CDC25B小分子抑制剂的发现及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CDC25蛋白酪氨酸酯酶(cell division cycle 25,CDC25)属于高保守的双位点磷酸酯酶,它通过对CDK(cyclin-dependent kinase)复合物某些磷酸化位点去磷酸化来活化它,促使细胞过渡到下一个周期,从而参与了细胞周期调控,同时它是损伤修复通路中的重要组成部分,对于遗传信息的稳定起着重要作用。在许多癌症的组织中,CDC25是异常高表达的,而且有一些证据表明,这种高表达可能对于肿瘤的发展起着促进作用。而如果下调CDC25的表达的话,会引起细胞周期阻滞,从而抑制细胞增殖。所以CDC25现在已经被当作了一个潜在的药物作用靶点。
     我们从大肠杆菌系统中成功表达并纯化得到重组的CDC25B,并建了CDC25B高通量筛选模型,对国家新药筛选中心的48000个化合物进行了筛选,发现了两个新颖的CDC25B的抑制剂—LGH00031和LGH00045。其中LGH00031是不可逆的抑制剂,LGH00045是有较好选择性的、可逆的、混合型的抑制剂。在细胞水平对它们进行评价发现,它们能抑制细胞增殖,引起细胞的G2/M期阻滞,同时抑制了CDK115位酪氨酸的去磷酸化。对LGH00031的作用机制进行了研究,发现了LGH00031在体外是通过与DTT反应产生ROS带来的这种抑制作用,在细胞中LGH00031能够诱导产生ROS,ROS的清除剂—谷胱甘肽的前体NAC能够削弱LGH00031在细胞中的作用。推测LGH00031在细胞中带来的CDC25B的抑制是通过与细胞中的二氢硫辛酸反应产生ROS而引起的。
     这两个高活性的新型小分子CDC25B抑制剂的发现、相关抑制性质的研究以及在细胞水平的生物活性评价,为其进一步结构优化和药理学、药效学研究打下坚实的基础,这对于进一步理解选择性所依存的分子机制及寻找高效特异的PTPs抑制剂有着重要的意义,同时也为更加广泛地研究VHR的生理及病理功能提供了有力的工具。
     另外工作是有关烟酸保护胰岛β细胞的研究,发现烟酸能够保护链脲佐菌素(STZ)诱导的糖尿病大鼠的β细胞,这个作用可能有烟酸的抗氧化应激作用有关。
Cell division cycle 25(CDC25)phosphatases regulate key transitions between cell cycle phases during normal cell division by dephosphorylating and activating the CDK(cyclin-dependent kinase)complexes.And in the event of DNA damage they are the targets of the checkpoint machinery that ensures genetic stability.Since then,CDC25 was reported to be overexpressed in primary tissue samples from various human cancers.Some evidences suggested that the overexpression of CDC25 may contribute to cancer.And down-regulation of CDC25 caused cell cycle arrest and inhibition of cell proliferation.These in turn make them ideal targets for a new anticancer therapy.
     We purified recombinant CDC25B expressed in Escherichia coli. High-through screening(HTS)assay was set up to find out novel inhibitors of CDC25B from 48000 pure chemicals collected from different sources with wide structural diversity of National Center for Drug Screening.LGH00031 and LGH00045 were discovered and characterized.LGH00031 was thought to be an irreversible inhibitor,and LGH00045 was a reversible and mixed-type inhibitor of CDC25 with relative good selection.The studies in cellular levels showed that both of the inhibitors caused a G2/M phase arrest which in turn resulted in the inhibition of cell proliferaton,and inhibited dephosphorylation of Tyr15 of CDK1. The mechanism of the inhibition of LGH00031 against CDC25B was also studied here.The result showed that in vitro the inhibition was caused by ROS which was generated by the reaction of LGH00031 and DTT.In cultured cells,LGH00031 increased the generation of ROS,and NAC,a precursor of glutathione,impaired the action of LGH00031 in cells.The generation of ROS by the reaction of LGH00031 and dihydrolipoic acid was conjectured,which may be the reason that LGH00031 inhibited CDC25B in the absence of DTT in cultured cells.
     The discovery and characterization of the novel potent and selective inhibitor as well as its evaluation in cellular levels will be ground work for further structure modification,cell-based and animal-based pharmacological and efficacy studies in the future.It might be extremely powerful tools to exploit the physiological and pathological function of CDC25B.
