桩——土相互作用计算模型及其在桩基结构抗震分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种强度高、承载力大、耐久性好的重要深基础形式,桩基础在高层建筑、大型厂房、水利水电枢纽、铁路工程、公路工程、桥梁工程、近海采油平台、核电站等土木、水利工程中得到了广泛应用。但由于桩—土—结构动力相互作用的机理与工作性能极其复杂,目前仍有很多问题没有得到彻底解决。为此,本文紧密围绕桩—土—结构动力相互作用特性研究中存在的主要问题,在单桩的动力阻抗计算方法与简化模型以及单桩、群桩和上部结构的动力响应分析等方面进行了系统而深入的研究。论文的主要研究内容及所取得的研究成果具体包括以下几个方面。
     1.当运用子结构方法分析桩—土—结构体系的动力相互作用特性时,桩基动力阻抗的合理确定是一个关键的问题。本文运用土动力学和结构动力学原理,基于改进的Winkler地基梁模型,同时综合考虑桩周土的弱化效应、地基土的成层非均质性以及水平荷载作用时桩—土界面的相对分离效应和竖向荷载作用时桩—土界面的相对滑移效应,建立了水平荷载和竖向荷载作用下单桩动力阻抗的简化计算力学模型与分析方法,并进行了算例分析,将所得到的计算结果与有限元方法的分析结果及试验结果进行了对比分析,验证了建议分析方法的合理性,进而通过变动参数对比计算与分析,探讨了桩周土域弱化范围与弱化程度、桩—土界面接触状态、桩体长细比和桩—土刚度比等对单桩水平和竖向动力阻抗的影响规律。
     2.单桩的动力响应特性研究是桩—土—结构相互作用分析中的一个重要而基本的内容。本文将桩视为置于Winkler模型地基中的梁,运用土动力学和结构动力学原理,分别对土和桩建立了波动方程与振动微分方程,并利用分离变量法进行求解,建立了能同时考虑桩周土在振动过程中的弱化效应和地基土的成层非均质性的单桩简谐动力响应分析的简化解析方法;通过与有限元计算结果的对比分析,验证了本文简化解析方法的合理性;进而通过变动参数比较分析,探讨了桩周土域弱化范围与弱化程度、地基土层条件、桩体长细比和桩—土刚度比等对单桩水平和竖向简谐动力响应特性的一般影响规律。
     3.群桩是实际工程中普遍采用的桩基形式,由于要考虑桩—土—桩的相互作用效应,因此,群桩的动力响应特性远比单桩的复杂。本文根据动力相互作用系数的基本定义和求解步骤,引入某些假定,分别计算了两根桩之间的水平和竖向动力相互作用系数,并对桩间距与桩直径之比、两桩水平连线与荷载作用方向之间的夹角、桩—土刚度比和桩体长细比等参数对水平和竖向动力相互作用系数的影响进行了计算与分析;然后,运用动力相互作用系数的叠加原理分别对群桩的
    
    水平和竖向动力响应特性进行了分析,得到了群桩的整体位移、群桩的动力阻抗
    和各单桩分担的荷载;最后,针对具有代表性的2x2群桩和3X3群桩进行了算
    例分析。
     4.将桩一土一结构祸合系统按线性体系考虑时,可以直接在频率域上进行动
    力响应分析,但对于非线性体系,由于桩基与上部结构之间的相互作用力表现为
    动力阻抗与输入地震动之卷积积分的形式,且动力阻抗依赖于激振频率,因此,
    在时域上直接进行桩一土一结构动力相互作用体系的地震响应分析就变得十分复
    杂和困难,目前对这个问题的研究尚不成熟。本文在对现有分析方法与计算模型
    综合分析的基础上,提出了一种改进的非线性动力V八刊目er模型,并运用最小二乘
    法,通过Matlab语言编程,确定了模型中各物理元件的参数,将桩基的动力阻抗
    用一系列与频率无关的弹簧、阻尼器、滑动块和集中质量等物理元件按某种串联
    或并联的组合模型来表达,从而为桩一土一结构祸合体系的非线性时域分析奠定
    了基础。
     5.桩一土一结构相互作用体系的抗震性能分析是土木工程实践中一个非常
    复杂而且重要的问题。本文首先运用子结构分析方法,将上述桩基动力阻抗的研
    究成果和改进的非线性动力Winkler模型应用于桩基结构的抗震分析中;为便于进
    行对比验证分析,考虑桩一土相互作用效应,建立了桩基结构地震响应分析的整
    体有限元计算模型,通过对现有计算软件的二次开发,发展了桩一土一结构体系
    地震响应分析的整体有限元计算程序。然后,针对某一工程实例,分别运用子结
    构分析方法和整体有限元数值计算方法对桩一土一结构体系的地震响应特性进行
    了对比计算与分析,研究表明,两种方法所得到的计算结果是基本一致的,同时,
    得到了地震动的频谱特性和输入地震动的加速度幅值对桩基结构地震响应特性的
    影响规律,所得到的计算结果和有关结论将为桩基结构的抗震分析与工程设计提
    供参考依据。
    关键词:桩一土一结构体系;相互作用;单桩;群桩;非均质土层;弱化效应;
     动力响应;动力阻抗;相对分离;相对滑移;动力Winkler模型;有限元
     分析
Because of its high strength, great bearing capacity and fine durability, pile foundations have been widely used in civil construction engineering such as high buildings, large workshops, hydraulic power stations, railways, highway roads, bridges, offshore platforms and nuclear power plants. However the dynamic interaction of pile-soil-structure system is very complex and there are some issues that have not been well solved in engineering practice. An intensive study is required for consideration on dynamic pile-soil-structure interaction effect in the analysis and design of pile-supported structures. Therefore the simplified and yet rational computational method and mechanical model for representation of lateral and vertical dynamic impedance function of piles, numerical method for evaluating dynamic response behavior of the interaction system of single pile or pile group and superstructure are mainly concerned in this dissertation. The main research and results involved in the dissertation includes the following parts.1. As one of the key issues in the study of dynamic behavior of pile-supported structures by the substructure