利用优化后的杆状病毒转导方法构建人乳头瘤病毒假病毒体外感染模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HPV感染是常见的性传播疾病,与宫颈癌及泌尿生殖道相关癌症的发生关系密切,严重危害人类健康。开发安全有效的HPV预防疫苗有望消灭或显著降低HPV感染造成的危害,具有十分重大的社会意义。我实验室正在研究开发HPV基因工程疫苗,迫切需要可简便有效对候选疫苗的保护性进行评估的方法。目前的HPV体外感染模型在实验周期、稳定性、滴度等方面存在各自的缺点,而新型实验技术平台的发展为构建更有效的感染模型提供了有利条件。杆状病毒近几年来被发现可作为一种对哺乳动物细胞的新型基因转移载体,相比其它基因转移方法具有许多独特的优势。本论文即探讨了应用重组杆状病毒在哺乳动物细胞中构建HPV假病毒的可行性。为了更有效的获得HPV假病毒本论文对重组杆状病毒对哺乳动物细胞的基因转移方法进行了研究,建立了更为简便、快捷且高效的基因转移方法。该方法被成功用于建立了有效的HPV16假病毒体外感染模型,以及鉴定杆状病毒滴度的新方法。
     本研究利用Bac-to-Bac系统、增强型绿色荧光蛋白EGFP和CMV-T7联合启动子构建对哺乳动物细胞的杆状病毒基因转移载体,首先探讨了直接使用重组杆状病毒感染后的昆虫细胞培养上清对哺乳动物细胞进行基因转移的可行性。将重组杆状病毒感染4d后的Sf-9细胞培养上清(≥1.0×10~7PFU/mL)直接与HepG2细胞37℃作用12h,可获得高于95%的基因转移效率,证明了重组杆状病毒感染后的昆虫细胞培养上清可直接用于高效转导哺乳动物细胞。通过对转导时间和稀释比例的优化,显示用哺乳动物细胞培养基等体积稀释后的带毒上清可兼具高效和低损伤的特点。应用上述结果本研究首次提出并初步建立了重组杆状病毒上清转导法。该方法与脂质体、重组逆转录病毒、重组痘苗病毒进行的对比显示其具有高效、低毒的优点。应用该方法对27种不同类型及组织来源的哺乳动物细胞进行基因转移实验,包括16种人类组织细胞、9种啮齿类组织细胞和2种猴组织细胞,结果显示该方法具有较好的适用性,可有效转导大多数哺乳动物细胞。并发现重组杆状病毒对灵长类来源细胞的基因转移效率显著高于对啮齿类来源细胞,对贴壁细胞的基因转移效率显著高于对悬浮细胞。
     结合最新的研究进展,本研究进一步对病毒上清转导法的实验条件进行摸索优化,并尝试采用新方法提高转导效率。对使用不同的稀释缓冲液和转导温度的研究结果显示,以PBS作为稀释缓冲液在27℃下进行转导可显著提高转导效率。在PBS环境中对比不同转导时间和稀释比例以及不同血清含量对转导效果的影响结果显示,转导效率与转导时间和病毒用量均呈正相关,并首次发现PBS中存在血清成分不利于提高转导效率。应用不同浓度丁酸钠增强表达的实验结果显示,0.5~1mM的丁酸钠较为合适于在CV1细胞中提高杆状病毒载体的表达效率,更高浓度的丁酸钠对细胞有明显毒性。本研究首次在杆状病毒转导哺乳动物细胞中使用离心方法,结果显示通过600g水平离心1h即可获得高水平的转导和表达效率,优于在PBS环境中27℃孵育8h的效果,并进一步对离心时间、离心后孵育时间、缓冲液进行了摸索优化。
     应用上述结果本研究首次提出并建立了重组杆状病毒上清离心转导法。病毒上清以PBS为缓冲环境600g水平离心1h进行转导的方法可在获得高转导效率的同时显著缩短实验时间,提高了实验效率。该方法具有简便、快捷和高效的特点,并可作为一种常规操作方法用于日常实验。本研究同时探讨了辅助感染可表达T7 RNA聚合酶的重组痘苗病毒VV-T7RP对表达的影响,显示辅助感染VV-T7RP可显著增强带有CMV-T7联合启动子的重组杆状病毒的表达效果,表明将重组痘苗病毒VV-T7RP与重组杆状病毒结合可建立一种高效瞬时表达方法。
     本研究首次设计构建了可同时在哺乳动物细胞中表达HPV16L1和L2蛋白的重组杆状病毒,并采用本研究建立的重组杆状病毒上清离心转导法,探讨了通过重组杆状病毒转导方法在哺乳动物细胞中表达组装HPV16假病毒的可行性。细胞感染实验和透射电镜观察结果证实,通过该方法成功获得了具有感染能力的HPV16假病毒。应用已被证实的4株HPV16单抗,证明该假病毒感染模型可应用于进行中和实验。应用该模型,从本实验室构建的18株HPV16单抗中筛选获得2株中和单抗3D10和PD1,同时证明本实验室构建的候选基因工程疫苗HPV16 VLP可激发Balb/c小鼠产生具有中和能力的保护性体液免疫。该模型的成功建立为HPV16中和抗体的筛选和HPV16预防疫苗的研究提供了必要的条件和有力的支持,也为进一步构建其它型别的HPV假病毒体外感染模型提供了基础。本研究还首次尝试了使用HPV16假病毒对昆虫细胞的感染实验,显示HPV16假病毒可能具有将核酸导入昆虫细胞的能力。
     大量的关于重组杆状病毒表达系统的应用研究实践显示,准确测定病毒滴度对于保持蛋白生产和研究实验的稳定性是十分重要的。本研究综合了应用重组杆状病毒上清离心转导法可高效转导哺乳动物细胞的特点以及辅助感染VV-T7RP可显著增强CMV-T7联合启动子表达水平的特点,提出了新型的可在哺乳动物细胞中测定重组杆状病毒滴度的方法。本研究设计构建了同时具有在昆虫细胞中和哺乳动物细胞中高效表达报告基因的重组杆状病毒。应用该病毒首先在昆虫细胞中准确测定滴度,再通过梯度稀释后离心转导CV1细胞并辅助感染VV-T7RP,在12~24h后直接观察细胞发光情况,以TCID_(50)方法计算病毒滴度。结果显示,以CMV-T7联合启动子引导的EGFP报告基因表达元件在VV-T7RP辅助下具有最高的检测灵敏度,其测得的滴度与昆虫细胞中测得的滴度相当,优于单独使用CMV启动子或T7启动子。本研究首次提出了可将CMV-T7-EGFP表达元件作为一种优良的病毒滴度鉴定元件克隆于杆状病毒载体上,其在昆虫细胞中不会进行有效表达和干扰重组蛋白和病毒的生产,同时又可在哺乳动物细胞中进行高灵敏度和快速、直观的检测,不需要使用流式细胞仪进行分析。该方法为重组杆状病毒滴度的测定提供了一种选择。
Human papillomavirus can cause cervical cancer and other related cancers. It is very important to research and develop HPV vaccines. The recombinant HPV vaccine is underdeveloping in our lab. And the simple and efficient method for estimation of the protective ability of the candidate vaccine was needed. However currently available in vitro infection models are technically demanding or relatively low-yield. Recently reports have described that recombinant baculovirus could serve as a new gene transfer vehicle for mammalian cells with many unique advantages compared with other gene transfer methods. In this study, the feasibility of constructing HPV pseudovirion in mammalian cells by recombinant baculoviruses was investigated. The transduction protocol of delivering exogenous genes into mammalian cells by recombinant baculoviruses was investigated and optimized. And a new convenient way for rapid and efficient expression of target genes in mammalian cells was founded. With help of the new transduction protocol, the HPV16 pseudovirion and a rapid method for estimation of baculovirus titer were obtained in this research.
     Based on the Bac-to-Bac system recombinant baculoviruses were constructed, which contain the enhanced green fluorescent protein (EGFP) gene driven by CMV-T7 promoter, to investigate the feasibility of delivering exogenous genes into mammalian cells with the culture supernatant of insect cells infected by recombinant baculoviruses. Directly incubating HepG2 cells with the culture supernatant of infected Sf-9 cells (≥1.0×10~7pfu/ml) for 12 hours in 37℃could achieve hyper 95% efficiency of gene transfer. The optimization of the incubation times and dilution ratios showed that the culture supernatant of infected insect cells l:l(vol:vol) diluted by the mammalian cell complete culture medium could achieve the high efficiency of gene transfer and expression together with the least impairment to cell viability.
     We first developed a transduction protocol based on the recombinant baculovirus culture supernatant transduction. Comparing with lipofectAMINE, recombinant retrovirus and vaccinia virus expression systems, the baculovirus vector could achieve higher transduction rate with no obvious cytopathic effect. Twenty-seven different mammalian cell lines were used to investigate the feasibility of delivering reporter gene into various mammalian cells with the culture supernatant transduction protocol, including sixteen human cell lines, nine rodent cell lines and two monkey cell lines. Results showed that most mammalian cell lines could be transduced with recombinant baculoviruses by this way. And we found that the gene transfer efficiencies in primate cell lines by baculovirus vector were markedly higher than those from rodent, and the efficiencies in adherent culture cells were markedly higher than suspended culture cells.
     Refer to the recent research reports, the protocol of culture supernatant transduction was further modified and optimized, and new ways were attempted to enhance gene delivery and expression. Different surrounding solutions and incubation temperatures were investigated, and the result showed that transduction occurred at 27℃using PBS as the surrounding solution could achieve the highest efficiency. Different incubation times and dilution ratios and different concentrations of FBS in PBS solutions were investigated, and results showed that transduction efficiencies were consistent to the virus dosages and incubation times. And we first found that the presence of FBS in PBS surrounding solution could influence transduction efficiency. Different concentrations of sodium butyrate were used in the culture medium to enhance gene expression. Results showed that 0.5~1 mM sodium butyrate was comparatively fit for the CV1 cells. In this study, centrifugal method was first used in the transduction of the mammalian cells by baculoviruses. And we found that centrifugal transduction at 600g for 1h could achieve more higher gene delivery and expression efficiencies than transduction in PBS at 27℃for 8h. And different centrifugal times, incubation times post centrifugal transduction and surrounding solutions were further investigated and optimized.
     In this study, we first developed a new and efficient transduction protocol based on the recombinant baculovirus culture supernatant transduction and centrifugal transduction. Mammalian cells transduced with the virus supernatant at 600g for 1h in PBS surrounding solution could achieve higher transduction efficiency with more fewer time. The centrifugal transduction protocol have notable advantages: simple, rapid and efficient, and could be easily used in daily common experiments. The effect of co-infection of recombinant vaccinia virus VV-T7RP, which could efficiently express the T7 RNA polymerase, on the gene expression in cells transduced with recombinant baculovinis containing the CMV-T7 promoter was investigated, results showed that VV-T7RP coinfection could markedly enhance the gene expression level in the transduced cells. It suggested that the VV-T7RP and recombinant baculovinis vectors could combine to an high efficient transient expression protocol.
     In this study, the recombinant baculovinis BacCS16L1L2 was constructed and capable of expressing HPV16 L1 and L2 protein in mammalian cells simultaneously. Utilizing the recombinant baculovinis culture supernatant centrifugal transduction protocol developed in this study, the HPV16 pseudovirion was successfully obtained in the 293FT cells. The infection assays and electron microscopy showed that the HPV16 pseudovirion have the infectivity. Four anti-HPV16 Mab, which have been fully characterized, were used to identify the HPV16 pseudovirion. Results showed that the HPV16 pseudovirion obtained in this study could be used for neutralization assay. And this model was used for testing neutralizing antibodies. Two neutralizing antibodies, 3D10 and PD1, was selected from eighteen anti-HPV16 Mab lines obtained in our lab. Utilizing the HPV16 pseudovirion, we proved that the protect humoral response could be elicited in Balb/c mice immunized with the HPV16 VLP constructed in our lab. In this study, HPV16 pseudovirion was first tried to infect the insect cells, and eGFP expression was found in some infected insect cells.
     Numerous research and application works on the recombinant baculovinis expression system have showed that it was very important to know the exact titer of a recombinant baculovinis stock in time for the stability of experiments and protein productions. In this study, utilizing the centrifugal transduction method and VV-T7RP coinfection, a new strategy of determining the recombinant baculovinis titer in mammalian cells was developed. Recombinant baculoviruses BacDGCG and BacT7G were constructed and capable of expressing EGFP in mammalian cells and insect cells. Firstly the virus titers were determined in insect cells. Then the same virus samples were used to transduce the CV1 cells by centrifugal method, followed by coinfected with VV-T7RP. 12~24h post transduction, the numbers of EGFP-positive wells were counted by fluorescence microscopy, and the transducing titer was calculated using TCID_(50) method. Results showed that the CMV-T7-EGFP expression cassette in the baculovirus genome has the highest detection sensitivity than single CMV or T7 promoter with presence of T7 RNA polymerase and the obtained virus titer was similar to that determined in insect cells. In this study, we first suggested that the CMV-T7-EGFP expression cassette could be used as an excellent element for virus titer detection in mammalian cells, with no interfere with the protein or virus productions in insect cells. It was a new way could be chosen by researchers for the detection of recombinant baculovirus titers.
引文
[1] Bac-to-Bac baculovirus expression systems instruction manual. Invitrogen life technologies, 2002.
    [2] Stanbridge LJ, Dussupt V, Maitland NJ. Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer. J Biomed Biotechnol, 2003,2003(2):79-91.
    [3] Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol, 2004,4(1):46-54.
    [4] Kost TA, Condreay JP. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol, 2002,20(4): 173-80.
    [5] Jarvis DL. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology, 2003,310(1): 1-7.
    [6] Ghosh S, Parvez MK, Banerjee K, Sarin SK, Hasnain SE. Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther, 2002, 6(1):5-11.
    [7] Hefferon KL, Miller LK. Reconstructing the replication complex of AcMNPV. Eur J Biochem, 2002,269(24):6233-40.
    [8] Kost TA, Condreay JP, Jarvis DL. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol, 2005,23(5):567-75.
    [9] Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid. Embo J, 2002, 21(18):4754-62.
    [10] Chen M, Cheng T, Xu CY, Wu T, Ou SH, Zhang T, et al. Hydrophobicity of reactive site loop of SCCA1 affects its binding to hepatitis B virus. World J Gastroenterol, 2005, 11(19):2864-8.
    
