oliveira R T S, Salazar-Banda G R, Machado S A S et al. Electroanalytical determination of n-nitrosamines in aqueous solution using a boron-doped diamond electrode. Electroanalysis. 2008, 20(4): 396-401.
    [119] Koppang M D, Witek M, Blau J et al. Electrochemical oxidation of polyamines at diamond thin-film electrodes. Analytical Chemistry. 1999,, 71(6): 1188-1195.
    [120] Jolley S, Koppang M, Jackson T et al. Flow injection analysis with diamond thin-film detectors. Analytical Chemistry. 1997, 69(20): 4099-4107.
    [121] Ward-Jones S, Banks G E, Simm A O et al. An in situ copper plated boron-doped diamond microelectrode array for the sensitive electrochemical detection of nitrate. Electroanalysis. 2005, 17(20): 1806-1815.
    [122] Welch C M, Hyde M E, Banks C E et al. The detection of nitrate using in-situ copper nanoparticle deposition at a boron doped diamond electrode. Analytical Sciences. 2005, 21(12): 1421-1429.
    [123] Spataru N, Rao T N, Tryk D A et al. Determination of nitrite and nitrogen oxides by anodic voltammetry at conductive diamond electrodes. Journal of The Electrochemical Society. 2001, 148(3):E112-E117.
    [124] Ji X, Banks C E, Compton R G. The electrochemical oxidation of ammonia exhibits analytically useful signals in aqueous solutions. The Analyst. 2005, 130(10): 1345-1347.
    [125] Batchelor-McAuley C, banks C E, Simm A O et al. The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. The Analyst. 2006, 131(1): 106-110.
    [126] Xu J, Swain G M. Oxidation of azide anion at boron-doped diamond thin-film electrodes. Analytical Chemistry. 1998, 70(8): 1502-1510.
    [127] Charoenraks T, Chuanuwatanakul S, Honda K et al. Analysis of tetracycline antibiotics using hplc with pulsed amperometric detection. Analytical Sciences. 2005, 21(3): 241-245.
    [128] Wei M, Zhou Y, Zhi J et al. Comparison of boron-doped diamond and glassy carbon electrodes for determination of procaine hydrochloride. Electroanalysis. 2008, 20(2): 137-143.
    [129] Chailapakul O, Fujishima A, Tipthara P et al. Electroanalysis of glutathione and cephalexin using the boron-doped diamond thin-film electrode applied to flow injection analysis. Analytical Sciences. 2001,17(supplement):i419-i422. "
    
    [130] Uslu B, Topal B D, Ozkan S A. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes. Talanta. 2008,74(5): 1191-1200.
    [131] Suzuki A, Ivandini T A, Yoshimi K et al. Fabrication, characterization, and application of boron-doped diamond microelectrpdes for in vivo dopamine detection. Analytical Chemistry. 2007, 79(22): 8608-8615.
    [132] Suryanarayanan V, Zhang Y, Yoshihara S et al. Voltammetric assay of naproxen in pharmaceutical formulations using boron-doped diamond electrode. Electroanalysis. 2005, 17(11): 925-932.
    [133] Omanovic D, Kwokal Z, Goodwin A et al. Trace metal detection in Sibenik bay, Croatia: cadmium, lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study. Journal of the Iranian Chemical Society. 2006, 3(2): 128-139.
    [134] Prado C, Wilkins S J, Marken F et al. Simultaneous electrochemical detection and determination of lead and copper at boron-doped diamond film electrodes. Electroanalysis. 2002, 14(4): 262-272.
    [135] Rao T N, Loo B H, Sarada B V et al. Electrochemical detection of carbamate pesticides at conductive diamond electrodes. Analytical Chemistry. 2002, 74(7): 1578-1583.
    [136] Murugananthan M, Yoshihara S, Rakuma T et al. Electrochemical degradation of 17p-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta. 2007, 52(9): 3242-3249.
    [137] Song Y, Swain G M. Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au-coated, diamond thin-film electrode. Analytical Chemistry. 2007, 79(6): 2412-2420.
    [138] Zhao G, Qi Y, Tian Y. Simultaneous and Direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis. 2006, 18(8): 830-834.
    [139] Panizza M, Michaud P A, Cerisola G et al. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry. 2001, 507(1-2): 206-214.
    [140] Canizares P, Saez C, Lobato J et al. Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Industrial and Engineering Chemistry Research. 2004, 43(9): 1944-1951.