method, the dynamic impedance of pile foundation should be rationally evaluated for considering the effect of soil-pile dynamic interaction. In this dissertation, based on a certain assumptions and the improved dynamic model of beam-on-Winkler's foundation, a simplified mechanical model for computing the lateral and vertical dynamic impedance of single pile embedded in layered soils is established by using the principle of soil dynamics and structural dynamics. The softening effect of soils around pile during vibration and non-homogeneity of soil strata as well as the discontinuous behavior such as the de-bonding and relative slippage along pile-soil interface are simultaneously taken into account. It is shown through comparative study for a given example that the dynamic impedance of single pile numerically computed by the proposed method are relatively rational and can well agree with the computational and experimental results currently available. Finally the parametric studies are made for a wide ranges of main varied parameters involved to examine the effect of the softening area and softening degree of soils around pile, the contact conditions of pile-soil interface, the slenderness ratio of pile and the pile-soil stiffness ratio on dynamic impedances of single pile embedded in layered non-homogeneous soils.2. The dynamic response characteristics of single pile is one of the most important aspects in the study of dynamic pile-soil-structure interaction. In this dissertation, considering the softening effect of soils around pile and the non- homogeneity of soil strata simultaneously, a simplified analytical method for computing the lateral and vertical dynamic response characteristics of single pile to harmonic excitation is established. It is shown through the illustrative studies on a given example that the dynamic response of single pile numerically computed by the proposed method are rather reasonable and can well agree with the numerical solutions gained from finite element analysis by using well-known software. Finally the parametric studies are made for a wide range of main varied parameters to examine the effects of the softening area and softening degree of soils around pile, the mechanical conditions of soil strata, the slenderness ratio of pile and the pile-soil stiffness ratio on dynamic response characteristics of single pile embedded in non-homogeneous layered soils to harmonic loading with different excitation frequencies.3. In engineering practice, pile group is a widely applied form of pile foundation. Since the pile-soil-pile interaction effect should be taken into account for pile group, the dynamic response characteristics of pile group are much more complex than that of
    
    single pile. Based on the definition and solving procedures of dynamic interaction coefficient and a certain assumptions, lateral and vertical dynamic interaction coefficients of two piles are compute
引文
[1] 陈云敏.桩基动力学及其工程应用[A].见:刘汉龙主编,第六届全国土动力学学术会议论文集[C].北京:中国建筑工业出版社,2002,60-66.
    [2] Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnieal Journal, 1974, 11: 574-598.
    [3] Novak M. Vertical vibration of floating piles[J]. Journal of Engineering Mechanics Division, ASCE, 1977, 103(EM1): 153-168.
