基于纳米结构的中低温固体氧化物燃料电池电极的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中低温固体氧化物燃料电池(Solid oxide fuel cell,SOFC)是当前能源领域研究的热点。本文针对电解质的薄膜化、阴极微观结构优化和抗积碳的阳极微观结构设计三个中低温SOFC面临的关键问题,选用Sm掺杂的CeO_2(SDC)作为电解质材料,采用阳极支撑的SOFC电池模式,引入纳米结构对电极微观结构进行改进和设计,并对电池电极的制备及性能展开了系统的研究。主要的研究内容如下:
     (1)为了降低电解质SDC陶瓷的烧结温度,文中分别选用了燃烧法和喷雾干燥热解法两种制备方法制备了纳米尺寸的SDC粉末。
     用硬脂酸燃烧法制得的SDC粉末,其晶粒尺寸和粒度分布明显受到硝酸根和硬脂酸的摩尔比(N/s)的影响。当N/s摩尔比为1:1.5时,制得的SDC粉末具有最小的晶粒尺寸(10~40 nm)和粒度分布。而且用硬脂酸制得的SDC前驱粉末是低结晶度的SDC粉末,比750℃热处理形成的SDC具有更小的粒度分布和更好的烧结性,在1200℃烧结温度下即可获得平均晶粒为0.85μm的致密SDC陶瓷。
     采用了(NH_4)_2CO_3(AC)和NH_4HCO_3(HC)沉淀剂制备了两种溶胶,用溶胶喷雾干燥热解法制备了SDC粉末。不同溶胶会对SDC粉末的粒径和形貌产生影响。用AC溶胶制得的SDC粉末具有较小的粒径和规则的球形形貌,从而可表现出良好的烧结特性,在1250℃温度下可烧结成相对密度达96%、晶粒尺寸为0.86μm的致密SDC陶瓷。
     (2)为了获得NiO和SDC两相分布均匀的纳米阳极材料,通过溶胶喷雾干燥热解法,采用了两种溶胶混合液来制备的NiO-SDC粉末,一种用Ni溶胶与Ce-Sm溶液混合,另一种用Ce-Sm溶胶与Ni溶液混合。结果表明:当用两种不同的溶胶混合液制备NiO-SDC粉末时,NiO-SDC阳极粉末的颗粒大小均随溶胶浓度的增加而增大。而且,用含Ni溶胶的混合液更易制得两相分布均匀,颗粒尺寸较小的NiO-SDC阳极粉末。一次颗粒尺寸为30 nm左右,团聚体的平均尺寸为250 nm。
     此外,还用氨基乙酸法制得了两相分布均匀的NiO-SDC粉末。其一次颗粒的平均粒径为20~40 nm,而且球磨后的粉末具有较窄的粒度分布,平均团聚尺寸为170 nm。
     (3)为了使阳极具有良好的多孔微观结构,在中低温下既具有良好的催化活性又可作为单电池的支撑体。本文采用聚苯乙烯微球作为造孔剂,利用造孔剂颗粒和纳米阳极材料颗粒在粒径上的较大差异,结合超声分散作用,使造孔剂颗粒和阳极材料均匀混合和合理分布,制备出可作为阳极支撑体的NiO-SDC多孔陶瓷。通过对多孔陶瓷的烧结温度、微观结构和力学性能之间关系的研究发现,1200℃烧结制得陶瓷的晶粒并没有明显长大并部分保持在纳米尺度范围内,使电极有相当长的三相反应界面长度,而且陶瓷的抗压强度达到了20.83 MPa。以此阳极为支撑的单电池在600℃时的最大输出功率密度高达333 mWcm~(-2)。高的电池功率密度说明该阳极微观结构可有效地提高其催化活性、降低其极化电阻,并抵消了因烧结温度较低而导致的电解质欧姆电阻升高所产生的负面影响。
     (4)采用纳米结构的阴极薄层的设计,解决中低温下电池阴极极化电阻迅速增大问题。选用具有较高离子电导和电子电导的SSC与SDC的纳米混合粉末作为阴极材料,采用悬浮液旋涂法制备了具有纳米结构的阴极薄层。实验结果表明:当烧结温度为950℃时,获得的阴极具有均匀连续的多孔结构,其孔隙率为31%,在阴极的骨架上大量的纳米晶粒,晶粒尺寸为50~100 nm,为气体的吸附和脱附提供较大的表面积;同时,阴极中均匀分布的SSC和SDC两相有利于提高阴极中的三相反应界面,增加反应活化点,有效地降低界面极化电阻,提高电池的功率输出。具有纳米多孔结构阴极薄膜的单电池在低温条件下表现出了良好的电性能。500℃时,单电池的整个界面电阻仅有0.79Ωcm~2,最大输出功率密度高达212 mW cm~(-2),450℃时则分别为2.81Ωcm~2和114 mW cm~(-2)。
     (5)利用Cu单质具有抑制甲烷直接氧化产生碳沉积的能力,将少量纳米Cu颗粒均匀的分布到Ni/SDC陶瓷的骨架上,使铜的作用最大化,形成一种新的Cu/Ni/SDC阳极结构。本文采用浸渍法将Cu的纳米颗粒注入,使其紧密地粘附在多孔Ni/SDC陶瓷的骨架上。纳米Cu的注入提高了阳极的电导率,为更多的电子能够从电化学反应点的导出提供了有效的通道,从而了增加单电池的功率输出。当以甲烷气体为燃料时,Cu/Ni/SDC阳极支撑的单电池在600℃时的功率输出高达317 mW cm~(-2)。当单电池运行12h后,其最大输出功率密度只损失了2%。Cu/Ni/SDC阳极能够通过降低阳极中Ni的表面积和CO的不均匀分解来抑制碳沉积,使单电池输出功率具有长期稳定性。
     通过研究Cu对碳氢气体催化机理的研究发现,阳极中的铜参与了燃料的电化学反应,对燃料的氧化起到了催化作用。其催化作用主要通过在金属Cu与SDC的界面处的Cu_2O实现的。
Nowadays,intermediate/low temperature solid oxide fuel cells(SOFCs)have attracted many attentions in the resaerch of power sources area.Main research works concentrate on the following areas,such as preparing thin electrolyte membranes on the electrodes,optimizing the electrode microstructure and developing new anode materials and new structures for hydrocarbon with high electrochemical catalytic activity at low temperature and strong ability to suppress carbon deposition.This thesis focuses on the above mentioned issues to carry out studies on the anode-supported SOFC with Sm doped CeO_2 as electrolyte through designing and preparing nanostructured electrodes.These researches are summarized as:
     (1)In order to reduce the sintering temperature of Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)ceramic, nanocrystalline SDC powders were prepared by both a combustion process and a colloidal seed-assisted spray drying and pyrolysis method.
     SDC powders were prepared by a novel solution combustion process using molten stearic acid as dispersive medium and reducing agent.The particle size and distribution of SDC powders were influenced by the molar ratio of NO_3~- to stearic acid(N/s).The powders prepared with the molar ratio of N/s at 1:1.5 exhibited a narrower distribution in size and the average agglomerate size was about 157 nm.The primary particle size was in the range 10~40 nm.The as-combusted powders showed a low crystallinity and exhibited an excellent sintering performance,easily achieving high dense SDC ceramics with lager grains(0.85μm).
     The nanocrystalline SDC electrolyte powders were prepared by colloidal seed-assisted spray drying and pyrolysis.(NH_4)_2CO_3(AC)and NH_4HCO_3(AHC)were used as precipitation reagents to prepare colloidal solutions,and SDC powders with different particle size and morphology were obtained.The SDC powders prepared with AC colloidal solution showed spherical in morphology and smaller particle size, which showed excellent sintering behavior and could be sintered up to 96%of the theoretical at a lower sintering temperature of 1250℃,and the average grain size of ceramics was 0.86μm.