    [11] Condreay JP, Witherspoon SM, Clay WC, Kost TA. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A, 1999,96(1): 127-32.
    
    [12] Chow LT, Broker TR. In vitro experimental systems for HPV: epithelial raft cultures for investigations of viral reproduction and pathogenesis and for genetic analyses of viral proteins and regulatory sequences. Clin Dermatol, 1997, 15(2):217-27.
    
    [13] Campo MS. Animal models of papillomavirus pathogenesis. Virus Res, 2002, 89(2):249-61.
    [14] Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol, 2002, 55(4):244-65.
    [15] zur Hausen H, Meinhof W, Scheiber W, Bornkamm GW. Attempts to detect virus-secific DNA in human tumors. I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int J Cancer, 1974, 13(5):650-6.
    [16] Schiffman MH, Bauer HM, Hoover RN, Glass AG, Cadell DM, Rush BB, et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst, 1993, 85(12):958-64.
    [17] Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 1999, 189(1):12-9.
    [18] Bosch FX, de Sanjose S. Chapter 1: Human papillomavirus and cervical cancer-burden and assessment of causality. J Natl Cancer Inst Monogr, 2003, (31):3-13.
    [19] Ferlay J, Bray F, Pisani P. GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide. IARC CancerBase No 5 Version 20 Lyon: IARC Press, 2004.
    