    [141] Panizza M, Delucchi M, Cerispla G. Electrochemical degradation of anionic surfactants. Journal of Applied Electrochemistry. 2005, 35(4): 357-361.
    
    [142] Xu L, Wang W, Wang M et al. Electrochemical degradation of tridecane dicarboxylic acid wastewater with tantalum-based diamond film electrode. Desalination. 2008, 222(1-3): 388-393.
    [143] Mitadera M, Spataru N, Fujishima A. Electrochemical oxidation of aniline at boron-doped diamond electrodes. Journal of Applied Electrochemistry. 2004,34(3): 249-254.
    [144] Bellagamba R, Michaud P A, Comninellis C et al. Electro-combustion of polyacrylates with boron-doped diamond anodes. Electrochemistry Communications. 2002, 4(2): 171-176.
    [145] Polcaro A M, Mascia M, Palmas S et al. Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochimica Acta. 2004, 49(4): 649-656.
    [146] Li S, Bejan D, Mcdowell M S et al. Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode. Journal of Applied Electrochemistry. 2008,38(2): 151-159.
    [147] Ammar S, Abdelhedi R, Flox C et al. Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environmental Chemistry Letters. 2006,4(4): 229-233.
    [148] Cabeza A, Urtiaga A M, Ortiz I. Electrochemical treatment of landfill leachates using a boron-doped diamond anode. Industrial and Engineering Chemistry Research. 2007, 46(5): 1439-1446.
    [149] Kapalka A, Foti G, Comninellis C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. Journal of Applied Electrochemistry. 2008, 38(1): 7-16.
    [150] Kraft A, Stadelmann M, Blaschke M. Anodic oxidation with doped diamond electrodes a new advanced oxidation process. Journal of Hazardous Materials B. 2003,103(3): 247-261.
    [151] Levy-Clement C, Ndao N A, Katty A et al. Boron doped diamond electrodes for nitrate elimination in concentrated wastewater. Diamond and Related materials. 2003, 12(3-7): 606-612.
    [152] Canizares P, Diaz M, Dominguez J A et al. Electrochemical treatment of diluted cyanide aqueous wastes. Journal of Chemical Technology and Biotechnology. 2005, 80(5): 565-573.
    [153] Waterston K, Bejan D, Bunce N J. Electrochemical oxidation of sulfide ion at a boron-doped diamond anode. Journal of Applied Electrochemistry. 2007,37(3): 367-373.
    [154] Jeong J, Kim J Y, Yoon J. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environmental Science and Technology. 2006, 40(19): 6117-6122.
    [155] Furuta T, Tanaka H, Nishiki Y et al. Legionella inactivation with diamond electrodes. Diamond and Related Materials. 2004, 13(11-12): 2016-2019.
    [156]Koizumi S,Watanabe K,Hasegawa M et al.Ultraviolet emission from a diamond pn junction.Science.2001,292(5523):1899-1901.
    [157]Koizumi S,Watanabe K,Hasegawa M et al.Formation of diamond p-n junction and its optical emission characteristics.Diamond and Related Materials.2002,11(3-6):307-311.
    [158]Wang C X,Yang G W,Zhang T C et al.High-quality heterojunction between p-type diamond single-crystal film and n-type cubic boron nitride bulk single crystal.Applied Physics Letters.2003,83(23):4854-4856.
    [159]Wang C X,Yang G W,Gao C X et al.Highly oriented growth of n-type ZnO films on p-type single crystalline diamond films and fabrication of high-quality transparent ZnO/diamond heterojunction.Carbon.2004,42(2):317-321.
    [160]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [161]方扬.开管催化消解法测定废水中COD的可行性探讨.安徽化工.2000,10(3):43-44.
    [162]王敏.COD开管消解测定法的试验研究.安徽建筑工业学院学报(自然科学版).2007,15(1):79-83.
    [163]强洪,隋北平,朱若华.密封消解法测定COD的研究.分析实验室.2006,25(2):77-79.
    [164]何坤志.密封催化消解法测定COD与国家标准方法的比对实验.中山大学学报论丛.2002,22(5):222-223.
    [165]Dharmadhikari D M,Vanerkar A P,Barhate N M.Chemical oxygen demand using closed microwave digestion system.Environmental Science and Technology.2005,39(16):6198-6201.
    [166]Cuesta A,Todoli J L,Mora J et al.Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion,chromium(Ⅵ)organic solvent extraction and flame atomic absorption spectrometry.Analytica Chimica Acta.1998,372(3):399-409.