     Another part of work is the study on the protection of isletsβcells by nicotinic acid.Nicotinic acid could protect isletβcells of streptozocin induced diabetic rats.This protection may be relative to the anti-oxidative stress of nicotinic acid.
引文
1. van Huijsduijnen RH., Bombru A., Swinnen D., et al. Selecting protein tyrosine phosphatases as drug targets. Drug Discov Today, 2002,7,1013-1019.
    2. Tonks NK., Diltz CD., Fisher EH. Purification of the major protein-tyrosine phosphotase of human placenta. J Biol Chem, 1988, 263, 6731-6737.
    3. Elchebly M., Payette P., Michaliszyn E., et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283,1544-1548.
    4. Alonso A., Sansin J., Mustelin T. Protein tyrosine phosphatases in the human genome, Cell, 2004,117, 699-711.
    5. Alonso A., Bogetz J., Narizawa S., et al. VHY, a novel, myristylated, testis-restricted, dual-specific protein phosphataserelated to VHX. J Biol Chem, 2004,
    6. Rose Boutros, Valerie Lobjois and Bernard Ducommun. CDC25 phosphatases in cancer cells: key players? Good targets? Nature reviews Cancer 2005; 7: 495-507.
    7. Boudolf, V, Inze, D. & De Veylder, L. What if higher plants lack a CDC25 phosphatase? Trends Plant Sci. 2006,11, 474 - 479.
    8. Galaktionov, K. & Beach, D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 1991,67, 1181 - 1194.
    9. Sadhu, K., Reed, S. I., Richardson, H. & Russell, P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. NatI Acad. Sci. USA 1990, 87,5139 - 5143.
    10. Nagata, A., Igarashi, M., Jinno, S., Suto, K. & Okayama, H. An additional homolog of the fission yeast cdc25 gene occurs in humans and is highly expressed in some cancer cells. The new Biologist 1991, 3,959 - 968.
    11. Wegener, S., Hampe, W., Herrmann, D. & Schaller, H. C. Alternative splicing in the regulatory region of the human phosphatases CDC25A and CDC25C. Eur. J. Cell Biol. 2000, 79,810 - 815.
    12. Baldin, V, Cans, C., Superti-Furga, G. & Ducommun, B. Alternative splicing of the human CDC25B tyrosine phoshatase. Possible implications for growth control? Oncogene 1997,14, 2485 - 2495.
    13. The first report that multiple CDC25B variants derive from a single mRNA by alternative splicing events. Forrest, A. R. et al. Multiple splicing variants of cdc25B regulate G2/M progression. Biochem.Biophys. Res. Commun. 1999, 260, 510-515.
    14. Bureik, M. et al. An additional transcript of the cdc25C gene from A431 cells encodes a functional protein. Int. J. Oncol. 2000,17,1251 - 1258.
    15. Malumbres, M. & Barbacid, M. Mammalian cyclindependent kinases. Trends Biochem. Sci. 2005, 30, 630 - 641.
    16. Kaldis, P. The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol. Life Sci. 1999, 55,284 - 296.
    17. Ferguson, A. M., White, L. S., Donovan, P. J. & Piwnica-Worms, H. Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol. Cell Biol. 2005, 25, 2853 - 2860.
    18. Lincoln, A. J. et al. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nature Genet. 2002, 30, 446 - 449.
    19. Dutertre S, et al. Phosphorylation of CDC25B by Aurora2A at the centrosome contributes to the G2/M transition [J]. J Cell Sci, 2004,117 (12): 2523-2531.
    20. De Souza, C. P., Ellem, K. A. & Gabrielli, B. G. Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp. Cell Res. 2000, 257,11 - 21.
    21. Baldin V, Pelpel K, et al. Nuclear localization of CDC25B1 and serine 146 integrity are required for induction of mitosis [J]. J Biol Chem, 2002,277 (38): 35176-35182.
    22. Garner-Hamrick, P. A. & Fischer, C. Antisense phosphoorthioate oligonucleotides specifically downregulate cdc25B causing S-phase delay and persitent antiproliferative effects. Int. J. Cancer 1998,76,720 - 728.
    23. Baldin, V., Cans, C., Knibiehler, M. & Ducommun, B. Phosphorylation of human CDC25B phosphatase by CDK1/cyclin A triggers its proteasome-dependent degradation. J. Biol. Chem. 1997, 272, 32731 - 32735.