    [20] 万磊,万建平,张燕玲,汪灿花,李隆玉. 子宫颈癌年轻化趋势的临床分析. 中国肿瘤临床, 2004,(10):547-49.
    [21] de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology, 2004, 324(1): 17-27.
    [22] zur Hausen H. Papillomavirus infections-a major cause of human cancers. Biochim Biophys Acta, 1996,1288(2):F55-78.
    [23] Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med, 2003, 348(6):518-27.
    [24] Hagensee ME. Infection with Human Papillomavirus: Update on Epidemiology, Diagnosis, and Treatment. Curr Infect Dis Rep, 2000,2(1): 18-24.
    [25] Harro CD, Pang YY, Roden RB, Hildesheim A, Wang Z, Reynolds MJ, et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst, 2001, 93(4):284-92.
    [26] Pastrana DV, Vass WC, Lowy DR, Schiller JT. NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16. Virology, 2001,279(1):361-9.
    [27] Schiller JT, Lowy DR. Papillomavirus-like particle based vaccines: cervical cancer and beyond. Expert Opin Biol Ther, 2001,1(4):571-81.
    [28] Zhang LF, Zhou J, Chen S, Cai LL, Bao QY, Zheng FY, et al. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine, 2000,18(11-12): 1051-8.
    [29] Lee D, Sohn H, Kalpana GV, Choe J. Interaction of El and hSNF5 proteins stimulates replication of human papillomavirus DNA. Nature, 1999, 399(6735):487-91.
    [30] Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K. The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem, 2000,275(1):87-94.
    [31] Raj K, Berguerand S, Southern S, Doorbar J, Beard P. E1 empty set E4 protein of human papillomavirus type 16 associates with mitochondria. J Virol, 2004, 78(13):7199-207.
    [32] Zhang B, Spandau DF, Roman A. E5 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UV B-irradiation-induced apoptosis. J Virol, 2002, 76(1):220-31.
    [33] McMurray HR, McCance DJ. Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J Virol, 2004, 78(11):5698-706.
    [34] McCaffrey J, Yamasaki L, Dyson NJ, Harlow E, Griep AE. Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol Cell Biol, 1999,19(9):6458-68.
    [35] Volpers C, Unckell F, Schirmacher P, Streeck RE, Sapp M. Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. J Virol, 1995,69(6):3258-64.
    [36] Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol, 1997, 71(3):2449-56.
    [37] McMillan NA, Payne E, Frazer IH, Evander M. Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology, 1999,261(2):271-9.
    [38] Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, et al. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem, 1999,274(9):5810-22.
    [39] Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P. Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett, 2001,204(1):183-8.
    [40] Muller M, Gissmann L, Cristiano RJ, Sun XY, Frazer IH, Jenson AB, et al. Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol, 1995,69(2):948-54.
    [41] Hegde RS. The papillomavirus E2 proteins: structure, function, and biology. Annu Rev Biophys Biomol Struct, 2002, 31:343-60.
    [42] Kim KH, Kim YS. Role of human papillomavirus and p53 tumor suppressor gene in cervical carcinogenesis. Yonsei Med J, 1995, 36(5):412-25.
    [43] McMurray HR, McCance DJ. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol, 2003, 77(18):9852-61.
    [44] Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol, 1999, 80 (Pt 6): 1513-7.
    [45] Giarre M, Caldeira S, Malanchi I, Ciccolini F, Leao MJ, Tommasino M. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J Virol, 2001, 75(10):4705-12.
    [46] Dong WL, Caldeira S, Sehr P, Pawlita M, Tommasino M. Determination of the binding affinity of different human papillomavirus E7 proteins for the tumour suppressor pRb by a plate-binding assay. J Virol Methods, 2001, 98(1):91-8.
    [47] de Jong A, O'Neill T, Khan AY, Kwappenberg KM, Chisholm SE, Whittle NR, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteersthrough vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine, 2002, 20(29-30):3456-64.
    [48] Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, et al. Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res, 2003, 63(18):6032-41.
    [49] Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA, et al. Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol, 2003,188(4):916-26.
    [50] Peng S, Frazer IH, Fernando GJ, Zhou J. Papillomavirus virus-like particles can deliver defined CTL epitopes to the MHC class I pathway. Virology, 1998,240(1): 147-57.
    [51] Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J, 1991,60(6): 1445-56.
    [52] Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A, 1992, 89(24): 12180-4.
    [53] Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol, 1993,67(1):315-22.
    [54] Kirnbauer R, Taub J, Greenstone H, Roden R, Durst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol, 1993, 67(12):6929-36.
    [55] Kieback E, Muller M. Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein. Virology, 2005.
    [56] Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T. In vitro construction of pseudovirions of human papillomavirus type 16: incorporation of plasmid DNA into reassembled L1/L2 capsids. J Virol, 1998, 72(12):10298-300.
    [57] Li M, Beard P, Estes PA, Lyon MK, Garcea RL. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J Virol, 1998, 72(3):2160-7.
    [58] Ishii Y, Tanaka K, Kanda T. Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology, 2003, 308(1): 128-36.
    [59] Zhou J, Stenzel DJ, Sun XY, Frazer IH. Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J Gen Virol, 1993, 74 (Pt 4):763-8.
    [60] Stauffer Y, Raj K, Masternak K, Beard P. Infectious human papillomavirus type 18 pseudovirions. J Mol Biol, 1998, 283(3):529-36.
    [61] Roden RB, Greenstone HL, Kirnbauer R, Booy FP, Jessie J, Lowy DR, et al. In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. J Virol, 1996, 70(9):5875-83.
    [62] Unckell F, Streeck RE, Sapp M. Generation and neutralization of pseudovirions of human papillomavirus type 33. J Virol, 1997, 71(4):2934-9.
    [63] Touze A, Coursaget P. In vitro gene transfer using human papillomavirus-like particles. Nucleic Acids Res, 1998,26(5): 1317-23.
    [64] Day PM, Roden RB, Lowy DR, Schiller JT. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol, 1998,72(1): 142-50.
    [65] Heino P, Zhou J, Lambert PR Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology, 2000,276(2):304-14.
    [66] Buck CB, Pastrana DV, Lowy DR, Schiller JT. Efficient intracellular assembly of papillomaviral vectors. J Virol, 2004,78(2):751-7.
    [67] Zhou J, Sun XY, Louis K, Frazer IH. Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence. J Virol, 1994,68(2):619-25.
    [68] Holmgren SC, Patterson NA, Ozbun MA, Lambert PF. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol, 2005,79(7):3938-48.
    [69] Zhao KN, Hengst K, Liu WJ, Liu YH, Liu XS, McMillan NA, et al. BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions. Virology, 2000, 272(2):382-93.
    [70] Christensen ND, Reed CA, Cladel NM, Han R, Kreider JW. Immunization with viruslike particles induces long-term protection of rabbits against challenge with cottontail rabbit papillomavirus. J Virol, 1996, 70(2):960-5.
    [71] Jansen KU, Rosolowsky M, Schultz LD, Markus HZ, Cook JC, Donnelly JJ, et al. Vaccination with yeast-expressed cottontail rabbit papillomavirus (CRPV) virus-like particles protects rabbits from CRPV-induced papilloma formation. Vaccine, 1995, 13(16): 1509-14.
    [72] Stanley MA, Moore RA, Nicholls PK, Santos EB, Thomsen L, Parry N, et al. Intra-epithelial vaccination with COPV L1 DNA by particle-mediated DNA delivery protects against mucosal challenge with infectious COPV in beagle dogs. Vaccine, 2001, 19(20-22):2783-92.
    [73] Suzich JA, Ghim SJ, Palmer-Hill FJ, White WI, Tamura JK, Bell JA, et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci U S A, 1995, 92(25): 11553-7.
    [74] Rose RC, White WI, Li M, Suzich JA, Lane C, Garcea RL. Human papillomavirus type 11 recombinant L1 capsomeres induce virus-neutralizing antibodies. J Virol, 1998, 72(7):6151-4.
    [75] Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol, 2001, 307(1): 173-82.
    [76] White WI, Wilson SD, Bonnez W, Rose RC, Koenig S, Suzich JA. In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16. J Virol, 1998, 72(2):959-64.
    [77] Giroglou T, Sapp M, Lane C, Fligge C, Christensen ND, Streeck RE, et al. Immunological analyses of human papillomavirus capsids. Vaccine, 2001, 19(13-14): 1783-93.
    [78] Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T. Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J Virol, 1999, 73(7):6188-90.
    [79] Kawana K, Kawana Y, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T. Nasal immunization of mice with peptide having a cross-neutralization epitope on minor capsid protein L2 of human papillomavirus type 16 elicit systemic and mucosal antibodies. Vaccine, 2001, 19(11-12):1496-502.
    [80] Pastrana DV, Gambhira R, Buck CB, Pang YY, Thompson CD, Culp TD, et al. Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology, 2005, 337(2):365-72.
    [81] Cook JC, Joyce JG, George HA, Schultz LD, Hurni WM, Jansen KU, et al. Purification of virus-like particles of recombinant human papillomavirus type 11 major capsid protein L1 from Saccharomyces cerevisiae. Protein Expr Purif, 1999, 17(3):477-84.
    [82] Neeper MP, Hofmann KJ, Jansen KU. Expression of the major capsid protein of human papillomavirus type 11 in Saccharomyces cerevisae. Gene, 1996, 180(1-2): 1-6.
    [83] Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med, 2002, 347(21): 1645-51.
    [84] Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature, 1983,301(5900):527-30.
    [85] Kreider JW, Howett MK, Leure-Dupree AE, Zaino RJ, Weber JA. Laboratory production in vivo of infectious human papillomavirus type 11. J Virol, 1987, 61(2):590-3.
    [86] Christensen ND, Kreider JW, Cladel NM, Patrick SD, Welsh PA. Monoclonal antibody-mediated neutralization of infectious human papillomavirus type 11. J Virol, 1990,64(11):5678-81.
    [87] Christensen ND, Kreider J W. Antibody-mediated neutralization in vivo of infectious papillomaviruses. J Virol, 1990,64(7):3151-6.
    [88] Christensen ND, Koltun WA, Cladel NM, Budgeon LR, Reed CA, Kreider JW, et al. Coinfection of human foreskin fragments with multiple human papillomavirus types (HPV-11, -40, and -LVX82/MM7) produces regionally separate HPV infections within the same athymic mouse xenograft. J Virol, 1997,71(10):7337-44.
    [89] Bonnez W, DaRin C, Borkhuis C, de Mesy Jensen K, Reichman RC, Rose RC. Isolation and propagation of human papillomavirus type 16 in human xenografts implanted in the severe combined immunodeficiency mouse. J Virol, 1998, 72(6):5256-61.
    [90] Stanley MA, Browne HM, Appleby M, Minson AC. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer, 1989,43(4):672-6.
    [91] Sterling J, Stanley M, Gatward G, Minson T. Production of human papillomavirus type 16 virions in a keratinocyte cell line. J Virol, 1990,64(12):6305-7.
    [92] Braun L, Mikumo R, Mark HF, Lauchlan S. Analysis of the growth properties and physical state of the human papillomavirus type 16 genome in cell lines derived from primary cervical tumors. Am J Pathol, 1993,143(3):832-44.
    [93] Yeager MD, Aste-Amezaga M, Brown DR, Martin MM, Shah MJ, Cook JC, et al. Neutralization of human papillomavirus (HPV) pseudovirions: a novel and efficient approach to detect and characterize HPV neutralizing antibodies. Virology, 2000,278(2):570-7.
    [94] Bell E, Sher S, Hull B, Merrill C, Rosen S, Chamson A, et al. The reconstitution of living skin. J Invest Dermatol, 1983, 81(1 Suppl):2s-10s.
    [95] Asselineau D, Prunieras M. Reconstruction of 'simplified' skin: control of fabrication. Br J Dermatol, 1984, 111 Suppl 27:219-22.
    [96] Kopan R, Traska G, Fuchs E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J Cell Biol, 1987, 105(1):427-40.
    [97] Parenteau NL, Nolte CM, Bilbo P, Rosenberg M, Wilkins LM, Johnson EW, et al. Epidermis generated in vitro: practical considerations and applications. J Cell Biochem, 1991,45(3):245-51.
    [98] Wilson JL, Dollard SC, Chow LT, Broker TR. Epithelial-specific gene expression during differentiation of stratified primary human keratinocyte cultures. Cell Growth Differ, 1992, 3(8):471-83.
    [99] Meyers C, Frattini MG, Hudson JB, Laimins LA. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science, 1992, 257(5072):971 -3.
    [100] Dollard SC, Wilson JL, Demeter LM, Bonnez W, Reichman RC, Broker TR, et al. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. OFF. Genes Dev, 1992, 6(7): 1131-42.
    [101] Frattini MG, Lim HB, Laimins LA. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc Natl Acad Sci U S A, 1996, 93(7):3062-7.
    [102] Meyers C, Mayer TJ, Ozbun MA. Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. J Virol, 1997, 71(10):7381-6.
    [103] Ozbun MA. Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. J Gen Virol, 2002, 83(Pt 11):2753-63.
    [104] Genther SM, Sterling S, Duensing S, Munger K, Sattler C, Lambert PF. Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol, 2003,77(5):2832-42.
    [105] Fehrmann F, Klumpp DJ, Laimins LA. Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol, 2003, 77(5):2819-31.
    [106] Thomas JT, Hubert WG, Ruesch MN, Laimins LA. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci U S A, 1999, 96(15):8449-54.
    [107] Flores ER, Allen-Hoffmann BL, Lee D, Lambert PF. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol, 2000,74(14):6622-31.
    [108] Cristiano RJ, Smith LC, Woo SL. Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc Natl Acad Sci U S A, 1993,90(6):2122-6.
    [109] Cristiano RJ, Smith LC, Kay MA, Brinkley BR, Woo SL. Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc Natl Acad Sci U S A, 1993,90(24): 11548-52.
    [110] Rose RC, Bonnez W, Reichman RC, Garcea RL. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol, 1993, 67(4): 1936-44.
    [111] Dvoretzky I, Shober R, Chattopadhyay SK, Lowy DR. A quantitative in vitro focus assay for bovine papilloma virus. Virology, 1980, 103(2):369-75.
    [112] Zhang YL, Lewis A, Jr., Wade-Glass M, Schlegel R. Levels of bovine papillomavirus RNA and protein expression correlate with variations in the tumorigenic phenotype of hamster cells. J Virol, 1987,61(9):2924-8.
    [113] Zhao KN, Sun XY, Frazer IH, Zhou J. DNA packaging by L1 and L2 capsid proteins of bovine papillomavirus type 1. Virology, 1998,243(2):482-91.
    [114] Liu Y, Frazer IH, Liu WJ, Liu XS, McMillan N, Zhao KN. Efficiency of delivery of DNA to cells by bovine papillomavirus type-1 L1/L2 pseudovirions. Appl Microbiol Biotechnol, 2001, 56(1-2):150-6.
    [115] Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y), 1991, 9(12):1356-61.
    [116] Berglund P, Sjoberg M, Garoff H, Atkins GJ, Sheahan BJ, Liljestrom P. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (N Y), 1993, 11(8):916-20.
    [117] Heino P, Dillner J, Schwartz S. Human papillomavirus type 16 capsid proteins produced from recombinant Semliki Forest virus assemble into virus-like particles. Virology, 1995,214(2):349-59.
    [118] Pastrana DV, Buck CB, Pang YY, Thompson CD, Castle PE, FitzGerald PC, et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology, 2004, 321(2):205-16.
    [119] Collaco RF, Cao X, Trempe JP. A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene, 1999, 238(2):397-405.
    [120] Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998, 72(11):8463-71.
    [121] Fligge C, Schafer F, Selinka HC, Sapp C, Sapp M. DNA-induced structural changes in the papillomavirus capsid. J Virol, 2001, 75(16):7727-31.
    [122] Herniou EA, Olszewski JA, Cory JS, O'Reilly DR. The genome sequence and evolution of baculoviruses. Annu Rev Entomol, 2003,48:211-34.
    [123] Herniou EA, Luque T, Chen X, Vlak JM, Winstanley D, Cory JS, et al. Use of whole genome sequence data to infer baculovirus phylogeny. J Virol, 2001, 75(17):8117-26.
    [124] Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology, 1994, 202(2):586-605.
    [125] Vialard JE, Richardson CD. The 1,629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes a nucleocapsid-associated phosphoprotein. J Virol, 1993,67(10):5859-66.
    [126] Wolgamot GM, Gross CH, Russell RL, Rohrmann GF. Immunocytochemical characterization of p24, a baculovirus capsid-associated protein. J Gen Virol, 1993, 74 (Pt 1):103-7.
    [127] Thiem SM, Miller LK. Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol, 1989, 63(5):2008-18.
    [128] Wilson ME, Mainprize TH, Friesen PD, Miller LK. Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. J Virol, 1987,61(3):661-6.
    [129] Blissard GW, Rohrmann GF. Location, sequence, transcriptional mapping, and temporal expression of the gp64 envelope glycoprotein gene of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology, 1989, 170(2):537-55.
    [130] Oomens AG, Blissard GW. Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology, 1999,254(2):297-314.
    [131] Blissard GW, Wenz JR. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol, 1992,66(11):6829-35.
    [132] Monsma SA, Oomens AG, Blissard GW. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol, 1996,70(7):4607-16.
    [133] Washburn JO, Chan EY, Volkman LE, Aumiller JJ, Jarvis DL. Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens. J Virol, 2003,77(1):280-90.
    [134] Zhang JH, Washburn JO, Jarvis DL, Volkman LE. Autographa californica M nucleopolyhedrovirus early GP64 synthesis mitigates developmental resistance in orally infected noctuid hosts. J Gen Virol, 2004, 85(Pt4):833-42.
    [135] Volkman LE, Goldsmith PA. Mechanism of neutralization of budded Autographa californica nuclear polyhedrasis virus by a monoclonal antibody: inhibition of entry by adsorptive endocytosis. 1985,143:185-95.
    [136] Charlton CA, Volkman LE. Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology, 1993, 197(1):245-54.
    [137] Pearson MN, Rohrmann GF. Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein. Virology, 2004, 322(1):61-8.
    [138] Pearson MN, Groten C, Rohrmann GF. Identification of the lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J Virol, 2000,74(13):6126-31.
    [139] WF IJ, Westenberg M, Goldbach RW, Blissard GW, Vlak JM, Zuidema D. A novel baculovirus envelope fusion protein with a proprotein convertase cleavage site. Virology, 2000, 275(1):30-41.
    [140] Westenberg M, Wang H, WF IJ, Goldbach RW, Vlak JM, Zuidema D. Furin is involved in baculovirus envelope fusion protein activation. J Virol, 2002, 76(1): 178-84.
    [141] Lung O, Westenberg M, Vlak JM, Zuidema D, Blissard GW. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol, 2002, 76(11):5729-36.
    [142] Liang C, Song J, Chen X. The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. J Gen Virol, 2005, 86(Pt 6): 1629-35.
    [143] Faulkner P, Kuzio J, Williams GV, Wilson JA. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J Gen Virol, 1997, 78 (Pt 12):3091-100.
    [144] Russell RL, Rohrmann GF. A 25-kDa protein is associated with the envelopes of occluded baculovirus virions. Virology, 1993, 195(2):532-40.
    [145] Braunagel SC, Russell WK, Rosas-Acosta G, Russell DH, Summers MD. Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus.
    Proc Natl Acad Sci U S A,2003,100(17):9797-802.
    