    [4] Novak M. Piles under dynamic loads[A]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], St. Louis, Missouri, 1991, 2433-2456.
    [5] 刘宗贤,李玉亭.桩基础在阻尼与分层弹性地基场地土波动影响下的横向地震反应分析[J].地震工程与工程振动,1994,14(3):47-59.
    [6] 王慧,杨光辉,张鸿儒.桩-土体系运动相互作用参数分析[J].工程力学.1998,(增):527-533.
    [7] 何玉敖.水平振动时的桩-土相互作用[J].建筑结构学报,1981,(3):63-74.
    [8] Novak M. Dynamic impedance of Piles[J]. Canadian Geotechnical Journal, 1974, 10(4): 486-497.
    [9] Novak M. Soil-pile interaction[A]. Proceedings of 6th World Conference on Earthquake Engineering[C], New Delhi, 1977, 4: 97-102.
    [10] Novak M, Aboul-Ella F. Impendance functions of piles in layered media[J]. Journal of Geotechnical Engineering, ASCE, 1978, 104(6): 643-661.
    [11] Novak M, Sheta M. Approximate approach to contact effect of piles in dynamic response of pile[A]. Proceedings of Geotechnical Engineering Division, ASCE National Convention[C], Florida, 1980, 53-79.
    [12] Kondner R L. Hyperbolic stress strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1963, 89-96.
    [13] Naggar E I, Novak M. Nonlinear model for dynamic axial pile response[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(2): 308-329.
    [14] Gazetas G, Fan K, Kaynia A. Dynamic response of pile groups with different configuration[J]. Soil Dynamics and Earthquake Engineering, 1993, 12: 239-257.
    [15] Gazetas G, Mylonakis G, Nikolaou A. Simple methods for the seismic response of piles applied to soil-pile-bridge interaction[A]. Proceedings of 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], St. Louis, Missouri, 1995, 1547-1556.
    [16] 陈云敏,陈仁朋,朱斌.打桩过程中桩的横向振动分析[J].振动工程学报,2001,14(2):215-219.
    
    [17] 蒯行成,沈蒲生,陈军.一种用于桩基础动力相互作用的桩单元复刚度矩阵[J].土木工程学报,1998,31(5):48-55.
    [18] 范敏,解明雨,邬瑞锋.土—桩—结构相互作用体系的非线性地震反应分析[J].地震工程与工程振动,1985,15(3):6-12.
    [19] Blaney G W, Kausel E, Roesset J M. Dynamic stiffness of piles[A]. Proceedings of 2nd International Conference on Numerical Method in Geomechanics[C], 1976, Ⅱ: 1001-1012.
    [20] Berger E, Mahin S A, Pyke R. Simplified method for evaluating soil-pile-structure interaction effects[A]. Proceedings of 9th Offshore Technology Conference[C], 1977, 589-601.
    [21] Kagawa T, Kraft L M. Seismic p-y response of flexible piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(GTS): 965-978.
    [22] Angelides D C, Roesset J M. Nonlinear lateral dynamic stiffness of piles[J]. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(GT11): 1015-1032.
    [23] 赵振东,傅铁铭.桩头侧向集中荷载作用下桩—土系统的非线性动力性能分析[J].地震工程与工程振动,1997,17(3):47-59.
    [24] 雷国辉,赵维炳,施建勇.锤击打入桩与土的共同作用分析[J].河海大学学报,1999,27(2):55-59.
    [25] 张崇文,赵剑明,张社荣.桩—土作用的动力非线性反应层元法[J].岩土工程学报,1996,18(4):1-10.
    [26] 姜忻良,黄艳,丁学成.相邻建筑物—桩基—土相互作用[J].土木工程学报,1995,28(5):32-37.
    [27] 肖晓春,迟世春,林皋.横向荷载作用下柔性桩桩—土相互作用的有限元分析[A].见:栾茂田主编,第七届全国岩土力学数值分析与解析方法讨论会文集[C].大连:大连理工大学出版社,2001,102-106.
    [28] Kobayashi K, Yao S, Yoshida N. Dynamic compliance of pile group considering nonlinear behavior around piles[A]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], St. Louis, Missouri, 1991, 785-792.
    [29] Nomura S, Shamoto Y, Tokimatsu K. Soil-pile-structure interaction during liquefaction[A]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], St. Louis, Missouri. 1991, 743-750.