     (2)In order to obtain nanosized anode materials with uniform distribution of NiO and SDC,nanocrystalline NiO-SDC composite powders were prepared by the colloidal spray drying and pyrolysis method.Two series of mixed colloidal solutions were prepared.One contained Ni sols and Ce-Sm solution;the other contained Ce-Sm sols and Ni solution.The results showed that the primary particle size of the NiO-SDC composite powders slightly increased with the concentration of spray mixed colloidal solutions.Furthermore,the composite powders from mixed colloidal solutions with Ni sols showed more uniform distribution of two phases and smaller particle size than those from mixed colloidal solutions with Ce-Sm sols.The primary particle size was about 30 nm amd the powders had a very narrow particle size distribution centered at 250 nm.
     In addition,The NiO-SDC powders were also synthesized by a glycine-nitrate method.The ball-milled powders became fine particles with 20-40 nm for primary particle size,and 170 nm for average agglomerated particle size and a narrower distribution in sizes.
     (3)In order to obtain the anode with high catalytic activity at intermediate/low temperature,the porous NiO-SDC ceramics were prepared with monodispersed polystyrene(PS)spheres as the pore template,which was used as the anode in the anode-supported SOFCs.Considering the difference in the particle size between PS spheres and NiO-SDC powders,the powders and PS spheres were mixed under ultrasonic in ethanol to make them mixed and distributed uniformly.The relations among sintering temperature,microstructure and mechanical strength of the ceramics were studied.The results indicated that the NiO-SDC ceramic sintered at 1200℃showed to have an interconnected pore structure,about 150 nm grains in the pore walls,and the compression strength with 20.83 MPa.The maximum power density as high as 333 mWcm~(-2)was obtained operated at 600℃.The high power output showed that such an anode could provide high surface areas and more catalytically active sites and counteract the negative influence of the increasing ohmic resistance in electrolyte.
     (4)To reduce the cathode-electrolyte interfacial polarization resistance of low temperature SOFCs,a nanostructured porous thin cathode consisting of Sm_(0.5)Sr_(0.5)CoO_3(SSC)and SDC was fabricated on an anode-supported electrolyte sheet(membrane)using spin-coating technique.A suspension with nanosized cathode powders,volatilizable solvents and a soluble pore former was prepared.In the cathode, the SDC grains distributed uniformly on and cross the SSC matrix.The cathode had a good interconnecting porous structure with the porosity about 31%and there were many 50~100 nm grains on the frameworks.The results indicated that the cell with the nanostructured porous thin cathode sintered at 950℃showed relatively high maximum power density of 212 mW cm~(-2)at 500℃and 114 mW cm~(-2)at 450℃,and low interfacial polarization resistance of 0.79Ωcm~2 at 500℃and 2.81Ωcm~2 at 450℃.The good performance is attributed to that the nanostructured porous thin cathode can provide high surface area for gas adsorption/desorption and has high triple-phase boundaries(TPBs)length,which increases the electrochemical reactions sites and decreases the interfacial polarization resistance effectively.
     (5)Considing the strong ability of Cu to suppress the carbon deposition when dry methane is directly oxidized in anode,a Cu/Ni/SDC anode was designed.The anode was prepared by the impregnation method,whereby a small amount of Cu was incorporated into the previously formed Ni/SDC porous matrix.Cu nanoparticles adhered to and were uniformly distributed on the pore surface of the Ni/SDC prous matrix,and maximized the role of Cu in suppressing carbon deposition.The higher electronic conductivity of Cu/Ni/SDC anode was obtained,which provided the effective passage for more electrons to be transported from the electrochemical reaction sites so that the power output of the cell can be enhanced.For the resulting Cu/Ni/SDC anode-supported cell,maximum power density of 317 mW cm~(-2)was achieved at 600℃.The power density showed only~2%loss after 12-h operation. The results demonstrate that the Cu/Ni/SDC anode effectively suppresses carbon deposition by decreasing the Ni surface area available and the level of carbon monoxide disproportionation.This combination of effects results in very low power density loss over the operating time.
     According to the catalytic mechanism of Cu to the hydrocarbon,it was found that Cu participates in the electrochemical reaction of the fuel and the catalysis of Cu was carried out through Cu_2O at the interface between Cu and SDC.
引文
[1]T.A.Damberger,Fuel cells for hospitals,J.Power Sources 71(1998)45-50.
    [2]A.U.Dufour,Fuel cells-a new contributor to stationary power,J.Power Sources 71(1998)19-25.
    [3]K.Joon,Fuel cells-a 21~(st)century power system,J.Power Sources 71(1998)12-18.
    [4]A.B.Stambouli,E.Traversa,Fuel cells,an alternative to standard sources of energy,Renewable and Sustainable Energy Reviews 6(2002)297-306.
    [5]O.Yamamoto,Solid oxide fuel cell:fundamental aspects and prospects,Electrochimica Acta 45(2000)2423-2435.
    [6]彭苏萍,韩敏芳,杨翠柏,王玉倩,固体氧化物燃料电池,物理33(2004)90-94.
    [7]N.Q.Minh,Ceramic Fuel Cells,J.Am.Ceram.Soc.76(1993)563-588.
    [8]S.C.Singhal,Advances in solid oxide fuel cell technology,Solid State Ionics 135(2000)305-313.
    [9]S.M.Haile,Fuel Cell Materials and Components,Acta Materialia 51(2003)5981-6000.
    [10]S.P.S.Badwal,K.Foger,Solid Oxide Electrolyte Fuel Cell Review,Ceramics International 22(1996)257-265
    [11]A.Casanova,A consortium approach to commercialized Westinghouse solid oxide fuel cell technology,J.Power Sources 71(1998)65-70.
    [12]R.A.George,Norman F.Bessette,Reducing the manufacturing cost of tubular solid oxide fuel cell technology,J.Power Sources 71(1998)131-137.
    [13]X.Huang,J.Liu,Z.Lu,W.Liu,L.Pei,T.He,Z.Liu,W.Su,Properties of nonstoichiometric Pr_(0.6-x)Sr_(0.4)MnO_3 as the cathodes of SOFCs,Solid State Ionics 130(2000)195-201.
    [14]C.Jiang,J.Ma,X.Liu,G.Meng,Electrochemical performance of a solid oxide fuel cell based on Ce_(0.8)Sm_(0.2)O_(2-δ)electrolyte synthesized by a polymer assisted combustion method,J.Power Sources 165(2007)134-137.
    [15]M.Liu,D.Dong,L.Chen,J.Gao,X.Liu,G.Meng,Synthesis and electrochemical properties of(Pr-Nd)_(1-y)Sr_yMnO_(3-δ)and(Pr_(1-x)Nd_x)_(0.7)Sr_(0.3)MnO_(3-δ)as cathode materials for IT-SOFC,J.Power Sources 176(2008)107-111.
    [16]Y.Shi,N.Cai,C.Li,C.Bao,E.Croiset,J.Qian,Q.Hu,S.Wang,Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiple layers SOFC cell:Part Ⅰ.Experiments,model development and validation,J.Power Sources 172(2007)235-245.
    [17]Y.Shi,N.Cai,C.Li,C.Bao,E.Croiset,J.Qian,Q.Hu,S.Wang,Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiple layers SOFC cell: II. Simulations and discussion, J. Power Sources 172 (2007) 246-252.