    [146]Braunagel SC,Elton DM,Ma H,Summers MD.Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope:ODV-E56.Virology,1996,217(1):97-110.
    [147]Whitford M,Faulkner P.Nucleotide sequence and transcriptional analysis of a gene encoding gp41,a structural glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus.J Virol,1992,66(8):4763-8.
    [148]Jain M,Das RH.Nucleotide sequence and molecular characterization of the structural glycoprotein gp41 gene homologue of Spodoptera litura nucleopolyhedrosis virus(spltNPV-I).Mol Biol Rep,2004,31(4):231-9.
    [149]Whitt MA,Manning JS.A phosphorylated 34-kDa protein and a subpopulation ofpolyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body.Virology,1988,163(1):33-42.
    [150]Chang JH,Choi JY,Jin BR,Roh JY,Olszewski JA,Seo SJ,et al.An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin.J Invertebr Pathol,2003,84(1):30-7.
    [151]Inceoglu AB,Kamita SG,Hinton AC,Huang Q,Severson TF,Kang K,et al.Recombinant baculoviruses for insect control.Pest Manag Sci,2001,57(10):981-7.
    [152]胡志红,Vlak JM.具有生物安全性的杆状病毒杀虫剂基因工程技术的发展与前景.中国病毒学,1997,12(1):14-24.
    [153]王芳,顾奇伟,武家才,张传溪.HaSNPV几丁质酶基因在大肠杆菌和昆虫细胞中的表达及其产物对Bt杀虫剂的增效作用.中国生物化学与分子生物学报,2004,20:792-97.
    [154]Thiem SM.Prospects for altering host range for baculovirus bioinsecticides.Curr Opin Biotechnol,1997,8(3):317-22.
    [155]Kirkpatrick BA,Washburn JO,Volkman LE.AcMNPV pathogenesis and developmental resistance in fifth instar Heliothis virescens.J Invertebr Pathol,1998,72(1):63-72.
    [156]Haas-Stapleton EJ,Washburn JO,Volkman LE.Spodoptera frugiperda resistance to oral infection by Autographa californica multiple nucleopolyhedrovirus linked to aberrant occlusion-derived virus binding in the midgut.J Gen Virol,2005,86(Pt 5):1349-55.
    [157]Thiem SM,Du X,Quentin ME,Berner MM.Identification of baculovirus gene that promotes Autographa californica nuclear polyhedrosis virus replication in a nonpermissive insect cell line.J Virol,1996,70(4):2221-9.
    [158]Ishikawa H,Ikeda M,Alves CA,Thiem SM,Kobayashi M.Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus(NPV)is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L.dispar.J Virol,2004,78(22):12703-8.
    [159]Ikeda M,Reimbold EA,Thiem SM.Functional analysis of the baculovirus host range gene,hrf-1.Virology,2005,332(2):602-13.
    [160]Hefferon KL.Characterization ofHCF-1,a determinant of Autographa califomica multiple nucleopolyhedrovirus host specificity.Insect Mol Biol,2003,12(6):651-8.
    [161]Wilson JA,Forney SD,Ricci AM,Allen EG,Hefferon KL,Miller LK.Expression and mutational analysis ofAutographa californica nucleopolyhedrovirus HCF-1:functional requirements for cysteine residues.J Virol,2005,79(22):13900-14.
    [162]Croizier G,Croizier L,Argaud O,Poudevigne D.Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143helicase gene.Proc Natl Acad Sci U S A,1994,91(1):48-52.
    [163]Griffiths CM,Barnett AL,Ayres M D,Windass J,King LA,Possee RD.In vitro host range of Autographa californica nucleopolyhedrovirus recombinants lacking functional p35,iap1 or lap2.J Gen Virol,1999,80(Pt 4):1055-66.
    [164]Volkman LE.The 64K envelope protein of budded Autographa californica nuclear polyhedrosis virus.Curr Top Microbiol Immunol,1986,131:103-18.
    [165] Hefferon KL, Oomens AG, Monsma SA, Finnerty CM, Blissard GW. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology, 1999,258(2):455-68.
    [166] Monsma SA, Blissard GW. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. J Virol, 1995,69(4):2583-95.
    [167] Horton HM, Burand JP. Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol, 1993,67(4): 1860-8.
    [168] Yao L, Zhou W, Xu H, Zheng Y, Qi Y. The Heliothis armigera single nucleocapsid nucleopolyhedrovirus envelope protein P74 is required for infection of the host midgut. Virus Res, 2004,104(2): 111-21.
    [169] Zhou W, Yao L, Xu H, Yan F, Qi Y. The function of envelope protein P74 from Autographa californica multiple nucleopolyhedrovirus in primary infection to host. Virus Genes, 2005, 30(2): 139-50.
    [170] Kikhno I, Gutierrez S, Croizier L, Croizier G, Ferber ML. Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J Gen Virol, 2002, 83(Pt 12):3013-22.
    [171] Lu S, Ge G, Qi Y. Ha-VP39 binding to actin and the influence of F-actin on assembly of progeny virions. Arch Virol, 2004,149(11):2187-98.
    [172] Cochran MA, Faulkner P. Location of homologous DNA sequences interspersed at five regions in the baculovirus AcMNPV genome. J Virol, 1983,45:961-70.
    [173] Kool M, Voeten JT, Goldbach RW, Tramper J, Vlak JM. Identification of seven putative origins of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus DNA replication. J Gen Virol, 1993, 74 (Pt 12):2661-8.
    [174] Leisy DJ, Rohrmann GF. Characterization of the replication of plasmids containing hr sequences in baculovirus-infected Spodoptera frugiperda cells. Virology, 1993,196(2):722-30.
    [175] Habib S, Pandey S, Chatterji U, Burma S, Ahmad R, Jain A, et al. Bifunctionality of the AcMNPV homologous region sequence (hr1): enhancer and ori functions have different sequence requirements. DNA Cell Biol, 1996,15(9):737-47.
    [176] Broer R, Heldens JG, van Strien EA, Zuidema D, Vlak JM. Specificity of multiple homologous genomic regions in Spodoptera exigua nucleopolyhedrovirus DNA replication. J Gen Virol, 1998, 79 (Pt 6): 1563-72.
    [177] Wu Y, Carstens EB. Initiation of baculovirus DNA replication: early promoter regions can function as infection-dependent replicating sequences in a plasmid-based replication assay. J Virol, 1996, 70(10):6967-72.
    [178] Kool M, Goldbach RW, Vlak JM. A putative non-hr origin of DNA replication in the HindIII-K fragment of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus. J Gen Virol, 1994, 75 (Pt 12):3345-52.
    [179] Habib S, Hasnain SE. Differential activity of two non-hr origins during replication of the baculovirus Autographa californica nuclear polyhedrosis virus genome. J Virol, 2000, 74(11):5182-9.
    [180] Oppenheimer DI, Volkman LE. Evidence for rolling circle replication of Autographa californica M nucleopolyhedrovirus genomic DNA. Arch Virol, 1997, 142(10):2107-13.
    [181] Kool M, Voeten JT, Goldbach RW, Vlak JM. Functional mapping ofregions of the Autographa californica nuclear polyhedrosis viral genome required for DNA replication. Virology, 1994, 198(2):680-9.
    [182] Kool M, Ahrens CH, Goldbach RW, Rohrmann GF, Vlak JM. Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proc Natl Acad Sci U S A, 1994, 91(23):11212-6.
    [183] Vanarsdall AL, Okano K, Rohrmann GF. Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene. Virology, 2005, 331(1): 175-80.
    [184] Huh NE, Weaver RF. Categorizing some early and late transcripts directed by the Autographa californica nuclear polyhedrosis virus. J Gen Virol, 1990, 71 (Pt 9):2195-200.
    [185] Hoopes RR, Jr., Rohrmann GF. In vitro transcription of baculovirus immediate early genes: accurate mRNA initiation by nuclear extracts from both insect and human cells. Proc Natl Acad Sci USA, 1991, 88(10):4513-7.
    [186] Stewart TM, Huijskens I, Willis LG, Theilmann DA. The Autographa californica multiple nucleopolyhedrovirus ie0-ie1 gene complex is essential for wild-type virus replication, but either IE0 or IE1 can support virus growth. J Virol, 2005, 79(8):4619-29.
    [187] Prikhod'ko EA, Miller LK. Role of baculovirus IE2 and its RING finger in cell cycle arrest. J Virol, 1998,72(1):684-92.
    [188] Pathakamuri JA, Theilmann DA. The acidic activation domain of the baculovirus transactivator IE1 contains a virus-specific domain essential for DNA replication. J Virol, 2002, 76(11):5598-604.
    [189] Lu L, Rivkin H, Chejanovsky N. The immediate-early protein IEO of the Autographa californica nucleopolyhedrovirus is not essential for viral replication. J Virol, 2005, 79(15): 10077-82.
    [190] Guarino LA, Smith M. Regulation of delayed-early gene transcription by dual TATA boxes. J Virol, 1992,66(6):3733-9.
    [191] Guarino LA, Xu B, Jin J, Dong W. A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol, 1998,72(10):7985-91.
    [192] Beniya H, Funk CJ, Rohrmann GF, Weaver RF. Purification of a virus-induced RNA polymerase from Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells that accurately initiates late and very late transcription in vitro. Virology, 1996,216(1):12-9.
    [193] Van Oers MM, Flipsen JT, Reusken CB, Vlak JM. Specificity of baculovirus p10 functions. Virology, 1994,200(2):513-23.
    [194] Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983, 3(12):2156-65.
    [195] Ikonomou L, Schneider YJ, Agathos SN. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol, 2003, 62(1): 1-20.
    [196] Cha HJ, Dalai NG, Pham MQ, Vakharia VN, Rao G, Bentley WE. Insect larval expression process is optimized by generating fusions with green fluorescent protein. Biotechnol Bioeng, 1999, 65(3):316-24.
    [197] Cha HJ, Dalai NG, Pham MQ, Bentley WE. Purification of human interleukin-2 fusion protein produced in insect larvae is facilitated by fusion with green fluorescent protein and metal affinity ligand. Biotechnol Prog, 1999,15(2):283-6.
    [198] Likhoradova OA, Bachurina E, Azimova Sh S. [Biosynthesis of recombinant human hepatitis B M-HBsAg in silkworm larvae]. Mol Biol (Mosk), 2004, 38(4):717-22.
    [199] Medin JA, Hunt L, Gathy K, Evans RK, Coleman MS. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc Natl Acad Sci U S A, 1990, 87(7):2760-4.
    [200] Palhan VB, Sumathy S, Gopinathan KP. Baculovirus mediated high-level expression of luciferase in silkworm cells and larvae. Biotechniques, 1995, 19(1):97-8,100,02-4.
    [201] Nagaya H, Kanaya T, Kaki H, Tobita Y, Takahashi M, Takahashi H, et al. Establishment of a large-scale purification procedure for purified recombinant bovine interferon-tau produced by a silkworm-baculovirus gene expression system. J Vet Med Sci, 2004, 66(11): 1395-401.
    [202] Jones I, Morikawa Y. Baculovirus vectors for expression in insect cells. Curr Opin Biotechnol, 1996, 7(5):512-6.
    [203] Davies AH. Current methods for manipulating baculoviruses. Biotechnology (N Y), 1994, 12(1):47-50.
    [204] Orr-Weaver TL, Szostak JW, Rothstein RJ. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A, 1981, 78(10):6354-8.
    [205] Bollag RJ, Waldman AS, Liskay RM. Homologous recombination in mammalian cells. Annu Rev Genet, 1989,23:199-225.
    