    [167]Canals A,Hernandez M R.Ultrasound-assisted method for determination of chemical oxygen demand.Analytical and Bioanalyical Chemistry.2002,374(6):1132-1140.
    [168]Domini C E,Hidalgo M,Marken F et al.Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand:Closed microwaves,open microwaves and ultrasound irradiation.Analytica Chimica Acta.2006,561(1-2):210-217.
    [169]Ai S,Li J,Yang Yet al.Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO_2-K_2Cr_2O_7 system.Analytica Chimica Acta.2004,509(2):237-241.
    [170]Zhu L,Chen Y,Wu Y et al.A surface-fluorinated-TiO_2-KMnO_4 photocatatytic system for determination of chemical oxygen demand.Analytica Chimica Acta.2006,571(2):242-247.
    [171]Chai Y,Ding H,Zhang Z et al.Study on photocatalytic oxidation for determination of the low chemical oxygen demand using a nano-TiO_2-Ce(SO_4)_2 coexisted system.Talanta.2006,68(3):610-615.
    [172]Li J,Li L,Zheng L et al.Determination of chemical oxygen demand values by a photocatalytic oxidation method using nano-TiO_2 film on quartz.Talanta.2006,68(3):765-770.
    [173]王娟,杨琴,李保新等.分光光度法测定化学需氧量的研究进展.陕西师范大学学报(自然科学版).2005,33(6):66-68.
    [174]杨志红.化学需氧量测定中分光光度法与滴定法的比较.广州环境科学.2006,21(1):26-28.
    [175]周娜,罗彬,廖激等.紫外吸收光谱法直接测定化学需氧量的研究进展.四川环境.2006,25(1):84-87.
    [176]袁立水.污水紫外吸光度与COD的关系.上海环境科学.2000,19(12):579-581.
    [177]杨泽玉,胡涌刚.化学发光-化学需氧量测定新方法.分析化学.2003,31(12):1430-1432.
    [178]Jin B,He Y,Shen J et al.Measurement of chemical oxygen demand(COD)in natural water samples by flow injection ozonation chemiluminescence(FI-CL)technique.Journal of Environmental Monitoring.2004,6(8):673-678.
    [179]萨仁图雅.库仑法快速测定工业污水化学耗氧量.内蒙古石油化工.2003,29(3):159-160.
    [180]何德文,张子冲.库仑滴定法测定化学需氧量的可靠性研究.干旱环境监测.1999,13(4):200-201.
    [181]袁洪志.COD的极谱法研究.环境科学与技术.1994,6(2):26-28.
    [182]Dan D,Dou F,Xiu D et al.Chemical oxygen demand determination in environmental waters by mixed-acid digestion and single sweep polarography.Analytica Chimica Acta.2000,420(1):39-44.
    [183]Lee K H,Ishikawa T,Mcniven S J et al.Evaluation of chemical oxygen demand(COD)based on coulometric determination determination of electrochemical oxygen demand(EOD)using a surface oxidized copper electrode.Analytica Chimica Acta.1999,398(2-3):161-171.
    [184]Lee K H,Ishikawa T,Mcniven S et al.Chemical oxygen demand sensor employing a thin layer electrochemical cell.Analytica Chimica Acta.1999,386(3):211-220.
    [185]Zhao H,Jiang D,Zhang S et al.Development of a direct photoelectrochemical method for determination of chemical oxygen demand.Analytical Chemistry.2004,76(1):155-160.
    [186]Zhang S,Zhao J,Jiang D et al.Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell.Analytica Chimica Acta.2004,514(1):89-97.
    [187]Rossler-Fromme R,Scholz F.A solid composite electrode for the determination of the electrochemical oxygen demand of aqueous samples.Fresenius' Journal of Analytical Chemistry.1996,356(3-4):197-201.
    [188]Li J,Li L,Zhang Let al.Ru_2O_3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand.Measurement Science and Technology.2006,17(7):1995-2000.
    [189]Ai S,Gao M,Yang Y et al.Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode.Electroanalysis.2004,16(5):404-409.
    [190]Li J,Zheng L,Li L et al.Ti/TiO_2 electrode preparation using laser anneal and its application to determination of chemical oxygen demand.Electroanalysis.2006,18(10):1014-1018.
    [191]方艳菊,张中海,袁圆等.TiO_2纳米管的制备及其在化学需氧量测定中的应用研究.现代科学仪器.2006,12(4):41-44.