    [18] J. Wang, Z. Lu, X. Huang, K. Chen, N. Ai, J. Hu, W. Su, YSZ films fabricated by a spin smoothing technique and its application in solid oxide fuel cell, J. Power Sources 163 (2007) 957-959.
    [19] B. C. H. Steele, Fuel-cell technology running on natural gas, Nature 400 (1999) 619-620.
    [20] H. Tu, U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells, J. Power Sources 127 (2004) 284-293.
    [21] K. Sasaki, Y. Teraoka, Equilibria in Fuel Cell Gas II. The C-H-O Ternary Diagrams, J. Electrochem. Soc. 150 (2003) A885-A888.
    [22] H. Oudghiri-Hassani, S. Rakass, N. Abatzoglou, P. Rowntree, Inhibition of carbon formation during steam reforming of methane using thiol-coated nickel catalysts, J. Power Source 171 (2007) 850-855.
    [23] T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki, M. Aizawa, Study on steam reforming of CH_4 and C_2 hydrocarbons and carbon deposition on Ni-YSZ cermets, J. Power Sources 112 (2002) 588-595.
    [24] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC, J. Power Sources 163 (2007) 943-951.
    [25] G. Goula, V. Kiousis, L. Nalbandian, I..V. Yentekakis, Catalytic and electrocatalytic behavior of Ni-based cermet anodes under internal dry reforming of CH_4 + CO_2 mixtures in SOFCs, Solid State Ionics 177 (2006) 2119-2123.
    [26] Z. P. Hao, H. Y. Zhu, G Q. Lu, Zr-Laponite pillared clay-based nickel catalysts for methane reforming with carbon dioxide, Appl. Catal. A: Gen. 242 (2003) 275-286.
    [27] A. A. Lemonidou, I. A. Vasalos, Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al_2O_3 catalyst, Appl. Catal. A: Gen. 228 (2002) 227-235.
    [28] M. J. Hei , H. B. Chen, J. Yi, Y. J. Lin, Y. Z. Lin, G.Wei, D. W. Liao, CO_2-reforming of methane on transition metal surfaces, Surf. Sci. 417 (1998) 82-96.
    [29] M. Boder, R. Dittmeyer, Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas, J. Power Sources 155 (2006) 13-22.
    [30] J. Li, G Y. Cao, X. J. Zhu, H. Y. Tu, Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell, J. Power Sources 171 (2007) 585-600.
    [31] A. L. Dicks, Advances in catalysts for internal reforming in high temperature fuel cells, J. Power Sources 71 (1998) 111-122.
    [32] K. Sasaki, Y. Teraoka, Equilibria in Fuel Cell Gas I. Equilibrium Compositions and Reforming Conditions, J. Electrochem. Soc. 150 (2003) A878-A884.
    [33] R. J. Gorte, H. Kim, J. M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon, J. Power Sources 106 (2002) 10-15.
    [34] E. Perry Murray, T. Tsai, S. A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651.
    [35] R. J. Gorte, S. Park, J. M. Vohs, C. Wang, Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell, Adv. Mater. 12 (2000) 1465-1469.
    [36] B. C. H. Steele, P. H. Middleton, R. A. Rudkin, Material science aspects of SOFC technology with special reference to anode development, Solid State Ionics 40-41 (1990) 388-393.
    [37] I. S. Metcalfe, P. H. Middleton, P. Petrolekas, B. C. H. Steele, Hydrocarbon activation in solid state electrochemical cells, Solid State Ionics 57 (1992) 259-264.
    [38] N.V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, B. Johansson, Quantum Origin of the Oxygen Storage Capability of Ceria, Phys. Rev. Lett. 89 (2002) 166601-(1-4).
    [39] S. Mclntosh, J. M. Vohs, R. J. Gorte, An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes, Electrochemica Acta 47 (2002) 3815-3821.
    [40] J. P. P. Huijsmans, F. P. F. van Berkel, G M. Christie, Intermediate temperature SOFC - a promise for the 21st century, J. Power Sources 71 (1998) 107-110.
    [41] H. S. Seo, G. Jin, J. H. Jun, D. -H. Kim, K. Y. Kim, Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect, J. Power Sources 178 (2008) 1-8. [42] I. Antepara, I. Villarreal, L.M. Rodriguez-Martinez, N. Lecanda, U. Castro, A. Laresgoiti, Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs, J. Power Sources 151 (2005) 103-107.
    [43] J. Bae, S. Lim, H. Jee, J. H. Kim, Y. -S. Yoo, T. Lee, Small stack performance of intermediate temperature-operating solid oxide fuel cells using stainless steel interconnects and anode-supported single cell, J. Power Sources 172 (2007) 100-107.
    [44] B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001)345-352.
    [45] H. Gu, R. Ran, W. Zhou, Z. Shao, Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA-citrate complexing synthesis process, J. Power Sources 172 (2007) 704-712.
    
    [46] R. Ramamoorthy, D. Sundararaman, S. Ramasamy. Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ionics 123 (1999)271-278.
    [47] M. Han, X. Tang, H. Yin, S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs, J. Power Sources 165 (2007) 757-763.
    [48] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics 83 (1996) 1-16.
    [49] M. Mogensen, N. M. Sammes, G. A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics 129 (2000) 63-94.
    [50] S. Piftol, M. Morales, F. Espiell, Low temperature anode-supported solid oxide fuel cells based on gadolinium doped ceria electrolytes, J. Power Sources 169 (2007) 2-8.
    [51] S. Zha, C. Xia, G Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, J. Power Sources 115 (2003) 44-48.
    [52] X. Zhang, M. Robertson, C. Deces-Petit, W. Qu, O. Kesler, R. Maric, D. Ghosh, Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte, J. Power Sources 164 (2007) 668-677.
    [53] V. Fruth, A. Ianculescu, D. Berger, S. Preda, G Voicu, E. Tenea, M. Popa, Synthesis, structure and properties of doped Bi_2O_3, J. Eur. Ceram. Soc. 26 (2006) 3011-3016.
    
    [54] S. Sarat, N. Sammes, A. Smirnova, Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells, J. Power Source 160 ( 2006) 892-896.
    [55] B. Zhu, X. Liu, T. Schober, Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications, Electrochem. Commun. 6 (2004) 378-383.
    [56] V. Fruth, G Dobrescu, V. Bratan, C. Hornoiu, S. Preda, C. Andronescu, M. Popa, Structural and electrochemical features of Bi_2O_3-based fast oxide ion conductors, J. Eur. Ceram. Soc. 27 (2007) 4421-4424.
    [57] S. N. Shkerin, D. I. Bronin, S. A. Kovyazina, V. P. Gorelov, A. V. Kuzmin, Z. S. Martemyanova, S. M. Beresnev, Structure and phase transitions of (La, Sr)(Ga, Mg)O_(3-α) solid electrolyte, Solid State Ionics 171 (2004) 129-134.
    [58] T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc. 116 (1994) 3801-3803.
    [59] D. Lee, J. -H. Han, Y. Chun, R. -H. Song, D. R. Shin, Preparation and characterization of strontium and magnesium doped lanthanum gallates as the electrolyte for IT-SOFC, J. Power Sources 166 (2007) 35-40.
    [60] T. Ishihara, T. Shibayama, S. Ishikawa, K. Hosoi, H. Nishiguchi, Y. Takita, Novel fast oxide ion conductor and application for the electrolyte of solid oxide fuel cell, J. Eur. Ceram. Soc. 24 (2004) 1329-1335.
    [61] T. Tsuji, Y. Ohashi, Y. Yamamura, Effect of ionic radius on electrical conductivity of doped SmAlO_3 perovskite oxide, Solid State Ionics 154-155 (2002) 541-546.