    [30] 楼梦麟,王文剑,马恒春,朱彤.土—桩—结构相互作用体系的振动台模型试验[J].同济大学学报,2001,29(7):763-768.
    [31] Tajimi H. Seismic effects on piles[A]. The Ninth International Conference on Soil Mechanics and Foundation Engineering[C], Tokyo, 1977: 15-26.
    [32] 孔德森,栾茂田,杨庆.桩—土—结构动力相互作用分析研究[A].见:周晶主编,中国水利水电工程未来与发展[C],大连:大连理工大学出版社,2002:421-425.
    [33] 孔德森,栾茂田.考虑桩土相对分离效应的单桩水平动力阻抗计算方法[A].见:吴胜兴主编,全国土木工程研究生学术论坛论文集[C],南京:河海大学出版社,2003,332-337
    [34] Nielsen M T. Resistance of a soil layer to horizontal vibration of a pile[J]. Earthquake Engineering and Structural Dynamics. 1982, 10: 497-510.
    
    [35] 胡安峰.桩基水平振动理论与性状研究[D].杭州:浙江大学博士学位论文,2002.
    [36] Novak M, Grigg R F. Dynamic experiment with small foundations[J]. Canadian Geotechnical Journal, 1976, 13: 251-256.
    [37] H. K. S Inc.,庄茁等译.ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998.
    [38] 邱流潮.混凝土坝—可压缩库水—淤砂—地基系统非线性地震反应分析研究[D].北京:清华大学博士学位论文,2003.
    [39] 魏峰先.大圆筒结构承载力的极限分析及有限元分析[D].大连:大连理工大学硕士学位论文,2003.
    [40] Novak M, Nogami T. Soil-pile interaction in horizontal vibration[J]. Earthquake Engineering and Structural Dynamics, 1977, 5: 263-281.
    [41] 周抚生,李春龙.考虑桩土动力相互作用效应时单桩水平刚度的分析[J].大庆石油学院学报,1999,23(1):67-70.
    [42] Novak M, Aboul-Ella F. Stiffness and damping of piles in layered media[A]. Proceeding of Earthquake Engineering and Soil Dynamics, ASCE[C]. Pasadena, CA, 1978: 704-719.
    [43] Novak M, Sharmouby B E I. Stiffness constants of single piles[J]. Journal of Geotechnical Engineering, ASCE. 1983, 109(7): 961-974.
    [44] Veletsos A S, Dotson K W. Impedances of soil layer with disturbed boundary zone[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(3): 363-368.
    [45] Han Y C, Sabin C C W. Impedances for radially inhomogeneous viscoelastic soil media[J]. Journal of Engineering Mechanics, ASCE, 1995, 121 (9): 939-947.
    [46] Nogami T, Konagai K. Time domain axial response dynamically loaded single piles[J]. Journal of Engineering Mechanics, 1986, 112(11): 1241-1252.
    [47] Nogami T, Konagai K. Dynamic response of vertically loaded nonlinear pile foundations[J]. Joural of Engineering Mechanics, 1987, 113(2): 147-160.
    [48] Nogami T, Otani J., Konagai K., Hsiao-Lian C. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Joural of Engineering Mechanics, 1992, 118(1): 89-106.
    [49] Nogami T, Novak M. Soil-pile interaction in vertical vibration[J]. Earthquake Engineering and Structure Dynamics, 1976, 4: 277-293.
    [50] Gazetas G, Dobry R. Horizontal response of piles in layered soils[J]. Joural of Geotechnical Engineering, 1984, 110(1): 20-40.
    [51] Gazetas G, Fan K, Kaynia A, Kausel E. Dynamic interaction factors for floating pile groups[J]. Joural of Geotechnical Engineering, ASCE, 1991, 117(10): 1531-1548.
    [52] Dobry R, Gazetas G. Simple method for dynamic stiffness and damping of floating pile groups[J]. Geotechnique, 1988, 38(4): 557-574.
    [53] Dobry R, Vincente E. Horizontal stiffness and damping of single piles[J]. Joural of the Geotechnical Engineering, ASCE, 1982, 108(GT3): 439-459.
    [54] Penzien J. Earthquake Engineering[M]. New Jersey: Prentice-Hall Inc., 1970, 349-381.
    [55] Poulos H G. Behavior of laterally loaded piles[J]. Journal of Geotechnical Engineering, ASCE, 1979, (GT12): 1489-1509.