    24. Kanemori, Y., Uto, K. & Sagata, N. 6-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc. Natl Acad. Sci. USA 2005,102, 6279 - 6284.
    25. Boutros, R., Dozier, C. & Ducommun, B. The when and wheres of CDC25 phosphatases. Curr. Opin. Cell Biol. 2006,18,185 - 191.
    26. Hermeking, H. & Benzinger, A. 14 - 3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 2006,16, 183 - 192.
    27. Mirey, G. et al. CDC25B phosphorylated by pEg3 localizes to the centrosome and the spindle poles at mitosis. Cell Cycle 2005,4, 806 - 811.
    28. Hurley, P. J. & Bunz, F. ATM and ATR: components of an integrated circuit. Cell Cycle 2007, 6,414 - 417.
    29. Sorensen, C. S. et al. Chkl regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003,3, 247 - 258.
    30. Busino, L. et al. Degradation of Cdc25A by 8-TrCP during S phase and in response to DNA damage. Nature 2003,426, 87-91.
    31. Reinhardt, H. C., Aslanian, A. S., Lees, J. A. & Yaffe, M. B. p53-deficient cells rely on ATM- and ATRmediated checkpoint signaling through the p38MAPK/MK2pathway for survival after DNA damage. Cancer Cell 2007, 11, 175 - 189.
    32. Bugler, B. et al. Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol. Cancer Ther. 2006, 5,1446 - 1451.
    33. Sato, Y. et al. Expression of the cdc25B mRNA correlated with that of N-myc in neuroblastoma. Jpn J. Clin. Oncol. 2001,31,428 - 431.
    34. Galaktionov, K., Chen, X. C. & Beach, D. Cdc25 cellcycle phosphatase as a target of c-myc. Nature 1996, 382,511 - 517.
    35. Ben-Yosef, T., Yanuka, O., Halle, D. & Benvenisty, N. Involvement of Myc targets in c-myc and N-myc induced human tumors. Oncogene 1998, 17, 165 -171.
    36. Hernandez, S. et al. CDC25 cell cycle-activating phosphatases and c-myc expresion in human nonhodgkin's lymphomas. Cancer Res. 1998, 58, 1762 -1767.
    37. Sasaki, H. et al. Expression of the cdc25B gene as a prognosis marker in non-small cell lung cancer. Cancer Lett. 2001,173,187 - 192.
    38. Sato, Y. et al. Expression of the cdc25B mRNA correlated with that of N-myc in neuroblastoma. Jpn J. Clin. Oncol. 2001, 31,428 - 431.
    39. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell Biol. 1999,19, 6379 - 6395.
    40. Spitkovsky, D., Jansen-Dürr, P., Karsenti, E. & Hoffmann, I. S-phase induction by adenovirus E1A requires activation of cdc25A tyrosine phosphatase. Oncogene 1996,12, 2549 - 2554.
    41. Loffler, H. et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 2003, 22, 8063 - 8071.
    42. Alderton, G. K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nature Cell Biol. 2006, 8, 725 - 733.
    43. Gerstein, A. V. et al. APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 2002,34, 9-16.
    44. He, N. et al. Regulation of lung cancer cell growth and invasiveness by β-TRCP. Mol. Carcinog. 2005,42,18 - 28.
    45. Kim, C. J. et al. Somatic mutations of the B-TrCP gene in gastric cancer. Apmis 2007,115,127 - 133.
    46. Galaktionov, K. et al. Cdc25 phosphatases as potential human oncogenes. Science 1995, 269,1575 - 1577.
    47. Ma, Z. Q., Chua, S. S., DeMayo, F. J. & Tsai, S. Y. Induction of mammary gland hyperplasia in transgenic mice over- expressing human cdc25B. Oncogene 1999, 18, 4564 - 4576.
    48. Yao, Y. et al. Increased susceptibility to carcinogeninduced mammary tumors in MMTV- Cdc25B transgenic mice. Oncogene 1999,18, 5159 - 5166.
    49. Karlsson, C., Katich, S., Hagting, A., Hoffmann, I. & Pines, J. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J. Cell Biol. 1999, 146, 573 - 584.
    50. Sexl, V. et al. A rate limiting function of cdc25A for S phase entry inversely correlates with tyrosine dephosphorylation of Cdk2. Oncogene 1999, 18, 573 -582.