    [62] T. Ishihara, H. Matsuda, M. A. Bustam, Y. Takita, Oxide ion conductivity in doped Ga based perovskite type oxide, Solid State Ionics 86-88 (1996) 197-201.
    [63] A. Petric, P. Huang, Oxygen conductivity of Nd(Sr/Ca)Ga(Mg)O_(3_δ) perovskites, Solid State Ionics 92 (1996) 113-117.
    [64] D. Lybye, F. W. Poulsen, M. Mogensen, Conductivity of A- and B-site doped LaAlO_3, LaGaO_3, LaScO_3 and LaInO_3 perovskites, Solid State Ionics 128 (2000) 91-103.
    [65] T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, T. Inagaki, Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O_3 electrelyte film, J. Power Sources 106 (2002) 142-145.
    [66] J. W. Yan, Z. G Lu, Y. Jiang, Y. L. Dong, C. Y. Chun, W. Z. Li, Fabrication and Testing of a Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cell, J. Electrochem. Soc. 149 (2002) A1132-A1135.
    [67] I. N. Sora, R. Pelosato, A. Simone, L. Montanaro, F. Maglia, G. Chiodelli, Characterization of LSGM films obtained by electrophoretic deposition (EPD), Solid State Ionics 177 (2006) 1985-1989.
    [68] K. N. Kim, B. K. Kim, J. W. Son, J. Kim, H. -W. Lee, J. -H. Lee, J. Moon, Characterization of the electrode and electrolyte interfaces of LSGM-based SOFCs, Solid State Ionics 177 (2006) 2155-2158.
    [69] A. A. Yaremchenko, A. L. Shaula, V. V. Kharton, J. C. Waerenborgh, D. P. Rojas, M. V. Patrakeev, F. M. B. Marques, Ionic and electronic conductivity of La_(9.83-x)Pr_xSi_(4.5)Fe_(1.5)O_(26±δ) apatites, Solid State Ionics 171 (2004) 51-59.
    [70] S. Nakayama, M. Sakamoto, Electrical properties of new type high oxide ionic conductor RE_(10)Si_6O_(27) (RE = La, Pr, Nd, Sm, Gd, Dy), J. Eur. Ceram. Soc. 18(1998)1413-1418.
    [71]_J. E. H. Sansom, A. Najib, P. R. Slater, Oxide ion conductivity in mixed Si/Ge-based apatite-type systems, Solid State Ionics 175 (2004) 353-355.
    [72]_J. E. H. Sansom, P. A. Sermon, P. R. Slater, Synthesis and conductivities of the Ti doped apatite-type phases (La/Ba)_(10-x)(Si/Ge)_(6-y)TiyO_(26+z), Solid State Ionics 176 (2005) 1765-1768.
    [73] H. Arikawa, H. Nishiguchi, T. Ishihara, Y. Takita, Oxide ion conductivity in Sr-doped La_(10)Ge_6O_(27) apatite oxide, Solid State Ionics 136-137 (2000) 31-37.
    [74] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, K. Itoh, Oxide ionic conductivity of apatite type Nd_(9-33)(SiO_4)-6O_2 single crystal, J. Eur. Ceram. Soc. 19 (1999) 507-510.
    [75] J. E. H. Sansom, P. R. Slater, Oxide ion conductivity in the mixed Si/Ge apatite-type phases La_(9.33)Si_(6-x)Ge_xO_(26), Solid State Ionics 167 (2004) 23-27.
    [76] S. Nakayama, Y. Higuchi, Y. Kondo, M. Sakamoto, Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-0 system ceramics, Solid State Ionics 170 (2004) 219-223.
    [77] M. A. Laguna-Bercero, A. Larrea, J. I. Pena, R.I. Merino, V. M. Orera, Structured porous Ni- and Co-YSZ cermets fabricated from directionally solidified eutectic composites, J. Eur. Ceram. Soc. 25 (2005) 1455-1462.
    [78] J. Nielsen, T. Jacobsen, Three-Phase-Boundary dynamics at metal/YSZ microelectrodes, Solid State Ionics 178 (2008) 1769-1776.
    [79] J. Rossmeisl, W. G. Bessler, Trends in catalytic activity for SOFC anode materials, Solid State Ionics 178 (2008) 1694-1700.
    [80] W. Z. Zhu, S. C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Mat. Sci. Eng. A 362 (2003) 228-239.
    [81] A. Ringuede, D. Bronine, J. R. Frade, Ni_(1-x)Co_x/YSZ cermet anodes for solid oxide fuel cells, Electrochimica Acta 48 (2002) 437-442.
    [82] B. Huang, S. R. Wang, R. Z. Liu, T. L. Wen, Preparation and performance characterization of the Fe-Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs, J. Power Sources 167 (2007) 288-294.
    [83] Z. Xie, W. Zhu, B. Zhu, C. Xia, Fe_xCo_(0.5-x0Ni_(0.5)-SDC anodes for low-temperature solid oxide fuel cells, Electrochimica Acta 51 (2006) 3052-3057.
    [84] C. Li, Z. Lu, L. Liu, Z. Liu, W. Su, Preparation and Performance Test of Ni-Fe/SDC Cell Anode, Acta Physico-Chimica Sinica 22 (2006) 1181-1184.
    [85] S. Ohara, R. Maric, X. Zhang, K. Mukai, T. Fukui, H. Yoshida, T. Inagaki, K. Miura, High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte: I. Ni-SDC cermet anode, J. Power Sources 86 (2000) 455-458.
    [86] S. Zha, W. Rauch, M. Liu, Ni-Ceo.9Gd_(0.1)O_(1.95) anode for GDC electrolyte-based low-temperature SOFCs, Solid State Ionics 166 (2004) 241-255.
    [87] C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells, J. Power Sources 171 (2007)247-260.
    [88] C. W. Tanner, K. Z. Fung, A. V. Virkar, The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance. I. Theoretical Analysis, J. Electrochem. Soc. 144 (1997) 21-30.
    [89] J. H. Yu, G W. Park, S. Lee, S. K. Woo, Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode, J. Power Sources 163(2007)926-932.
    [90] J. Kong, K. Sun, D. Zhou, N. Zhang, J. Mu, J. Qiao, Ni-YSZ gradient anodes for anode-supported SOFCs, J. Power Sources 166 (2007) 337-342.
    [91] X. Fang, G. Zhu, C. Xia, X. Liu, G Meng, Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation, Solid State Ionics 168 (2004) 31-36.
    [92] Y. Yin, S. Li, C. Xia, G Meng, Electrochemical performance of gel-cast NiO-SDC composite anodes in low-temperature SOFCs, Electrochimica Acta 51 (2006) 2594-2598.
    [93] G. J. Saunders, K. Kendall, Reactions of hydrocarbons in small tubular SOFCs, J. Power Sources 106 (2002) 258-263.
    [94] Z. Xie, C. Xia, M. Zhang, W. Zhu, Huangting Wang, Ni_(1-x)Cu_x alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel, J. Power Sources 161 (2006) 1056-1061.
    [95] M. Mori, Y. Hiei, H. Itoh, G. A. Tompsett, N. M. Sammes, Evaluation of Ni and Ti-doped Y_2O_3 stabilized ZrO_2 cermet as an anode in high-temperature solid oxide fuel cells, Solid State Ionics 160 (2003) 1-14.
    [96] N. Laosiripojana, S. Assabumrungrat, Catalytic dry reforming of methane over high surface area ceria, Appl. Catal. B: Environ. 60 (2005) 107-116.