    [56] Wolf J P, Von-Arx G A. Impedance functions of a group of vertical piles[A]. Proceeding of ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics[C], Pasadena, 1978, Ⅱ: 1024-1041.
    [5
    
    [57] Wolf J P, Weber B. Approximate dynamic stiffness of embedded foundation based on independent thin layers with separation of Soil[A]. Proceeding of the Eighth European Conference on Earthquake Engineering[C], Lisbon, 1986, 2: 33-40.
    [58] 楼梦麟,吴京宁.桩基—结构体系的地震响应分析[J].土木工程学报,1999,32(5):56-61.
    [59] 王文剑,楼梦麟.变参数土层中单桩水平动力阻抗的简化计算[J].同济大学学报,2000,28(2):241-245.
    [60] He Y A. The mixed boundary problem of soil-pile interaction[J]. Soil Dynamics and Earthquake Engineering, 1990, 9(1): 20-24.
    [61] 严士超,李延涛.竖向地震作用下结构—群桩—土相互作用[J].振动工程学报,1991,4(2):10-21.
    [62] 王霓,严士超.土—群桩—结构系统动力特性及相互作用地震反应分析[J].建筑结构学报,1990,11(3):61-79.
    [63] 陈国兴,谢群斐,张克绪.桩和群桩的静刚度及动力阻抗[J].世界地震工程,1995,2:45-50.
    [64] 蒯行成,沈蒲生.层状介质中群桩水平动力阻抗的简化计算方法[J].振动工程学报,1998,11(3):258-264.
    [65] 蒯行成,沈蒲生.层状介质中群桩竖向和摇摆动力阻抗的简化计算方法[J].土木工程学报,1999,32(5):62-69.
    [66] 蒯行成.桩基结构系统地震反应分析[A].见:刘汉龙主编.土动力学与岩土地震工程[C].北京:中国建筑工业出版社,2002:304-308.
    [67] 李耀庄,邓子胜.单桩和群桩动力阻抗研究进展[J].五邑大学学报,2000,14(2):7-11.
    [68] 胡昌斌.考虑土竖向波动效应的桩土纵向耦合振动理论[D].杭州:浙江大学博士学位论文,2003.
    [69] Kuhlemyer R L. Vertical vibration of piles[J]. Journal of Geotechnical Engineering, ASCE, 1979, 105(2): 273-287.
    [70] Kuhlemyer R L. Static and dynamic laterally loaded floating piles[J]. Journal of Geotechnical and Geoenvirnomental Engineering, ASCE, 1979, 102(GT2): 289-304.
    [71] Rajapakse R K N D. Response of axially loaded elastic pile in a gibson soil[J]. Geotechnique, 1990, 40: 237-249.
    [72] Rajapakse R K N D, Shah A H. Impedance curves for an elastic pile[J]. Soil Dynamic and Earthquake Engineering, 1989, 8(3): 145-152.
    [73] Novak M, Han Y C. Impedances of soil layer with boundary zone[J]. Journal of Geotechnical Engineering, ASCE, 1990, 116(6): 1008-1012.
    [74] Gazetas G, Dobry R. Simple radiation damping model for piles and footings[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1984, 110(6): 937-956.
    [75] Rojas E, Valle C, Romo M P. Soil-pile interface model for axially loaded single piles[J]. Soils and Foundations, 1999, 39(4): 35-45.
    [76] Nogami T, Fenzhi R, Jen-wha C, Alfred B. Vertical vibration of pile in vibration-induced excess pore pressure field[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(5): 422-429.
    [7
    
    [77] Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, ASCE, 1999, 125(9): 1048-1055.
    [78] 王奎华.基桩纵向振动理论与外插并口式检测系统(EPPDS)[D].杭州:浙江大学博士学位论文,1997.
    [79] 王奎华.桩的纵向振动理论与外插并口式检测系统(EPPDS)(续)[D].杭州:浙江大学博士后研究报告,1999.
    [80] 王宏志.冲击荷载作用下桩的纵向和横向动力响应[D].杭州:浙江大学博士学位论文,2001.
    [81] 刘东甲.纵向振动桩侧壁切应力频率域解及其应用[J].岩土工程学报,2001,23(5):544-546.