    [192]Li J,Zheng L,Li L et al.Photoelectro-synergistic catalysis at Ti/TiO_2/PbO_2 electrode and its application on determination of chemical oxygen demand.Electroanalysis.2006,18(22):2251-2256.
    [193]Zenki M,Fujiwara S,Yokoyama T.Repetitive determination of chemical oxygen demand by cyclic flow injection analysis using on-line regeneration of consumed permanganate.Analytical Science.2006,22(1):77-80.
    [194]陈晓青,张磊.注射停流法快速测定环境水样中COD.理化检验-化学分册.2001,37(7):316-317.
    [195]Kim Y C,Sasaki S,Yano K et al.Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis.Analytical Chimica Acta.2001,432(1):59-66.
    [196]Li J,Li L,Zheng L.Amperometric determination of chemical oxygen demand with flow injection analysis using F-PbO_2 modified electrode.Analytical Chimica Acta.2005,548(1-2):199-204.
    [197]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode.Nature.1972,238(5358):37-38.
    [198]Cary J H,Lawrence J,Tosine H M.Photodechlorination of PCBs in the presence of titanium dioxide in aqueous.Bulletin of Environmental Contamination and Toxicology.1976,16(6):697-701.
    [199]Hoffmann M R,Martin S T,Choi W et al.Environmental applications of semiconductor photocatalysis.Chemical Reviews.1995,95(1):69-96.
    [200]付贤智,李旦振.提高多相光催化氧化过程效率的新途径.福州大学学报(自然科学版).2001,29(6):104-114.
    [201]El-Maazawi M,Finken A N,Nair A B et al.Adsorption and photocatalytic oxidation of acetone on TiO_2:An in situ transmission FT-IR study.Journal of Catalysis.2000,191(1):138-146.
    [202]Raupp G B,Junio C T.Photocatalytic oxidation of oxygenated air toxics.Applied Surface Science.1993,72(4):321-327.
    [203]沈伟韧,赵文宽,贺飞等.TiO_2光催化反应及其在废水处理中的应用.化学进展.1998,10(4):349-361.
    [204]Bhatkhande D S,Pangarkar V G,Beenackers A A.Photocatalytic degradation for environmental applications-a review.Journal of Chemical Technology and Biotechnology.2002,77(1):102-116.
    [205]Ghazi I E,Elamrani M K,Mansour M,Photocatalytic oxidation of the textile dye basic red 18with irradiated titanium Dioxide.Toxicological and Environmental Chemistry.2003,85(1-3):1-6.
    [206]Choi E,Cho I,Park J.The effect of operational parameters on the photocatalytic degradation of pesticide.Journal of Environmental Science and Health B.2005,39(1):53-64.
    [207]陈十夫,赵梦月,陶跃武.光催化降解有机磷农药废水的可行性.环境工程.1996,14(3):10-13.
    [208]朱亦仁,解恒参,张振超.TiO_2光催化氧化法处理草浆纸厂废水的研究.安全与环境学报.2005,5(1):20-22.
    [209]Pelizzetti E,Minero C,Maurino V et al.Photocatalytic degradation of nonytphenol ethoxylated surfactants.Environmental Science and Technology.1989,23(11):1380-1385.
    [210]Frank S N,Bard A J.Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder.Journal of the American Chemical Society.1977,99(1):303-304.
    [211]Mohapatra P,Samantaray S K,Parida K.Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania.Journal of Photochemistry and photobiology A.2005,170(2):189-194.
    [212]Chen S,Cao G.Study on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos.Chemosphere.2005,60(9):1308-1315.
    [213]李田,陈正夫.城市自来水光催化氧化深度净化效果.环境科学学报.1998,18(2):167-171.
    [214]任英莲.绿色环保的纳米二氧化钛水处理技术应用.机械管理开发.2006,13(1):66-67.
    [215]虞丽生.半导体异质结物理(第二版).北京:科学出版社,2006.
    [216]Chen Y,Crittenden J,Hackney S et al.Preparation of a novel TiO_2-based p-n junction nanotube photocatalyst.Environmental Science and Technology.2005,39(5):1201-1208.
    [217]Serpone N,Maruthamuthu P,Pichat P et al.Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors.Journal of Photochemistry and Photobiology A.1995,85(3):247-255.
    [218]
    林熙,李旦振,吴清萍等.异质结型光催化膜的活性及其机理研究.高等学校化学学报.2005,26(4):727-730.