    [97] W. Shan, M. Luo, P. Ying, W. Shen, C. Li, Reduction property and catalytic activity of Ce_(1-x)Ni_xO_2 mixed oxide catalysts for CH_4 oxidation, Appl. Catal. A: Gen. 246 (2003) 1-9.
    [98] G. Pudmich, B. A. Boukamp, M. Gonzalez-Cuenca, W. Jungen, W. Zipprich, F. Tietz, Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells, Solid State Ionics 135 (2000) 433-438.
    [99] R. T. Baker, I. S. Metcalfe, P. H. Middleton, B. C. H. Steele, Evaluation of perovskite anodes for the complete oxidation of dry methane in solid oxide fuel cells, Solid State Ionics 72 (1994) 328-333.
    [100] M. Weston, I. S. Metcalfe, La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 as an anode for direct methane activation in SOFCS, Solid State Ionics 113-115 (1998) 247-251.
    [101] S. Hui, A. Petric, Conductivity and stability of SrVO_3 and mixed perovskites at low oxygen partial pressures, Solid State Ionics 143 (2001) 275-283.
    [102] T. Hibino, A. Hashimoto, K. Asano, M. Yano, M. Suzuki, M. Sano, An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance with Hydrocarbons than with Hydrogen, Electrochemical and Solid-State Letters 5 (2002) A242-A244.
    [103] B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, Catalytic activity and performance of LSM cathode materials in single chamber SOFC, Appl. Catal. A: Gen. 323(2007)181-187.
    [104] J. V. Herle, A. J. McEvoy, K. R. Thampi, A study on the La_(1-x)Sr_xMnO_3 oxygen cathode, Electrochimica Acta 41 (1996) 1447-1454.
    [105] N. Caillol, M. Pijolat, E. Siebert, Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La_(0.8)Sr_(0.2)MnO_3 powder and screen-printed layers for solid oxide fuel cell cathodes, Applied Surface Science, 253 (2007) 4641-4648.
    [106] T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky, H. U. Anderson, Composite (La, Sr)MnO_3-YSZ cathode for SOFC, Solid State Ionics 177 (2006) 2071-2074.
    [107] J. Piao, K. Sun, N. Zhang, S. Xu, A study of process parameters of LSM and LSM-YSZ composite cathode films prepared by screen-printing, J. Power Sources 175(2008)288-295.
    [108] K. Chen, Z. Lu, X. Chen, N. Ai, X. Huang, X. Du, W. Su, Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films, J. Power Sources 172 (2007) 742-748.
    [109] X. Xu, Z. Jiang, X. Fan, C. Xia, LSM-SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes, Solid State Ionics 177(2006)2113-2117.
    [110] E. P. Murray, S. A. Bamett, (La,Sr)MnO_3-(Ce,Gd)O_(2-x) composite cathodes for solid oxide fuel cells, Solid State Ionics 143 (2001) 265-273.
    [111] V. V. Srdic, R. P. Omorjan, J. Seydel, Electrochemical performances of (La,Sr)CoO_3 cathode for zirconia-based solid oxide fuel cells, Mat. Sci. Eng. B 116(2005)119-124.
    [112] H. Uchida, S. Arisaka, M. Watanabe, High performance electrodes for medium-temperature solid oxide fuel cells: Activation of La(Sr)CoO_3 cathode with highly dispersed Pt metal electrocatalysts, Solid State Ionics 135 (2000) 347-351.
    [113] Z. Bi, Y. Dong, M. Cheng, B. Yi, Behavior of lanthanum-doped ceria and Sr-, Mg-doped LaGaO_3 electrolytes in an anode-supported solid oxide fuel cell with a La_(0.6)Sr_(0.4)CoO_3 cathode, J. Power Sources 161 (2006) 34-39.
    [114] L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, Ln_(1-x)Sr_xCo_(1-y)Fe_yO_(3-δ) (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells, Solid State Ionics 158 (2003) 55-65.
    [115] H. J. Hwang, J. -W. Moon, S. Lee, E. A. Lee, Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs, J. Power Sources 145 (2005) 243-248.
    [116] F. Tietz, V. A. C. Haanappel, A. Mai, J. Mertens, D. Stover, Performance of LSCF cathodes in cell tests, J. Power Sources 156 (2006) 20-22.
    [117] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction model of dense Sm_(0.5)Sr_(0.5)CoO_3 as SOFC cathode, Solid State Ionics 132 (2000) 279-285.
    [118] C. Xia, W. Rauch, F. Chen, M. Liu, Sm_(0.5)Sr_(0.5)CoO_3 cathodes for low-temperature SOFCs, Solid State Inoics 149 (2002) 11-19.
    [119] S. Wang, H. Zhong, Q. Dong, Kinetic study on the role of an LSGMC5 interlayer in improving the performance of Sm_(0.5)Sr_(0.5)CoO_3-La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.15)Co_(0.05)O_3 (LSGMC5)/LSGMC5 interface, Electrochimica Acta 52 (2007) 1936-1941.
    [120] P. Leone, M. Santarelli, P. Asinari, M. Cali, R. Borchiellini, Experimental investigations of the microscopic features and polarization limiting factors of planar SOFCs with LSM and LSCF cathodes, J. Power Sources 177 (2008) 111-122.
    [121] Global Thermoelectric Inc., The emergence of viable solid oxide fuel cell technology, Fuel Cells Bulletin 3 (2000) 8-11.
    [122] G. Garcia, J. Caro, J. Santiso, J. A. Pardo, A. Figueras, A. Abrutis, Pulsed Injection MOCVD of YSZ Thin Films onto Dense and Porous Substrates, Chemical Vapor Deposition 9 (2003) 279-284.
    [123] D. Beckel, A. Bieberle-Hutter, A. Harvey, A. Infortuna, U. P. Muecke, M. Prestat, J. L. M. Rupp, L. J. Gauckler, Thin films for micro solid oxide fuel cells, J. Power Sources 173 (2007) 325-345
    [124] J. Fleig, Solid Oxide Fuel Cell Cathode: Polarization Mechaniama and Modeling of the Electrochemical Performance, Annu. Rev. Mater. Res. 33 (2003) 361-382.
    [125] T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, T. Kawada, Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique, J. Power Sources 106 (2002) 224-230.
    [126] X. Chen, N. J. Wu, L. Smith, A. Ignatiev, Thin-film heterostructure solid oxide fuel cells, Appl. Phys. Lett. 84 (2004) 2700-2702.
    [127] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, J. Power Sources 177(2008)254-261.
    [128] Y. J. Leng, S. H. Chan, K. A. Khor, S. P. Jiang, Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte, International Journal of Hydrogen Energy 29 (2004) 1025-1033.
    [129] H. Gu, R. Ran, W. Zhou, Z. Shao, Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA-citrate complexing synthesis process, J. Power Sources 172 (2007) 704-712.
    [130] T. Yamaguchi, S. Shimizu, T. Suzuki, Y. Fujishiro, M. Awano, Fabrication and evaluation of cathode-supported small scale SOFCs, Materials Letters 62 (2008) 1518-1520.
    [131] X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon, K. A. Khor, High-performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane, Electrochem. Commun. 9 (2007) 767-772.
    [132] Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, Fabrication and characterization of a co-fired La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ) cathode-supported Ce_(0.9)Gd_(0.1)O_(1.95) thin-film for IT-SOFCs, J. Power Sources 164 (2007) 56-64.
    [133] A. Mineshige, K. Fukushima, K. Tsukada, M. Kobune, T. Yazawa, K. Kikuchi, M. Inaba, Z. Ogumi, Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique, Solid State Ionics 175 (2004) 483-485.