    [82] 徐攸在,刘兴满.桩的动测新技术[M].北京:中国建筑工业出版社,1989。
    [83] 柴华友.桩土相互作用对基桩定量分析的影响[J].岩土力学,1996,17(4):41-47.
    [84] Konagai K, Nogami T. Time domain axial response of dynamically loaded piles groups[J]. Journal of Engineering Mechanics, ASCE, 1987, 113(3): 417-430.
    [85] Mammoon S M, Banerjee P K. Time domain analysis of dynamically loaded single piles[J]. Journal of Engineering Mechanics, ASCE, 1992, 118(EM1): 140-160.
    [86] Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique, 1999, 49(1): 91-109.
    [87] 孔德森,栾茂田.单桩竖向动力阻抗计算方法及其影响因素分析[J].大连理工大学学报,2004,44(4):560-565.
    [88] 孔德森,栾茂田,杨庆,王志云.考虑桩土相对滑移效应的单桩竖向动力阻抗计算方法[A].第九届全国土力学与岩土工程学术会议论文集[C],北京:清华大学出版社,2003:235-265.
    [89] Dotson K W, Veletsos A S. Vertical and torsion impedance for radially inhomogeneous viscoelastic soil layers[J]. Soil Dynamics and Earthquake Engineering, 1990, 9(3): 110-119.
    [90] 陈仁朋,梁国钱,俞济棠,陈云敏.考虑桩土相对滑移的单桩和群桩的非线性分析[J].浙江大学学报,2002,36(6):668-673.
    [91] Akiyoshi T. Soil-pile interaction in vertical vibration induced through a frictional interface[J]. Earthquake Engineering and Structural Dynamics, 1982, 10: 135-148.
    [92] Miller R K. An approximate method of analysis of the transmission of elastic waves through a frictional boundary[J]. Journal of Applied Mechanics, 1977, 44: 652-656.
    [93] Miller R K. The effect of boundary friction on the propagation of elastic waves[J]. Journal of Applied Mechanics, 1978, 45: 987-998.
    [94] Miller R K, Tran H T. Reflection, refraction and absorption of elastic waves at a frictional interface: SH motion[J]. Journal of Applied Mechanics, 1979, 46: 625-630.
    [95] Iwan W D, I-Min Y. Application of statistical linearization techniques to nonlinear multidegree-of-freedom systems[J]. Journal of Applied Mechanics, 1972, 39: 546-550.
    [96] Potyondy G J. Skin friction between various soils and construction materials[J]. Geotechnique, 1961, 11: 339-353.
    
    [97] Iwan W D. On the steady-state response of a one-dimensional yielding continuum[J]. Journal of Applied Mechanics, 1970, 37: 720-727.
    [98] Nozoe H, Fukusumi T. Transfer matrix approach for nonlinear pile group response analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9: 299-316.
    [99] Kaynia A M. Characteristics of the dynamic response of pile groups in homogeneous and nonhomogeneous media[A]. Proceedings of Ninth World Conference on Earthquake Engineering[C], Tokyo-Kyoto, Japan, 1988, Ⅲ: 575-580.
    [100] Kobayashi N, Yao S, Yoshida N. Dynamic compliance of pile group considering nonlinear behavior around piles[A]. The Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], Louis, 1991: 785-792.
    [101] Nogami T, Konagai K, Otani J. Nonlinear time domain numerical model for pile group under transient dynamic forces[A]. The Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], Louis, 1991: 881-888.
    [102] Yingcai H, Hans V. Dynamic response of pile groups under lateral loading[J]. Soil Dynamics and Earthquake Engineering, 1992, 11: 87-99.
    [103] EI Marsafawi H, Yingcai H, Novak M. Dynamic experiments on two pile groups[J]. Journal of Geotechnical Engineering, ASCE, 1992, 118(4): 576-592.
    [104] Mohamed H, EI Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of Geotechnical Engineering, A SCE, 1994, 120(4): 678-696.
    [105] EI Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(4): 678-695.
    [106] EI Naggar M H, Novak M. Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamics and Earthquake Engineering, 1995, 14: 141-157.
    [107] EI Naggar M H, Novak M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering, 1996, 15: 233-244.
    [108] Mylonakis G, Gazetas G. Vertical vibration and additional distress of grouped piles in layered soil[J]. Soils and Foundations, 1998, 38(1): 1-14.
    [109] 陈清军,苏耀华.动力群桩效应的若干分析方法[J].世界地震工程,1996,(1):43-47.