    [219]Bessekhouad Y,Robert D,Weber J V.Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant.Journal of Photochemistry and Photobiology A.2004,163(3):569-580.
    [220]Bedja I,Kamat P V.Capped semiconductor colloids.Synthesis and photoelectrochemical behavior of TiO_2 capped SnO_2 nanocrystallites.The Journal of Physical Chemistry.1995,99(22):9182-9188.
    [221]Higashimoto S,Sakiyama M,Azuma M.Photoelectrochemical properties of hybrid WO_3/TiO_2electrode.Effect of structures of WO_3 on charge separation behavior.The Solid Films.2006,503(1-2):201-206.
    [222]Song K Y,Park M K,Kwon Y T et al.Preparation of transparent particulate MoO_3/TiO_2 and WO_3/Ti_O2 films and their photocatalytic properties.Chemistry of Materials.2001,13(7):2349-2355.
    [223]Marci G,Augugliaro V,Lopez-Munoz M J et al.Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO_2 systems.2.Surface,bulk characterization,and 4-Nitrophenol photodegradation in liquid-solid regime.Journal of Physical Chemistry B.2001,105(5):1033-1040.
    [224]Lee M K,Shih T H.High photocatalytic activity of heterojunction of zinc selenide grown on nanoscaled titanium oxide.Journal of The Electrochemical Society.2008,155(4):K63-K65.
    [225]Bessekhouad Y,Robert D,Weber J V.Photocatatytic activity of Cu_2O/TiO_2,Bi_2O_3/TiO_2 and ZnMn_2O_4/TiO_3 heterojunctions.Catalysis Today.2005,101(3-4):315-321.
    [226]Yu H,Quan X,Chen S et al.TiO_2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability.Journal of Physical Chemistry C.2007,111(35):12987-12991.
    [227]Siripala W,Ivanovskaya A,Jaramillo T F et al.A Cu_2O/TiO_2 heterojunction thin film cathode for photoelectrocatalysis.Solar Energy Materials and Solar Cells.2003,77(3):229-237.
    [228]Knight D S,White W B.Characterization of diamond films by Raman spectroscopy.Journal of Materials Research.1989,4(2):385-393.
    [229]彭仕魁.金刚石膜成分、微结构和力学性能的表征.硬质合金.2001,18(4):221-224.
    [230]Fisher V,Gandini D,Laufer S et al.Prepareation and characterization of Ti/diamond electrode.Electrochimica Acta.1998,44(2-3):521-524.
    [231]Teofilo R F,Ceragioli H J,Peterlevitz A C et al.Improvement of the electrochemical properties of "as-grown" boron-doped polycrystalline diamond electrodes deposited on tungsten wires using ethanol.Journal of Solid State Electrochemistry.2007,11(10):1149-1157.
    [232]Granger M C,Witek M,Xu J et al.Standard electrochemical behavior of high-quality,boron-doped polycrystalline diamond thin-film electrodes.Analytical Chemistry.2000,72(16):3793-3804.
    [233]Chen X,Chen G,Yue P L.Anodic oxidation of dyes at novel Ti/B-diamond electrodes.Chemical Engineering Science.2003,58(3-6):995-1001.
    [234]Beck F,Krohn H,Kaiser W et al.Boron doped diamond/titanium composite electrodes for electrochemical gas generation from aqueous electrolytes.Electrochimica Acta.1998,44(2-3):525-532.
    [235]傅麟堂.玻璃态碳的结构与性质.人工晶体学报.1980,9(2):22-27.
    [236]Zhi J,Wang H,Nakashima T et al.Electrochemical incineration of organic pollutants on boron-doped diamond electrode.Evidence for direct electrochemical oxidation pathway.Journal of Physical Chemistry B.2003,107(48):13389-13395.
    [237]Iniesta J,Michaud P A,Panizza M et al.Electrochemical oxidation of phenol at boron-doped diamond electrode.Electrochimica Acta.2001,46(23):3573-3578.
    [238]Haag W R,Yao C C D.Rate constants for reaction of hydroxyl radicals with several drinking water contaminants.Environmental Science and Technology.1992,26(5):1005-1013.
    [239]Comninellis C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment.Electrochimica Acta.1994,39(11-12):1857-1862.
    [240]Simond O,Schaller V,Comninellis C.Theoretical model for the anodic oxidation of organics on metal oxide electrodes.Electrochimica Acta.1997,42(13-14):2009-2012.