    [134] R. A. George, Status of tubular SOFC field unit demonstrations, J. Power Sources 86 (2000) 134-139.
    [135] T. Takeyama, N. Takahashi, T. Nakamura, S. Itoh, δ-Bi_2O_3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate temperature SOFC applications, Surf. Coat. Tech. 20 (2006) 4797-4801.
    [136] H. B. Wang, H. Z. Song, C. R. Xia, D. K. Peng, G Y. Meng, Aerosol-assisted MOCVD deposition of YDC thin films on (NiO + YDC) substrates, Materials Research Bulletin 35 (2000) 2363-2370.
    [137] J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L. J. Gauckler, Fabrication of thin electrolytes for second-generation solid oxide fuel cells, Solid State Ionics 131(2000)79-96.
    [138] L. S. Wang, S. A. Barnett, Sputter-deposited medium-temperature solid oxide fuel cells with multi-layer electrolytes, Solid State Ionics 61 (1993) 273-276.
    [139] C. Brahim, A. Ringuede, E. Gourba, M. Cassir, A. Billard, P. Briois, Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering, J. Power Sources 156 (2006) 45-49.
    [140] R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Techn. 16 (2007) 381-403.
    [141] C. Zhang, H. L. Liao, W. Y. Li, G Zhang, C. Coddet, C. Zhang, C. J. Li, C. X. Li, X. J. Ning, Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying, J. Therm. Spray Techn. 15 (2006) 598-603.
    [142] S. Souza, S. J. Visco, L. C. Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature, Solid State Ionics 98 (1997) 57-61.
    [143] R. Doshi, V. L. Richards, J. D. Carter, X. Wang, M. Krumpelt, Development of Solid-Oxide Fuel Cells That Operate at 500℃, J. Electrochem. Soc. 146 (1999) 1273-1278.
    [144] G Meng, P. Wang, Y. Gu, D. Peng, Preparation and characterization of barium cerate-based thick membranes using a screen printing process, Solid State Ionics 136-137(2000)209-213.
    [145] S. D. Kim, S. H. Hyun, J. Moon, J. -H. Kim, R. H. Song, Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells, J. Power Sources 139 (2005) 67-72.
    [146] N. Ai, Z. Lu, K. Chen, X. Huang, Y. Liu, R. Wang, W. Su, Preparation of Sm_(0.20Ce_(0.8)O_(1.9) membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC, J. Membrane Sci. 286 (2006) 255-259.
    [147] S. -G Kim, S. P. Yoon, S. W. Nam, S. -H. Hyun, S. -A. Hong, Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method, J. Power Sources 110 (2002) 222-228.
    [148] J. S. Lee, T. Matsubara. T. Sei, T. Tsuchiya, Preparation and properties of Y_2O_3-doped ZrO_2 thin films by the sol-gel process, J. Mater. Sci. 32 (1997) 5249-5256.
    [149] X. Xin, Z. Lu, X. Huang, X. Sha, Y. Zhang, K. Chen, N. Ai, R. Zhu, W. Su, Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process, J. Power Sources 160 (2006) 1221-1224.
    [150] C. Jiang, J. Ma, X. Liu, G. Meng, Electrochemical performance of a solid oxide fuel cell based on Ce_(0.8)Sm_(0.2)O_(2-δ) electrolyte synthesized by a polymer assisted combustion method, J. Power Sources 165 (2007) 134-137.
    [151] J. Huang, Z. Mao, Z. Liu, C. Wang, Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes, J. Power Sources 175 (2008) 238-243.
    [152] J. M. Serra, S. Uhlenbruck, W. A. Meulenberg, H. P. Buchkremer, D. Stover, Nano-structuring of solid oxide fuel cells cathodes, Top. Catal. 40 (2006) 123-131.
    [153] Y. Liu, S. Zha, M. Liu, Novel nanostructured Electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD), Adv. Mater. 16 (2004) 256-260.
    [154] Y. Liu, C. Compson, M. Liu, Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources 138 (2004) 194-198.
    [155] N. T. Hart, N. P. Brandon, M. J. Day, N. Lapena-Rey, Functionally graded composite cathodes for solid oxide fuel cells, J. Power Sources 106 (2002) 42-50.
    [156] M. Ni, M. K.H. Leung, D. Y.C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes, J. Power Sources 168 (2007) 369-378.
    [157] X. Xu, C. Xia, G Xiao, D. Peng, Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes, Solid State Ionics 176 (2005) 1513-1520.
    [158] J. Qiao, K. Sun, N. Zhang, B. Sun, J. Kong, D. Zhou, Ni/YSZ and Ni-CeO_2/YSZ anodes prepared by impregnation for solid oxide fuel cells, J. Power Sources 169 (2007) 253-258.
    [159] H. Koide, Y. Someya, T. Yoshida, T. Maruyama, Properties of Ni/YSZ cermet as anode for SOFC, Solid State Ionics 132 (2000) 253-260.
    [160] A. C. Muller, D. Herbstritt, E. Ivers-Tiffee, Development of a multilayer anode for solid oxide fuel cells, Solid State Ionics 152-153 (2002) 537-542.
    [161] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine,A. J. McEvoy, M. Mogensen, S. C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nat. Mater. 3(2004)17-27.
    [162] S. P. Jiang, S. Zhang, Y. D. Zhen, W. Wang, Fabrication and Performance of Impregnated Ni Anodes of Solid Oxide Fuel Cells, J. Am. Ceram. Soc. 88 (2005) 1779-1785.
    [163] S. Jung, C. Lu, H. He, K. Ann, R. J. Gorte, J. M. Vohs, Influence of composition and Cu impregnation method on the performance of Cu/CeO/YSZ anodes, J. Power Sources 154(2006)42-50.
    [164]W.Zhu,C.Xia,J.Fan,R.Peng,G.Meng,Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells,J.Power Sources 160(2006)897-902.
    [165]X.F.Ye,B.Huang,S.R.Wang,Z.R.Wang,L.Xiong,T.L.Wen,Preparation and performance of a Cu-CeO_2-ScSZ composite anode for SOFCs running on ethanol fuel,J.Power Sources 164(2007)203-209.
    [1]D.-S.Lee,W.S.Kim,S.H.Choi,J.Kim,H.-W.Lee,J.H.Lee,characterization of ZrO_2 co-doped with Sc_2O_3 and CeO_2 electrolyte for the application of intermediate temperature SOFCs,Solid State Ionics 176(2005)33-39.
    [2]J.-G.Li,T.Ikegami,T.Mori,Low temperature processing of dense samarium-doped CeO_2 ceramics:sintering and grain growth behaviors,Acta Materialia 52(2004)2221-2228.
    [3]T.S.Zhang,J.Ma,Dense submicron-grained Ce_(0.8)Gd_(0.2)O_(2-δ)ceramics for SOFC applications,Scripta Mater.50(2004)1127-1130.
    [4]O.Yamamoto,Solid oxide fuel cell:fundamental aspects and prospects,Electrochimica Acta 45(2000)2423-2435.
    [5]S.Nakane,T.Tachi,M.Yoshinaka,K.Hirota,O.Yamaguchi,Characterization and Sintering of Reactive Cerium(Ⅳ)Oxide Powders Prepared by the Hydrazine Method,J.Am.Ceram.Soc.80(1997)3221-3224.
    [6]T.Ikegami,Nanosized Oxide Powders Fabricated by Mimic Alkoxide Methods and their Sintering,Key Eng.Mater.247(2003)51-56
    [7]G.Xiong,Z.Zhi,X.Yang,L.Lu,X.Wang,Characterization of perovskite-type LaCoO_3 nanocrystals prepared by a stearic acid sol-gel process,J.Mater.Sci.Lett.16(1997)1064-1068.