    [110] Poulos H G. Analysis of settlement of pile groups[J]. Geotechnique, 1968, 18: 449-471.
    [111] Poulos H G. An approach for the analysis of offshore pile groups[A]. Proceeding of Numerical Methods in Offshore Piling[C], London, 1980: 119-126.
    [112] Kaynia A M, Kausel E. Dynamic behavior of pile groups[A]. The 2nd International Conference on Numerical Methods in Offshore Piling[C], Austin, 1982: 509-532.
    [113] Gazetas G, Maris N. Dynamic pile-soil-pile interaction, Part Ⅰ: analysis of axial vibration[J]. Earthquake Engineering and Structural Dynamics, 1991, 20(2): 115-132.
    [114] Maris N, Gazetas G. Dynamic pile-soil-pile interaction, Part Ⅱ: analysis of lateral vibration[J]. Earthquake Engineering and Structural Dynamics, 1992, 21(2): 145-162.
    [115] Maris N, Gazetas G, Delis E. Dynamic soil-pile-foundation-structure interaction: records and predictions[J]. Geotechnique, 1996, (1): 33-50.
    [116] Arya A, Arya A S. Pile group stiffness for seismic soil-structure interaction[A]. The Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C], Louis, 1991: 941-946.
    [1
    
    [117] 宋亚新,蒋通,楼梦麟.桩基—非线性框剪结构相互作用体系(上)—群桩阻抗函数的求取[J].地震工程与工程振动,1999,19(2):56-63.
    [118] 陈国兴,谢君斐,张克绪.桩和群桩的静刚度及动力阻抗[J].世界地震工程,1995,(4):35-43.
    [119] Novak M, Nogami T, Aboul-Ella E Dynamic soil reactions for plane strain case[J]. Journal of Engineering Mechanics, ASCE, 1978, 104: 953-959.
    [120] Makris N. Soil-pile interaction during the passage of rayleigh waves: An analytical solution[J]. Earthquake Engineering and Structural Dynamics, 1994, 23: 153-167.
    [121] 栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477-482.
    [122] 张宁勇,王君杰,陆锐.土—桩—桥相互作用的集中质量模型的比较研究[J].结构工程师,2002,(1):43-48.
    [123] 张利民,张晨南,潘龙,范立础.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,30(4):409-415.
    [124] Matlock H, Foo S H, Bryant L L. Simulation of lateral pile behavior[A]. Proceeding of Earthquake Engineering and Soil Dynamics, ASCE[C]. Pasadena, California, 1978, 7: 600-619.
    [125] Nogami T, Konagai K. Time-domain axial response of dynamically loaded single piles[J]. Journal of the Engineering Mechanics Division, ASCE, 1986, 112(2): 147-160.
    [126] Nogami T. Soil-pile interaction model for earthquake response analysis of offshore pile foundations[A]. Proceeding of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C]. St. Louis, 1991, 3: 2133-2137.
    [127] 中国建筑工业出版社编.建筑结构抗震规范[M].北京:中国建筑工业出版社,1996.
    [128] 窦立军.土—结构动力相互作用几个实际应用问题[J].世界地震工程,1999,15(4):62-68.
    [129] Guoxi W, Liam Finn W D. Dynamic elastic analysis of pile foundations using finite element method in the frequency domain[J]. Canadian Geotechnieal Journal, 1997, 34: 34-43.
    [130] Guoxi W, Liam Finn W D. Dynamic nonlinear analysis of pile foundations using finite element method in the time domain[J]. Canadian Geotechnical Journal, 1997, 34: 44-52.
    [131] Liam Finn W D, Thavaraj T, Wilson W D. Seismic response analysis of pile foundations at liquefiable Sites[A]. 12th World Conference on Earthquake Engineering[C], 2000, No. 0422.
    [132] 王凤霞,何政,欧进萍.桩—土—结构动力相互作用的线弹性地震反应分析[J].世界地震工程,2003,19(2):58-66.
    [133] 刘晶波,吕彦东.结构—地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,3 l(3):55-64.
    [134] Cai Y X, Gould P L, Desai C S. Evaluation of seismic response of pile-supported structure with 3-D nonlinear approach[A]. Proceedings: 3th International Conference on Recent Advances in Geotecnical Earthquake Engineering and Soil Dynamic[C], St. Louis, Missouri, 1995, Ⅲ: No.5.45.