    [206] Kitts PA, Ayres MD, Possee RD. Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Res, 1990, 18(19):5667-72.
    [207] Kitts PA, Possee RD. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques, 1993,14(5):810-7.
    [208] Kitts PA. Production of recombinant baculoviruses using linearized viral DNA. Methods Mol Biol, 1995,39:129-42.
    [209] Luckow VA, Lee SC, Barry GF, Olins PO. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol, 1993, 67(8):4566-79.
    [210] Kronfeld-Schor N, Richardson C, Silvia BA, Kunz TH, Widmaier EP. Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. Am J Physiol Regul Integr Comp Physiol, 2000,279(4):R1277-81.
    [211] Leusch MS, Lee SC, Olins PO. A novel host-vector system for direct selection of recombinant baculoviruses (bacmids) in Escherichia coli. Gene, 1995,160(2): 191-4.
    [212] Airenne KJ, Peltomaa E, Hytonen VP, Laitinen OH, Yla-Herttuala S. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res, 2003,31(17):e101.
    [213] Zhao Y, Chapman DA, Jones IM. Improving baculovirus recombination. Nucleic Acids Res, 2003, 31(2):E6-6.
    [214] Muyrers JP, Zhang Y, Testa G, Stewart AF. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res, 1999,27(6): 1555-7.
    [215] Patel G, Nasmyth K, Jones N. A new method for the isolation of recombinant baculovirus. Nucleic Acids Res, 1992,20(1):97-104.
    [216] Peakman TC, Harris RA, Gewert DR. Highly efficient generation of recombinant baculoviruses by enzymatically medicated site-specific in vitro recombination. Nucleic Acids Res, 1992, 20(3):495-500.
    [217] Godeau F, Saucier C, Kourilsky P. Replication inhibition by nucleoside analogues of a recombinant Autographa californica multicapsid nuclear polyhedrosis virus harboring the herpes thymidine kinase gene driven by the IE-1(0) promoter: a new way to select recombinant baculoviruses. Nucleic Acids Res, 1992,20(23):6239-46.
    [218] Ernst WJ, Grabherr RM, Katinger HW. Direct cloning into the Autographa californica nuclear polyhedrosis virus for generation of recombinant baculoviruses. Nucleic Acids Res, 1994, 22(14):2855-6.
    [219] Lu A, Miller LK. Generation of recombinant baculoviruses by direct cloning. Biotechniques, 1996, 21(1):63-8.
    [220] Albala JS, Franke K, McConnell IR, Pak KL, Folta PA, Rubinfeld B, et al. From genes to proteins: high-throughput expression and purification of the human proteome. J Cell Biochem, 2000, 80(2): 187-91.
    