    [8]K.Okuyama,I.W.Lenggoro,Preparation of nanoparticles via spray route,Chemical Engineering Science 58(2003)537-547.
    [9]S.Che,O.Sakurai,K.Shinozaki,N.Mizutani,Particle structure control through intraparticle reactions by spray pyrolysis,J.Aerosol Sci.29(1998)271-278.
    [10]Y.C.Kang,H.S.Roh,S.B.Park,Preparation of Y_2O_3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis,Adv.Mater.12(2000)451-453.
    [11]Y.Wang,T.Mori,J.G.Li,Y.Yajima,Low-temperature fabrication and electrical property of 10mol%Sm_2O_3-doped CeO_2 ceramics,Science and Technology of Advanced Materials 4(2003)229-238.
    [1]S.Ohara,R.Maric,X.Zhang,K.Mukuai,T.Fukui,H.Yoshida,T.Inagaki,K.Miura,High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte I.Ni-SDC cermet anode,J.Power Sources 86(2000)455-458.
    [2]X.Fang,G.Zhu,C.Xia,X.Liu,G.Meng,Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation,Solid State Inoics 168(2004)31-36.
    [3]H.Yoshida,H.Deguchi,M,Kawano,K.Hashino,T.Inagaki,H.Ijichi,M.Horiuchi,K.Kawahara,S.Suda,Study on pyrolysing behavior of NiO-SDC composite particles prepared by spray pyrolysis technique,Solid State Inoics 178(2007)399-405.
    [4]Y.Wang,T.Mori,J.G.Li,Y.Yajima,Low-temperature fabrication and electrical property of 10mol%Sm_2O_3-doped CeO_2 ceramics,Science and Technology of Advanced Materials 4(2003)229-238.
    [5]L.Durand-Keklikian,I.Haq,Egon Matijevic,Preparation and characterization of well-defined colloidal nickel compounds,Colloids and Surfaces A:Physicochemical and Engineering Aspects 92(1994)267-275.
    [6]J.-G.Li,T.Ikegami,T.Mori,Low temperature processing of dense samarium-doped CeO_2 ceramics:sintering and grain growth behaviors,Acta Materialia 52(2004)2221-2228.
    [7]Z.Shao,S.M.Haile,A high-performance cathode for the next generation of solid-oxide fuel cells,Nature 143(2004)170-173.
    [8]T.Hibino,A.Hashimoto,T.Inoue,J.Tokuno,S.Yoshida,M.Sano,A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures,Science 288(2000)2031-2033.
    [9]T.Ishihara,M.Honda,T.Shibayama,H.Minami,H.Nishiquchi,Y.Takita,Intermediate Temperature Solid Oxide Fuel Cells using a New LaGaO_3 Based Oxide Ion Conductor I.Doped SmCoO_3 as a New Cathode Material,J.Electrochem.Soc.145(1998)3177-3183.
    [10]H.Fukunaga,M.Koyama,N.Takahashi,C.Wen,K.Yamada,Reaction model of dense Sm_(0.5)Sr_(0.5)CoO_3 as SOFC cathode,Solid State Inoics 132(2000)279-285.
    [11] C. Xia, W. Rauch, F. Chen, M. Liu, Sm_(0.5)Sr_(0.5)CoO_3 cathodes for low-temperature SOFCs, Solid State Inoics 149 (2002) 11-19.
    [12] N. P. Bansal, Z. Zhong, Combustion synthesis of Sm_(0.5)Sr_(0.5)CoO_(3-x) and La_(0.6)Sr_(0.4)CoO_(3-x) nanopowders for solid oxide fuel cell cathodes, J. Power Sources 158(2006)148-153.
    [1]H.Tu,U.Stimming,Advances,aging mechanisms and lifetime in solid-oxide fuel cells,J.Power Sources 127(2004)284-293.
    [2]J.Van herle,R.Ihringer,R.V.Cavieres,L.Constantin,O.Bucheli,Anode supported solid oxide fuel cells with screen-printed cathodes,J.Eur.Ceram.Soc.21(2001)1855-1859.
    [3]F.Tietz,F.J.Dias,D.Simwonis,D.Stover,Evaluation of commercial nickel oxide powders for components in solid oxide fuel cells,J.Eur.Ceram.Soc.20(2000)1023-1034.
    [4]F.Gutierrez-Mora,J.M.Ralph,J.L.Poutbort,High-temperature mechanical properties of anode-supported bilayers,Solid State Ionics 149(2002)177-184.
    [5]Y.Zhang,S.Zha,M.Liu,Dual-scale Porous Electrodes for Solid Oxide Fuel cells from Polymer Foams,Adv.Mater.17(2005)487-491.
    [6]D.Zou,V.Derlich,K.Gandhi,M.Park,L.Sun,D.Kriz,Y.D.Lee,G.Kim,J.J.Aklonis,R.Salovey,Model Filled Polymers.I.Synthesis of Crosslinked Monodisperse Polystyrene Beads,Journal of Polymer Science:Part A:Polymer Chemistry 28(1990)1909-1921.
    [7]J.G.Li,T.Ikegami,T.Mori,Low temperature processing of dense samarium-doped CeO_2 ceramics:sintering and grain growth behaviors,Acta Materialia 52(2004)2221-2228.
    [8]J.H.Nam,D.H.Jeon,A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells,Electrochimica Acta 51(2006)3446-3460.
    [9]T.Ishida,F.Iguchi,K.Sato,T.Hashida,H.Yugami,Fracture properties of (CeO_2)_(1-x)(RO_(1.5))_x(R=Y,Gd,and Sm;x=0.02-0.20)ceramics,Solid State Ionics 176(2005)2417-2421.
    [1]J.Fleig,Solid Oxide Fuel Cell Cathode:Polarization Mechaniama and Modeling of the Electrochemical Performance,Annu.Rev.Mater.Res.33(2003)361-382.
    [2]Z.Shao,S.M.Haile,A high-performance cathode for the next generation of solid-oxide fuel cells,Nature 143(2004)170-173.
    [3]C.Xia,M.Liu,Low-temperature SOFCs based on Gd_(0.1)Ce_(0.9)O_(1.95)fabricated by dry pressing,Solid State Inoics 144(2001)249-255.
    [4]J.M.Serra,H.P.Buchkremer,On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell(IT-SOFC)cathodes,J.Power Sources 172(2007)768-774.
    [5]N.P.Brandon,S.Skinner,B.C.Steele,Recent advances materials for fuels,Annu.Rev.Mater.Res 33(2003)183-213.
    [6]C.Xia,M.Liu,Novel cathodes for low-temperature solid oxide fuel cell,Adv.Mater.14(2002)521-523.
    [7]N.T.Hart,N.P.Brandon,M.J.Day,N.Lapena-Rey,Functionally graded composite cathodes for solid oxide fuel cells,J.Power Sources 106(2002)42-50.
    [8] M. Ni, M. K. H. Leung, D. Y. C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes, J. Power Sources 168 (2007) 369-378.
    [9] Y. Liu, C. Compson, M. Liu, Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources 138 (2004) 194-198.
    [10] J. M. Serra, S. Uhlenbruck, W. A. Meulenberg, H. P. Buchkremer, D. Stover, Nano-structuring of solid oxide fuel cells cathodes, Top. Catal. 40 (2006) 123-131.