    [241]Canzares P,Garcia-Gomez J,Saez C et al.Electrochemical oxidation Of several chlorophenols on diamond electrodes:Part Ⅱ.Influence of waste characteristics and operating conditions.Journal of Applied Electrochemistry.2004,34(1):87-94
    [242]Vallejo-Pecharroman B,Izquierdo-Reina A,Castro M D L.Flow injection determination of chemical oxygen demand in leaching liquid.Analyst.1999,124(8):1261-1264.
    [243]Kim Y,Lee K,Sasaki S et al.Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode.Analytical Chemistry.2000,72(14):3379-3382.
    [244] Zhang S, Jiang D, Zhao H. Development of chemical oxygen demand on-line monitoring system based on a photoelectrochemical degradation principle. Environmental Science and Technology. 2006, 40(7): 2363-2368.
    [245] Li J, Zheng L, Li L et al. Determination of chemical oxygen demand using flow injection with Ti/TiO_2 electrode prepared by laser anneal. Measurement Science and Technology. 2007, 18(3): 945-951.
    [246] Quan X, Yang S, Ruan X et al. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science and Technology. 2005, 39(10): 3770-3775.
    [247] Xie B, Zhang H, Cai P, Qiu R et al. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO_4 under visible light irradiation. Chemosphere. 2006, 63(6): 956-963,
    [248] Lee M K, Shih T H. High photocatalytic activity of nanoscaled heterojunction of ZnS grown on fluorine and nitrogen Co-doped TiO_2. Journal of The Electrochemical Society. 2007, 154(4): P49-P51.
    [249] Marken F, Bhambra A S, Kim D et al. Electrochemical reactivity of TiO_2 nanoparticles adsorbed onto boron-doped diamond surfaces. Electrochemistry Communications. 2004, 6(11): 1153-1158.
    [250] Manivannan A, Spataru N, Arihara K et al. Electrochemical deposition of titanium oxide on boron-doped diamond electrodes. Electrochemical and Solid-State Letters. 2005, 8(10): C138-C140.
    [251] Yan X, Tay B K, Yang Y. Dispersing and functionalizing multiwalled carbon nanotubes in TiO_2 Sol. Journal of Physical Chemistry B. 2006, 110(51): 25844-25849.
    [252] Schroder D K. Contactless surface charge semiconductor characterization. Materials Science and Engineering B. 2002, 91-92(1): 196-210.
    [253] Liu Z, Sun D D, Guo P et al. An efficient bicomponent TiO_2/SnO_2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Letters. 2007, 7(4): 1081-1085.
    [254] Xu Z, Shang J, Liu C et al. The preparation and characterization of TiO_2 ultrafine particles. Materials Science and Engineering B. 1999, 63(3): 211 -214.
    [255] Ku Y, Jung I. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 2001, 35(1): 135-142.
    [256] Papadama T, Xekoukoulotakis N P, Poulios I et al. Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO_2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry. 2007, 186(2-3): 308-315.
    [257] song S, Xu L, He Z et al. Mechanism of the photocatalytic degradation of C.I. reactive black 5 at pH 12.0 using SrTiO_3/CeO_2 as the Catalyst. Environmental Science and Technology. 2007, 41(16): 5846-5853.
    [258] Khalil L B, Mourad W E, Rophael M W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Applied Catalysis B: Environmental. 1998, 17(3): 267-273.
    [259] Domenech J, Munoz J. Photocatalytical reduction of Cr(VI) over ZnO powder. Electrochimica Acta. 1987,32(9): 1383-1386.
    [260] Chenthamarakshan C R, Rajeshwar Krishnan. Heterogeneous photocatalytic reduction of Gr(VI) in UV-irradiated titania suspensions: Effect of protons,amfnonium ions, and other interfacial aspects. Langmuir. 2000, 16(6): 2715-2721.
    [261] Pleskov Y V, Varnin V P, Teremetskaya I G et al. Synthetic semiconductor diamond electrodes: a photoelectrochemical study under laser flash illumination. Journal of The Electrochemical Society. 1997, 144(1): 175-178.
    [262] Konenkamp R. Carrier transport in nanoporous TiO_2 films. Physical Review B. 2000, 61(16): 11057-11064.
    [263] Katnani, A. D.; Margaritondo, G. Microscopic study of semiconductor heterojuntions: Photoemission measurement of the valance-band discontinuity and of the potential barriers. Physical Review B. 1983, 28(4): 1944-1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700