    [221] 侯松旺,陈新文,王汉中,胡志红. 一种以PCR产物直接构建同源重组杆状病毒的方法. 中国科学C辑,2003, 33(2): 169-74.
    [222] Hink WF, Vail PV. A plaque assay for titration of alfalfa looper nuclear polyhedrosis virus in a cabbage looper TN-368 cell line. J Invertebr Pathol, 1973, 22:168-74.
    [223] Lynn DE. Improved efficiency in determining the titer of the Autographa californica baculovirus nonoccluded virus. Biotechniques, 1992, 13(2):282-5.
    [224] Sussman DJ. 24-hour assay for estimating the titer of beta-galactosidase-expressing baculovirus. Biotechniques, 1995, 18(1):50-1.
    [225] Yahata T, Andriole S, Isselbacher KJ, Shioda T. Estimation of baculovirus titer by beta-galactosidase activity assay of virus preparations. Biotechniques, 2000, 29(2):214-5.
    [226] Cha HJ, Gotoh T, Bentley WE. Simplification of titer determination for recombinant baculovirus by green fluorescent protein marker. Biotechniques, 1997,23(5):782-4, 86.
    [227] Detrait ER, Bowers WJ, Halterman MW, Giuliano RE, Bennice L, Federoff HJ, et al. Reporter gene transfer induces apoptosis in primary cortical neurons. Mol Ther, 2002, 5(6):723-30.
    [228] Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ. Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun, 1999,260(3):712-7.
    [229] Chan ZR, Lai CW, Lee HP, Chen HC, Hu YC. Determination of the baculovirus transducing titer in mammalian cells. Biotechnol Bioeng, 2005.
    [230] Kitts PA, Green G. An immunological assay for determination of baculovirus titers in 48 hours. Anal Biochem, 1999,268(2): 173-8.
    [231] Guarino LA. Monoclonal antibody-based assay for rapid determination of baculovirus titers. http://tlotamuedu/, 2005.
    [232] Kwon MS, Dojima T, Toriyama M, Park EY. Development of an antibody-based assay for determination of baculovirus titers in 10 hours. Biotechnol Prog, 2002, 18(3):647-51.
    [233] Shen CF, Meghrous J, Kamen A. Quantitation of baculovirus particles by flow cytometry. J Virol Methods, 2002,105(2):321-30.
    [234] Lo HR, Chao YC. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog, 2004,20(1):354-60.
    [235] Philipps B, Forstner M, Mayr LM. Baculovirus expression system for magnetic sorting of infected cells and enhanced titer determination. Biotechniques, 2004, 36(1):80-3.
    [236] Malde V, Hunt I. Calculation of baculovirus titer using a microfluidic-based bioanalyzer. Biotechniques, 2004, 36(6):942-4,46.
    [237] Janakiraman V, Forrest WF, Chow B, Seshagiri S. A rapid method for estimation of baculovirus titer based on viable cell size. J Virol Methods, 2005.
    [238] Aumiller JJ, Hollister JR, Jarvis DL. A transgenic insect cell line engineered to produce CMP-sialic acid and sialylated glycoproteins. Glycobiology, 2003,13(6):497-507.
    [239] Jarvis DL, Fleming JA, Kovacs GR, Summers MD, Guarino LA. Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Biotechnology (N Y), 1990, 8(10):950-5.
    [240] Ho Y, Lo HR, Lee TC, Wu CP, Chao YC. Enhancement of correct protein folding in vivo by a non-lytic baculovirus. Biochem J, 2004, 382(Pt 2):695-702.
    [241] Laprise MH, Grondin F, Dubois CM. Enhanced TGFbetal maturation in high five cells coinfected with recombinant baculovirus encoding the convertase furin/pace: improved technology for the production of recombinant proproteins in insect cells. Biotechnol Bioeng, 1998, 58(1):85-91.
    [242] Patterson RM, Selkirk JK, Merrick BA. Baculovirus and insect cell gene expression: review of baculovirus biotechnology. Environ Health Perspect, 1995, 103(7-8):756-9.
    [243] Belzhelarskaia SN. [A baculovirus expression system for insect cells]. Mol Biol (Mosk), 2002, 36(3):371-85.
    [244] Hu YC. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin, 2005, 26(4):405-16.
    [245] Casal JI. Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol Appl Biochem, 1999,29 (Pt 2):141-50.
    [246] Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, et al. Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol, 2001, 166(9):5346-55.
    [247] Roy P. Genetically engineered particulate virus-like structures and their use as vaccine delivery systems. Intervirology, 1996, 39(1-2):62-71.
    [248] Xiang J, Wunschmann S, George SL, Klinzman D, Schmidt WN, LaBrecque DR, et al. Recombinant hepatitis C virus-like particles expressed by baculovirus: utility in cell-binding and antibody detection assays. J Med Virol, 2002, 68(4):537-43.
    [249] Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther, 2002, 13(16):1935-43.
    [250] Wang CT, Stegeman-Olsen J, Zhang Y, Barklis E. Assembly of HIV GAG-B-galactosidase fusion proteins into virus particles. Virology, 1994, 200(2):524-34.
    
    [251] Luo L, Li Y, Cannon PM, Kim S, Kang CY Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. Proc Natl Acad Sci U S A, 1992, 89(21): 10527-31.
    [252] Yamshchikov GV, Ritter GD, Vey M, Compans RW. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology, 1995,214(1):50-8.
    [253] Adamson CS, Davies A, Soneoka Y, Nermut M, Mitrophanous K, Jones IM. A block in virus-like particle maturation following assembly of murine leukaemia virus in insect cells. Virology, 2003, 314(2):488-96.
    [254] Tegerstedt K, Andreasson K, Vlastos A, Hedlund KO, Dalianis T, Ramqvist T. Murine pneumotropic virus VP1 virus-like particles (VLPs) bind to several cell types independent of sialic acid residues and do not serologically cross react with murine polyomavirus VP1 VLPs. J Gen Virol, 2003, 84(Pt 12):3443-52.
    [255] Touze A, Bousarghin L, Ster C, Combita AL, Roingeard P, Coursaget P. Gene transfer using human polyomavirus BK virus-like particles expressed in insect cells. J Gen Virol, 2001, 82(Pt 12):3005-9.
    [256] Rueda P, Fominaya J, Langeveld JP, Bruschke C, Vela C, Casal JI. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine, 2000,19(7-8):726-34.
    [257] Brown CS, Van Lent JW, Vlak JM, Spaan WJ. Assembly of empty capsids by using baculovirus recombinants expressing human parvovirus B19 structural proteins. J Virol, 1991, 65(5):2702-6.
    [258] Kajigaya S, Fujii H, Field A, Anderson S, Rosenfeld S, Anderson LJ, et al. Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Proc Natl Acad Sci U S A, 1991, 88(11):4646-50.
    [259] Wu H, Rossmann MG. The canine parvovirus empty capsid structure. J Mol Biol, 1993, 233(2):231-44.
    [260] Lopez de Turiso JA, Cortes E, Martinez C, Ruiz de Ybanez R, Simarro I, Vela C, et al. Recombinant vaccine for canine parvovirus in dogs. J Virol, 1992, 66(5):2748-53.
    [261] Gilbert L, Toivola J, Lehtomaki E, Donaldson L, Kapyla P, Vuento M, et al. Assembly of fluorescent chimeric virus-like particles of canine parvovirus in insect cells. Biochem Biophys Res Commun, 2004, 313(4): 878-87.
    [262] Thomsen DR, Roof LL, Homa FL. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol, 1994,68(4):2442-57.
    [263] Tatman JD, Preston VG, Nicholson P, Elliott RM, Rixon FJ. Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol, 1994, 75 (Pt 5): 1101-13.
    [264] Urakawa T, Ferguson M, Minor PD, Cooper J, Sullivan M, Almond JW, et al. Synthesis of immunogenic, but non-infectious, poliovirus particles in insect cells by a baculovirus expression vector. J Gen Virol, 1989, 70 (Pt 6):1453-63.
    [265] Ho Y, Lin PH, Liu CY, Lee SP, Chao YC. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun, 2004, 318(4):833-8.
    [266] Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett, 2004, 576(1-2): 174-8.
    [267] Volpers C, Schirmacher P, Streeck RE, Sapp M. Assembly of the major and the minor capsid protein of human papiilomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology, 1994, 200(2):504-12.
    [268] Zheng J, Ma J, Yang XF, Liu HL, Cheng HW, Si LS, et al. Highly efficient and economical baculovirus expression system for preparing human papiilomavirus type 16 virus-like particle. Acta Biochim Biophys Sin (Shanghai), 2004, 36(8):548-52.
    [269] Zhou N, Zhang Y, Jing W, Li Z, Wu X. High expression of HBV S gene in Bombyx mori cell culture and in silkworms. Chin J Biotechnol, 1995, 11(3):149-56.
    [270] Jeong SH, Qiao M, Nascimbeni M, Hu Z, Rehermann B, Murthy K, et al. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J Virol, 2004, 78(13):6995-7003.
    [271] Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC. Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnol Lett, 2003, 25(12):919-25.
    [272] Sahara M, Parker M, Aha P, Cosco C, Gibbons E, Parsons S, et al. Assembly of double-shelled rotaviruslike particles by simultaneous expression of recombinant VP6 and VP7 proteins. J Virol, 1991,65(12):6994-7.
    [273] French TJ, Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol, 1990, 64(4): 1530-6.
    [274] Gillock ET, Rottinghaus S, Chang D, Cai X, Smiley SA, An K, et al. Polyomavirus major capsid protein VP1 is capable of packaging cellular DNA when expressed in the baculovirus system. J Virol, 1997,71 (4):2857-65.
    [275] Li TC, Yamakawa Y, Suzuki K, Tatsumi M, Razak MA, Uchida T, et al. Expression and self-assembly of empty virus-like particles of hepatitis E virus. J Virol, 1997,71(10):7207-13.
    [276] Plana-Duran J, Bastons M, Rodriguez MJ, Climent I, Cortes E, Vela C, et al. Oral immunization of rabbits with VP60 particles confers protection against rabbit hemorrhagic disease. Arch Virol, 1996, 141(8):1423-36.
    [277] Hu YC, Bentley WE, Edwards GH, Vakharia VN. Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography. Biotechnol Bioeng, 1999, 63(6):721-9.
    [278] Moreau P, Hen R, Wasylyk B, Everett R, Gaub MP, Chambon P. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res, 1981, 9(22):6047-68.
    [279] Banerji J, Rusconi S, Schaffner W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell, 1981,27(2 Pt 1):299-308.
    [280] Carson DD, Summers MD, Guarino LA. Transient expression of the Autographa californica nuclear polyhedrosis virus immediate-early gene, IE-N, is regulated by three viral elements. J Virol, 1991,65(2):945-51.
    [281] Habib S, Hasnain SE. A 38-kDa host factor interacts with functionally important motifs within the Autographa californica multinucleocapsid nuclear polyhedrosis virus homologous region (hr1) DNA sequence. J Biol Chem, 1996,271(45):28250-8.
    [282] Hasnain SE, Venkaiah B, Habib S. U. S. Patent 5,965,393.1999.
    [283] Chen Y, Yao B, Zhu Z, Yi Y, Lin X, Zhang Z, et al. A constitutive super-enhancer: homologous region 3 of Bombyx mori nucleopolyhedrovirus. Biochem Biophys Res Commun, 2004, 318(4): 1039-44.
    [284] Gray CE, Coates CJ. High-level gene expression in Aedes albopictus cells using a baculovirus Hr3 enhancer and IE1 transactivator. BMC Mol Biol, 2004, 5:8.
    [285] Farrell PJ, Lu M, Prevost J, Brown C, Behie L, Iatrou K. High-level expression of secreted glycoproteins in transformed lepidopteran insect cells using a novel expression vector. Biotechnol Bioeng, 1998, 60(6):656-63.
    