    
    [135] Cai Y X, Gould P L, Desai C S. Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application[J]. Engineering Structures, 2000, 22: 191-199.
    [136] Li H, Liu L E A study on simplified analysis method of the horizontal seismic interaction structures considering SSDI effects[A]. 12th World Conference on Earthquake Engineering[C], 2000, No. 1852.
    [137] 熊建国.土—结构动力相互作用问题的新进展(I)[J].世界地震工程,1992,2:22-29.
    [138] Darbre G R. Seismic analysis of non-linearly base-isolated soil-structure interacting reactor building by way of the hybrid frequency-time-domain procedure[J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 725-738.
    [139] Darbre G R. Hybrid frequency-time-domain precedure for nonlinear dynamic analysis with application to nonlinear soil-structure interaction[A]. Proceedings of Ninth World Conference on Earthquake Engineering[C], Tokyo-Kyoto, Japan, 1988, Ⅲ: 477-482.
    [140] Bathe K J著,傅予志译.工程分析中的有限元法[M].北京:机械工业出版社,1991.
    [141] 姜弘道,陈和群.有限单元法的程序设计[M].北京:水利电力出版社,1989.
    [142] 丁皓江,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989.
    [143] 朱伯芳.有限单元法原理和应用[M].北京:水利电力出版社,1979.
    [144] 肖晓春.地震作用下土—桩—结构动力相互作用的数值模拟[D].大连:大连理工大学博士学位论文,2003.
    [145] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [146] Desai C S, Faruque M O. Constitutive model for geologic materials[J]. Journal of Geotechnical Engineering, ASCE. 1984, 110(9): 1391-1408.
    [147] Desai C S, Somasundaram S, Frantiziskonis G. A hierarchical approach for constitutive modeling of geologic materials[J]. International Journal of Numerical Analysis Methods of Geomechanics, 1986, 10: 225-257.
    [148] Wathugala G W, Desai C S. Constitutive model for cyclic behavior of clays. Ⅰ: theory[J]. Journal of Geotechnical Engineering, ASCE. 1993, 119(4): 714-729.
    [149] Desai C S, Wathugala G W. Constitutive model for cyclic behavior of clays. Ⅱ: applications[J]. Journal of Geotechnical Engineering, ASCE. 1993, 119(4): 730-749.
    [150] Desai C S, Galagoda H M. Earthquake analysis with generalized plasticity model for saturated soil[J]. Earthquake Engineering and Structural Dynamics, 1989, 18: 903-919.
    [151] Desai C S, Wathugala G W. Factors affecting reliability of computer solutions with hierarchical single surface constitutive models[J]. Computer Methods in Applied Mechanics and Engineering. 1990, 82: 115-137.
    [152] Foriero A, Ladanyi B. FEM simulation of interface problem for laterally loaded piles in permafrost[J]. Cold Regions Science and Technology, 1995, 23(2): 121-136.
    [153] Cheung Y K, Tham L G, Lei Z X. Transient response of single piles under horizontal excitations[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics, 1995, 32(8): 405-406.
    [154] Paiva B, Romanelli T R. Boundary element analysis of capped and uncapped pile groups[J]. Advances in Engineering Software, 1999, 30(9): 715-724.
    [155] Kucukarslan S, Banerjee P K. Behavior of axially loaded pile group under lateral cyclic loading[J]. Engineering Structures, 2003, 25(3): 303-311.
    [1
    
    [156] Kucukarslan S, Banerjee P K, Bildik N. Inelastic analysis of pile-soil-structure interaction[J]. Engineering Structures, 2003, 25(9): 1231-1239.
    [157] Kattis S E, Polyzos D, Beskos D E. Modelling of pile wave barriers by effective trenches and their screening effectiveness[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(1): 1-10.
    [158] 梁青槐.土—结构动力相互作用数值分析方法的评述[J].北方交通大学学报,1997,21(6):690-694.
    [159] 王进廷,杜修力,张楚汉.瑞利阻尼介质有限元离散模型动力分析的数值稳定性[J].地震工程与工程振动,2002,22(6):18-24.
    [160] 蒋东旗,谢定义.动力机器基础设计的数值方法研究[J].土木工程学报,2002,35(1):74-78.
    [161] 高峰,马泽宝.无限地基的数值模拟[J].兰州铁道学院学报,2002,21(3):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700