    51. Van Vugt, M. A., Bras, A. & Medema, R. H. Polo-like kinase-1 controls recovery from a G2 DNA damageinduced arrest in mammalian cells. Mol. Cell 2004, 15, 799 - 811.
    52. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM-Chk2-CDC25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001,410, 842 - 847.
    53. Kristjansdottir, K., & Rudolph, J. Cdc25 phosphatases and cancer. Chem Biol 2004,11,1043-1051.
    54. Contour-Galcera MO, Sidhu A, Prévost G, Bigg D, Ducommun B. What's new on CDC25 phosphatase inhibitors. Pharmacology & Therapeutics 2007,115 ,1 - 12.
    55. Lazo, J. S., Aslan, D. C., Southwick, E. C., Cooley, K. A., Ducruet, A. P., Joo, B., et al. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J Med Chem 2001, 44, 4042-4049.
    56. Pu, L., Amoscato, A. A., Bier,M. E., & Lazo, J. S. Dual G1 and G2 phase inhibition by a novel, selective Cdc25 inhibitor 7-chloro-6-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione. J Biol Chem 2002, 277,46877- 46885.
    57. Brisson, M., Nguyen, T.,Wipf, P., Joo, B., Day, B.W., Skoko, J. S., et al. Redox regulation of Cdc25B by cell-active quinolinediones. Mol Pharmacol 2005, 68, 1810-1820.
    58. Brezak,M. -C.,Quaranta, M.,Contour-Galcera,M. -O., Lavergne,O.,Mondesert, O., Auvray, P., et al. Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Mol Cancer Ther 2005, 4, 1378-1387.
    59. Cazales,M., Boutros, R.,Brezak,M. -C.,Chaumeron, S., Prevost, G., Ducommun, B. Pharmacologic inhibition of CDC25 phosphatases impairs interphase-microtubule dynamics and mitotic spindle assembly. Mol Cancer Ther 2007, 6, 1-8.
    60. Prevost, G. P., Quaranta, M., Brezak,M. -C., Frongia, C., Sidhu, A., Chaumeron, S., et al. A novel synthetic CDC25 phosphatase inhibitor inhibits human cancer growth in vitro and in vivo. Proc Am Assoc Cancer Res (AACR) 2007, (Abst 3228), 14 - 18.
    61. Wipf, P., Joo, B., Nguyen, T., & Lazo, J. S. Synthesis and biological evaluation of caulibugulones A - E. Org Biomol Chem 2004, 2, 2173- 2174.
    62. Ham, S. W., & Carr, B. I. Cell division cycle 25 (Cdc25) phosphatase inhibitors as antitumor agents. Drug Design Rev Online 2004,1 (123-132).
    63. Kar, S.,Wang, M., Ham, S.W., & Carr, B. I. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK. Cancer Biol Ther 2006, 5,1340-1347.
    64. Cao, S., Foster, C., Brisson, M., Lazo, J. S., & Kingston, D. G.I. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from Xestospongia sp.. Bioorg Med Chem 2005,13, 999-1003.
    65. Erdogan-Orhan, I., Sener, B., De Rosa, S., Perez-Baz, J., Lozach, O., Leost,M., et al. Polyprenyl-hydroquinones and -furans from three marine sponges inhibit the cell cycle regulating phosphatase CDC25A. Nat Prod Res 2004,18,1- 9.
    66. Sohn, J., Kiburz, B., Li, Z., Deng, L., Safi, A., Pirrung, M. C., & Rudolph, J. Inhibition of Cdc25 phosphatases by indolyldihydroxyquinones. J Med Chem 2003, 46, 2580- 2588.
    67. Huang, W. G., Jiang, Y. Y., Li, Q., Li, J, Li, J. Y., Lu, W, et al. Synthesis and biological evaluation of (±)-cryptotanshinone and its simplified analogues as potent CDC25 inhibitors. Tetrahedron 2005, 61,1863-1870.
    68. Craig, A., et al. (2004). Eur J Cancer Suppl 2(8) (Abst 218).
    69. Cheon,H. G.,Kim, S. -M.,Yang, S. -D.,Ha, J.D.,&Choi, J. -K. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: potential development as an antihyperglycemic agent. Eur J Pharmacol 2004, 485, 333- 339.
    70. Gunasekera, S. P., McCarty, P. J., Kelly-Borges, M., Lobkovsky, E., & Clardy, J. Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. J AmChem Soc 1996,118, 8759.