    [286] Viswanathan P, Venkaiah B, Kumar MS, Rasheedi S, Vrati S, Bashyam MD, et al. The homologous region sequence (hr1) of Autographa californica multinucleocapsid polyhedrosis virus can enhance transcription from non-baculoviral promoters in mammalian cells. J Biol Chem, 2003, 278(52):52564-71.
    
    [287] Pijlman GP, van den Born E, Martens DE, Vlak JM. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology, 2001, 283(1):132-8.
    
    [288] Pijlman GP, de Vrij J, van den End FJ, Vlak JM, Martens DE. Evaluation of baculovirus expression vectors with enhanced stability in continuous cascaded insect-cell bioreactors. Biotechnol Bioeng, 2004, 87(6):743-53.
    [289] Lo HR, Chou CC, Wu TY, Yuen JP, Chao YC. Novel baculovirus DNA elements strongly stimulate activities of exogenous and endogenous promoters. J Biol Chem, 2002, 277(7):5256-64.
    [290] Nakano R, Nakagawa T, Imazu S, Katayama K, Mizuguchi H, Hayakawa T, et al. A novel T7 system utilizing mRNA coding for T7 RNA polymerase. Biochem Biophys Res Commun, 2003, 301(4):974-8.
    [291] Mohamed MR, Niles EG. Transient and inducible expression of vaccinia/T7 recombinant viruses. Methods Mol Biol, 2004,269:41-50.
    
    [292] InsectSelectTM BSD System. Invitrogen life technologies, 2003.
    [293] Kopylova-Sviridova TN, Krauzova VI, Timiryasova TM, Gorelova TV, Shuppe NG, Fodor I. Transient expression assay in a baculovirus system using firefly luciferase gene as a reporter. Virus Genes, 1992, 6(4):379-86.
    [294] Passarelli AL, Miller LK. Three baculovirus genes involved in late and very late gene expression: ie-1, ie-n, and lef-2. J Virol, 1993,67(4):2149-58.
    [295] Benincasa D, Silberklang M, Mark GE, 3rd, Ludmerer SW. Rapid, high-level transient expression of papillomavirus-like particles in insect cells. Biotechniques, 1996,20(5):890-5.
    [296] van Poelwijk F, Broer R, Belsham GJ, Oudshoorn P, Vlak JM, Goldbach RW. A hybrid baculovirus-bacteriophage T7 transient expression system. Biotechnology (N Y), 1995, 13(3):261-4.
    [297] Polkinghorne 1, Roy P. Transient expression in insect cells using a recombinant baculovirus synthesising bacteriophage T7 RNA polymerase. Nucleic Acids Res, 1995,23(1):188-91.
    [298] Breitbach K, Jarvis DL. Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng, 2001, 74(3):230-9.
    [299] Ailor E, Takahashi N, Tsukamoto Y, Masuda K, Rahman BA, Jarvis DL, et al. N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. Glycobiology, 2000, 10(8):837-47.
    [300] Marchal I, Jarvis DL, Cacan R, Verbert A. Glycoproteins from insect cells: sialylated or not? Biol Chem, 2001,382(2): 151-9.
    [301] Joshi L, Davis TR, Mattu TS, Rudd PM, Dwek RA, Shuler ML, et al. Influence of baculovirus-host cell interactions on complex N-linked glycosylation of a recombinant human protein. Biotechnol Prog, 2000, 16(4):650-6.
    [302] Joshi L, Shuler ML, Wood HA. Production of a sialylated N-linked glycoprotein in insect cells. Biotechnol Prog, 2001, 17(5):822-7.
    [303] Palomares LA, Joosten CE, Hughes PR, Granados RR, Shuler ML. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol Prog, 2003, 19(1):185-92.
    [304] Watanabe S, Kokuho T, Takahashi H, Takahashi M, Kubota T, Inumaru S. Sialylation of N-glycans on the recombinant proteins expressed by a baculovirus-insect cell system under beta-N-acetylglucosaminidase inhibition. J Biol Chem, 2002, 277(7):5090-3.
    [305] Tomiya N, Betenbaugh MJ, Lee YC. Humanization of lepidopteran insect-cell-produced glycoproteins. Acc Chem Res, 2003, 36(8):613-20.
    [306] Zhang F, Murhammer DW, Linhardt RJ. Enzyme kinetics and glycan structural characterization of secreted alkaline phosphatase prepared using the baculovirus expression vector system. Appl Biochem Biotechnol, 2002, 101(3): 197-210.
    [307] Hollister JR, Jarvis DL. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology, 2001, 11(1):1-9.
    [308] McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990, 348(6301):552-4.
    [309] Lowman HB, Bass SH, Simpson N, Wells JA. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry, 1991, 30(45): 10832-8.
    [310] Liang M, Dubel S, Li D, Queitsch I, Li W, Bautz EK. Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. J Immunol Methods, 2001, 247(1-2): 119-30.
    [311] Oker-Blom C, Airenne KJ, Grabherr R. Baculovirus display strategies: Emerging tools for
    # n x m____________________________________________________
    eukaryotic libraries and gene delivery. Brief Funct Genomic Proteomic, 2003,2(3):244-53. [312] Grabherr R, Ernst W, Doblhoff-Dier O, Sara M, Katinger H. Expression of foreign proteins on the
    surface of Autographa californica nuclear polyhedrosis virus. Biotechniques, 1997,22(4):730-5. [313] Ojala K, Mottershead DG, Suokko A, Oker-BIom C. Specific binding of baculoviruses displaying gp64 fusion proteins to mammalian cells. Biochem Biophys Res Commun, 2001,284(3):777-84. [314] Ojala K, Koski J, Ernst W, Grabherr R, Jones I, Oker-BIom C. Improved display of synthetic
    IgG-binding domains on the baculovirus surface. Technol Cancer Res Treat, 2004,3(1):77-84. [315] Wang Y, Rubtsov A, Heiser R, White J, Crawford F, Marrack P, et al. Using a baculovirus display
    library to identify MHC class I mimotopes. Proc Natl Acad Sci USA, 2005, 102(7):2476-81. [316] Kukkonen SP, Airenne KJ, Marjomaki V, Laitinen OH, Lehtolainen P, Kankaanpaa P, et al.
    Baculovirus capsid display: a novel tool for transduction imaging. Mol Ther, 2003, 8(5):853-62. [317] Mclntosh AH, Shamy R. Effects of the nuclear polyhedrosis virus (NPV) of Autographa californica
    on a vertebrate viper cell line. Ann NY Acad Sci, 1975,266(327-331). [318] Volkman LE, Goldsmith PA. In vitro study of Autographa californica nuclear polyhedrosis virus
    interaction with nontarget vertebrate host cells. Appl Environ Microbiol, 1983, (45): 1085-93. [319] Tjia ST, zu Altenschildesche GM, Doerfler W. Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology, 1983, 125(1):107-17. [320] Groner A, Granados RR, Burand JP. Interaction of Autographa californica nuclear polyhedrosis
    virus with two nonpermissive cell lines. Intervirology, 1984,21(4):203-9. [321] Carbonell LF, Klowden MJ, Miller LK. Baculovirus-mediated expression of bacterial genes in
    dipteran and mammalian cells. J Virol, 1985,56(1):153-60.
    [322] Hoftnann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA, 1995, 92(22): 10099-103. [323] Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad
    Sci USA, 1996,93(6):2348-52.
    [324] Shoji I, Aizaki H, Tani H, Ishii K, Chiba T, Saito I, et al. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol, 1997, 78 (Pt 10):2657-64.
    [325] Airenne KJ, Hiltunen MO, Turunen MP, Turunen AM, Laitinen OH, Kulomaa MS, et al. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther, 2000, 7(17):1499-504.
    [326] Dwarakanath RS, Clark CL, McElroy AK, Spector DH. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology, 2001,284(2):297-307. [327] Leisy DJ, Lewis TD, Leong JA, Rohrmann GF. Transduction of cultured fish cells with
    recombinant baculoviruses. J Gen Virol, 2003, 84(Pt 5): 1173-8.
    [328] Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L, et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci USA, 2000, 97(26):14638-43. [329] Ma L, Tamarina N, Wang Y, Kuznetsov A, Patel N, Kending C, et al. Baculovirus-mediated gene
    transfer into pancreatic islet cells. Diabetes, 2000,49(12): 1986-91. [330] Wagle M, Jesuthasan S. Baculovirus-mediated gene expression in zebrafish. Mar Biotechnol (NY),
    2003, 5(1):58-63. [331] Liang CY, Wang HZ, Li TX, Hu ZH, Chen XW. High efficiency gene transfer into mammalian
    kidney cells using baculovirus vectors. Arch Virol, 2004, 149(1):51-60. [332] Ho YC, Chen HC, Wang KC, Hu YC. Highly efficient baculovirus-mediated gene transfer into rat
    chondrocytes. Biotechnol Bioeng, 2004, 88(5):643-51. [333] Ho YC, Chung YC, Hwang SM, Wang KC, Hu YC. Transgene expression and differentiation of
    baculovirus-transduced human mesenchymal stem cells. J Gene Med, 2005, 7(7):860-8. [334] Gao R, McCormick CJ, Arthur MJ, Ruddell R, Oakley F, Smart DE, et al. High efficiency gene 162 transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver, 2002,22(1):15-22.
    [335] van Loo ND, Fortunati E, Ehlert E, Rabelink M, Grosveld F, Scholte BJ. Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol, 2001, 75(2):961-70.
    [336] Duisit G, Saleun S, Douthe S, Barsoum J, Chadeuf G, Moullier P. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J GeneMed, 1999, 1(2):93-102.
    [337] Tani H, Nishijima M, Ushijima H, Miyamura T, Matsuura Y. Characterization of cell-surface determinants important for baculovirus infection. Virology, 2001,279(1):343-53.
    [338] Bilello JP, Cable EE, Myers RL, Isom HC. Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther, 2003, 10(9):733-49.
    [339] Barsoum J, Brown R, McKee M, Boyce FM. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther, 1997, 8(17):2011-8.
    [340] Park SW, Lee HK, Kim TG, Yoon SK, Paik SY. Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochem Biophys Res Commun, 2001,289(2):444-50.
    [341] Venkaiah B, Viswanathan P, Habib S, Hasnain SE. An additional copy of the homologous region (hr1) sequence in the Autographa californica multinucleocapsid polyhedrosis virus genome promotes hyperexpression of foreign genes. Biochemistry, 2004,43(25):8143-51.
    [342] Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem, 1982,42(2):65-82.
    [343] Hu YC, Tsai CT, Chang YJ, Huang JH. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog, 2003, 19(2):373-9.
    [344] Tani H, Limn CK, Yap CC, Onishi M, Nozaki M, Nishimune Y, et al. In vitro and in vivo gene delivery by recombinant baculoviruses. J Virol, 2003,77(18):9799-808.
    [345] Hsu CS, Ho YC, Wang KC, Hu YC. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng, 2004, 88(1):42-51.
    [346] Eidelman O, Schlegel R, Tralka TS, Blumenthal R. pH-dependent fusion induced by vesicular stomatitis virus glycoprotein reconstituted into phospholipid vesicles. J Biol Chem, 1984, 259(7):4622-8.
    [347] Ory DS, Neugeboren BA, Mulligan RC. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A, 1996, 93(21): 11400-6.
    [348] Pieroni L, Maione D, La Monica N. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum Gene Ther, 2001, 12(8):871-81.
    [349] Yap CC, Ishii K, Aoki Y, Aizaki H, Tani H, Shimizu H, et al. A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology, 1997, 231(2): 192-200.
    [350] Ojala K, Tikka PJ, Kautto L, Kapyla P, Marjomaki V, Oker-Blom C. Expression and trafficking of fluorescent viral membrane proteins in baculovirus-transduced BHK cells. J Biotechnol, 2004, 114(1-2):165-75.
    [351] Poomputsa K, Kittel C, Egorov A, Ernst W, Grabherr R. Generation of recombinant influenza virus using baculovirus delivery vector. J Virol Methods, 2003, 110(1): 111-4.
    [352] Gilbert L, Valilehto O, Kirjavainen S, Tikka PJ, Mellett M, Kapyla P, et al. Expression and subcellular targeting of canine parvovirus capsid proteins in baculovirus-transduced NLFK cells. FEBS Lett, 2005, 579(2):385-92.
    [353] Sollerbrant K, Elmen J, Wahlestedt C, Acker J, Leblois-Prehaud H, Latta-Mahieu M, et al. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol, 2001, 82(Pt 9):2051-60.
    [354] Kohlbrenner E, Aslanidi G, Nash K, Shklyaev S, Campbell-Thompson M, Byrne BJ, et al. Successful Production of Pseudotyped rAAV Vectors Using a Modified Baculovirus Expression System. Mol Ther, 2005,12(6):1217-25.
    