    [11] D. Beckel, A. Dubach, A. R. Studart, L. J. Gauckler, Spray pyrolysis of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ) thin film cathodes, J. Electroceram 16 (2006) 221-228.
    [12] Y. Liu, S. Zha, M. Liu, Novel nanostructured Electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD), Adv. Mater. 16 (2004) 256-260.
    [13] S. P. Jiang, Activation, microstructure, and polarization of solid oxide fuel cell cathodes, J. Solid State Electrochem 11 (2007) 93-102.
    [14] Y. Liu, W. Rauch, S. Zha, M. Liu, Fabrication of Sm_(0.5)Sr_(0.5)CoO_3-δ-Sm_(0.1)Ce_(0.9)O_(2-δ) cathodes for solid oxide fuel cells using combustion CVD, Solid State Ionics 166 (2004)261-268.
    [15] K. Chen, Z. Lu, N. Ai, X. Huang, Y. Zhang, X. Ge, X. Xin, X. Chen, W. Su, Fabrication and performance of anode-supported YSZ films by slurry spin coating, Solid State Ionics 177 (2007) 3455-3460.
    [16] N. Ai, Z. Lii, K. Chen, X. Huang, Y. Liu, R. Wang, W. Su, Preparation of Sm_(0.2)Ce_(0.8)O_(1.9) membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC, J. Membrane Sci. 286 (2006) 255-259.
    [17] E. P. Murray, S.A. Barnett, (La,Sr)MnO_3-(Ce,Gd)O_(2-x) composite cathodes for solid oxide fuel cells, Solid State Inoics 143 (2001) 265-273.
    [18] X. Zhang, M. Robertson, S. Yick, C. Deces-Petit, E. Styles, W. Qu, Y. Xie, R. Hui, J. Roller, O. Kesler, R. Maric, D. Ghosh, Sm_(0.5)Sr_(0.5)CoO_3 + Sm_(0.2)Ce_(0.8)O_(1.9) composite cathode for cermet supported thin Sm_(0.2)Ce_(0.8)O_(1.9) electrolyte SOFC operating below 600 °C, J. Power Sources, 160 (2006) 1221-1216.
    [19] T. Matsui, T. Kosaka, M. Inaba, A. Mineshige, Z. Ogumi, Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes, Solid State Ionics 176 (2005) 663-668.
    [20] M. Liu, H. Hu, Effect of interfacial resistance on determination of transport properties of mixed-conducting electrolytes, J. Electrochem. Soc, 143 (1996) 109-112.
    [21] Y. Wang, H. Nie, S. Wang, T. Wan, U. Guth, V. Valshook, A_(2-α)A'_α BO_4-type oxides as cathode materials for IT-SOFCs (A=Pr, Sm; A'=Sr; B=Fe, Co), Materials Letters 60(2006)1174-1178.
    [22]R.Peng,C.Xia,Q.Fu,G.Meng,D.Peng,Sintering and electrical properties of (CeO_2)_(0.8)(Sm_2O_3)_(0.1)powders prepared by glycine-nitrate process,Materials letters 56(2002)1043-1047.
    [1]H.Tu,U.Stimming,Advance,aging mechanisms and lifetime in solid-oxide fuel cells,J.Power Sources 127(2004)284-293.
    [2]S.Park,J.M.Vohs,R.J.Gorte,Direct oxidation of hydrocarbons in a solid-oxide fuel cell,Nature 404(2000)265-267.
    [3]E.P.Murray,T.Tsai,S.A.Barnett,A direct-methane fuel cell with a ceria-based anode,Nature 400(1999)649-651.
    [4]B.Zhu,Advantages of intermediate temperature solid oxide fuel cells for tractionary applications,J.Power Sources 93(2001)82-86.
    [5]J.B.Wang,J.-C.Jang,T.-J.Huang,Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells,J.Power Sources 122(2003)122-131.
    [6]K.Sasaki,Y.Teraoka,Equilibria in Fuel Cell Gas Ⅱ.The C-H-O Ternary Diagrams,J.Electrochem.Soc.150(2003)A885-A888.
    [7]Z.Xie,C.Xia,M.Zhang,W.Zhu,H.Wang,Ni_(1-x)Cu_x alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel,J.Power Sources 161(2006)1056-1061.
    [8]W.Zhu,C.Xia,J.Fan,R.Peng,G.Meng,Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells, J. Power Sources 160(2006)897-902.
    [9] R. J. Gorte, S. Park, J. M. Vohs, C. Wang, Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell, Adv. Mater. 12 (2000) 1465-1469.
    [10] R. J. Gorte, J. M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon, J. Catal. 216 (2003) 477-486.
    [11] B. C. H. Steele, Fuel-cell technology Running on natural gas, Nature 400 (1999) 619-620.
    [12] T. -J. Huang, S. -Y. Jhao, Ni-Cu/samaria-doped ceria catalysts for steam reforming of methane in the presence of carbon dioxide, Appl. Catal. A: Gen. 302(2006) 325-332.
    [13] T. -J. Huang, T. -C. Yu, S. -Y. Jhao, Weighting Variation of Water-Gas Shift in Steam Reforming of Methane over Supported Ni and Ni-Cu Catalysts, Ind. Eng. Chem. Res. 45 (2006) 150-156.
    [14] C. Xia, M. Liu, Low-temperature SOFCs based on Gd_(0.1)Ce_(0.9)O_(1.95) fabricated by dry pressing, Solid State Ionics 144 (2001) 249-255.
    [15] D. Zou, V. Derlich, K. Gandhi, M. Park, L. Sun, D. Kriz, Y. D. Lee, G Kim, J. J. Aklonis, R. Salovey, Model Filled Polymers. I. Synthesis of Crosslinked Monodisperse Polystyrene Beads, J. Polym. Sci. Polym. Chem. 28 (1990) 1909-1921.
    [16] S. Jung, C. Lu, H. He, K. Ann, R. J. Gorte, J. M. Vohs, Influence of composition and Cu impregnation method on the performance of Cu/CeO /YSZ anodes, J. Power Sources 154 (2006) 42-50.
    [17] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, Active Cu/ZnO and Cu/ZnO/Al_2O_3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Appl. Catal. A: Gen. 263 (2004) 249-253.
    [18] G. J. de A. A. Soler-Illia, R. J. Candal, A. E. Regazzoni, M. A. Blesa, Synthesis of Mixed Copper-Zinc Basic Carbonates and Zn-Doped Tenorite by Homogeneous Alkalinization, Chem. Mater. 9 (1997) 184-191.
    [19] A. Ringuede, D. P. Fagg, J. R. Frade, Electrochemical behaviour and degradation of (Ni,M)/YSZ cermet electrodes (M=Co,Cu,Fe) for high temperature applications of solid electrolytes, J. Eur. Ceram. Soc. 24 (2004) 1355-1358.
    [20] S. P. Yoon, J. Han, S. W. Nam, T. -H. Lim, S. -A. Hong, Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel, J. Power Sources 136 (2004) 30-36.
    [21] J. B. Wang, W. -H. Shih, T. -J. Huang, Study of Sm_2O_3-doped CeO_2/Al_2O_3-supported copper catalyst for CO oxidation, Appl. Catal. A: Gen. 203(2000)191-199.
    [1]E.Ramirez-Cabrera,A.Atkinson,D.Chadwick,Catalytic steam reforming of methane over Ce_(0.9)Gd_(0.1)O_(2-x),Appl.Catal.B:Environ.47(2004)127-131.
    [2]S.Poulston,P.M.Parlett,P.Stone,M.Bowker,Surface oxidation and reduction of CuO and Cu2O studies using XPS and XAES,Surface and interface analysis 14(1996)811-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700