    71. Shimazawa, R., Gochomori, M., & Shirai, R. Design and synthesis of novel Cdc25A-inhibitors having phosphate group as a hydrophilic residue. Bioorg Med Chem Lett 2004,14, 4339- 4342.
    72. Shimazawa, R., Suzuki, T., Dodo, K., & Shirai, R. Design and synthesis of dysidiolide analogs from vitamin D3: novel class of Cdc25A inhibitors. Bioorg Med Chem Lett 2004,14,3291- 3294.
    73. Baurle, S., Blume, T., Günther, J., Henschel,D., Hillig, R. C., Husemann,M., et al. Design and synthesis of macrocyclic inhibitors of phosphatase Cdc25B. Bioorg Med Chem Lett 2004,14,1673-1677.
    74. Cao, S., Foster, G., Lazo, J. S., & Kingston, D. G.I. Sesterterpenoids and an alkaloid from Thorectandra sp. as inhibitors of the phosphatase Cdc25B. Bioorg Med Chem 2005,13,5094- 5098.
    75. Kar, S., Wang, M., Yao, W., Michejda, C. J., & Carr, B. I. PM-20, a novel inhibitor of Cdc25A, induces extracellular signal-regulated kinase 1/2 phosphorylation and inhibits hepatocellular carcinoma growth in vitro and in vivo. Mol Cancer Ther 2006,5,1511-1519.
    76. Cao, S., Foster, C., Lazo, J. S., & Kingston, D. G.I. Four diterpenoid inhibitors of Cdc25B phosphatase from a marine anemone. Bioorg Med Chem 2005, 13, 5830- 5834.
    77. Kim, K. -R., Kwon, J. -L., Kim, J. -S., No,Z., Kim, H. R.,&Cheon, H. G. EK-6136 (3-methyl-4-(O-methyl-oximo)-l-phenylpyrazolin-5-one): a novel Cdc25B inhibitor with antiproliferative activity. Eur J Pharmacol 2005, 528, 37-42.
    78. Qingping Wang, Daniel Dube', Richard W. Friesen, Tammy G.LeRiche, Kevin P. Bateman,Laird Trimble,Joe Sanghara,Rebecca Pollex,Chidambaram Ramachandran,Michael J.Gresser,and Zheng Huang.Catalytic Inactivation of Protein Tyrosine Phosphatase CD45 and Protein Tyrosine Phosphatase 1B by Polyaromatic Quinones.Biochemistry 2004,43,4294-4303.
    79.Larsen M O,Rolin B,Gotfredsen C F,Carr RD,Holst J J.Reduction of beta cell mass:partial insulin secretary compensation from the residual beta cell population in the nicotinamide-streptozotocin Gottingen minipig after oral glucose in vivo and in the perfused pancreas[J].Diabetologia,2004,47:1873-1878.
    80.Bonnefont R D,Bastard J P,Jaudon M C,Delattre J.Consequences of the diabetic status on the oxidant/antioxidant balance[J].Diabetes Metab,2000,26:163-176.
    81.Maritim A C,Sanders R A,Watkins J B.Ⅲ.Diabetes,oxidative stress,and antioxidants:a review[J].J Biochem Mol Toxicol,2003,17,24-38.
    82.杨旭辉,马建慧,朱敏恒,李丽燕,吴越.烟酸抗高脂血症鹌鹑氧自由基和脂质过氧化作用[J].中国药理学通报,2005,21,993-995.
    83.Zhang HX,JIJAKLI H,SENER A.Labeling of lipids by D-[1-14C]glucose,D-[6-14C]glucose and D-[3-3H]glucose in pancreatic islets from normal and GK rats[J].Mol Cell Biochem,2003,252,247-251.
    84.郑燕华,陈崇宏.大蒜素对大鼠急性脑缺血再灌注损伤保护作用的研究[J].中国药理学通报,2004,20,821-823.
    85.Mixhael A.Modified forms of low density lipoprotein and arteriosclerosis[J].Arteriosclerosis,1993,98,1-9.
    86.Yang T T,Koo M W.Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation[J].Arteriosclerosis,2000,148,67-73.
    87.Wang Q D,Pemow J,Sjoquist P O,Ryden L.Pharmacological possibilities for protection against myocardial reperfusion injury[J].Cardiovasc Res,2002,55,25-37.
    88.夏安周,邢淑华,张召辉.银杏叶提取物对肾缺血再灌注损伤的保护作用[J].中国药理学通报,2004,20,839-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700