    [355] Wang KC, Wu JC, Chung YC, Ho YC, Chang MD, Hu YC. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng, 2005, 89(4):464-73.
    
    [356] Vieira HL, Estevao C, Roldao A, Peixoto CC, Sousa MF, Cruz PE, et al. Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production. J Biotechnol, 2005, 120(1):72-82.
    [357] Delaney WEt, Isom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology, 1998,28(4): 1134-46.
    
    [358] Delaney WEt, Miller TG, Isom HC. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (-)-beta-2',3'-dideoxy-3'-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob Agents Chemother, 1999, 43(8):2017-26.
    
    [359] Abdelhamed AM, Kelley CM, Miller TG, Furman PA, Isom HC. Rebound of hepatitis B virus replication in HepG2 cells after cessation of antiviral treatment. J Virol, 2002,76(16):8148-60.
    [360] McCormick CJ, Rowlands DJ, Harris M. Efficient delivery and regulable expression of hepatitis C virus full-length and minigenome constructs in hepatocyte-derived cell lines using baculovirus vectors. J Gen Virol, 2002, 83(Pt 2):383-94.
    [361] McCormick CJ, Challinor L, Macdonald A, Rowlands DJ, Harris M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J Gen Virol, 2004, 85(Pt 2):429-39.
    [362] Facciabene A, Aurisicchio L, La Monica N. Baculovirus vectors elicit antigen-specific immune responses in mice. J Virol, 2004, 78(16):8663-72.
    [363] Sandig V, Hofmann C, Steinert S, Jennings G, Schlag P, Strauss M. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther, 1996, 7(16): 1937-45.
    [364] Hofmann C, Strauss M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther, 1998, 5(4):531-6.
    [365] Hoare J, Waddington S, Thomas HC, Coutelle C, McGarvey MJ. Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice. J Gene Med, 2005, 7(3):325-33.
    [366] Szebeni J. The interaction of liposomes with the complement system. Crit Rev Ther Drug Carrier Syst, 1998, 15(1):57-88.
    
    [367] Plank C, Mechtler K, Szoka FC, Jr., Wagner E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther, 1996, 7(12):1437-46.
    
    [368] Chen G, Wang XM, Sun QY, Shen SQ, Guo H, Wang H, et al. Prevention of hyperacute rejection of pig-to-monkey cardiac xenografts by Chinese cobra venom factor. Transplant Proc, 2001, 33(7-8):3857-8.
    [369] Hofmann C, Huser A, Lehnert W, Strauss M. Protection of baculovirus-vectors against complement-mediated inactivation by recombinant soluble complement receptor type 1. Biol Chem, 1999, 380(3):393-5.
    [370] Huser A, Rudolph M, Hofmann C. Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nat Biotechnol, 2001, 19(5):451-5.
    [371] Palombo F, Monciotti A, Recchia A, Cortese R, Ciliberto G, La Monica N. Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector. J Virol, 1998, 72(6):5025-34.
    
    [372] Wang CY, Wang S. Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain. Hum Gene Ther, 2005, 16(10):1219-26.
    [373]萨姆布鲁克J,拉塞尔DW著,黄培堂等译.分子克隆实验指南(第三版)科学出版社,2003.科学出版社,2003.
    [374]Christensen ND,Dillner J,Eklund C,Carter JJ,Wipf GC,Reed CA,et al.Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies.Virology,1996,223(1):174-84.
    [375]Morgan JR,LeDoux JM,Snow RG,Tompkins RG,Yarmush ML.Retrovirus infection:effect of time and target cell number.J Virol,1995,69(11):6994-7000.
    [376]Dee KU,Shuler ML.Optimization of an assay for baculovirus titer and design of regimens for the synchronous infection of insect cells.Biotechnol Prog,1997,13(1):14-24.
    [377]Bajaj B,Lei P,Andreadis ST.High efficiencies of gene transfer with immobilized recombinant retrovirus:kinetics and optimization.Biotechnol Prog,2001,17(4):587-96.
    [378]Lee SG,Kim S,Robbins PD,Kim BG.Optimization of environmental factors for the production and handling of recombinant retrovirus.Appl Microbiol Biotechnol,1996,45(4):477-83.
    [379]Ozuer A,Wechuck JB,Goins WF,Wolfe D,Glorioso JC,Ataai MM.Effect of genetic background and culture conditions on the production of herpesvirus-based gene therapy vectors.Biotechnol Bioeng,2002,77(6):685-92.
    [380]吴婷,欧山海,程通陈,何水珍,张军,夏宁邵.重组痘苗病毒对不同哺乳动物细胞株的感染效率及EGFP表达水平研究.厦门大学学报(自然科学版),2005,(6):866-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700