高速铁路牵引供电自动化网络通信系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁路建设进入了一个高速发展阶段,高速铁路的设计、建设正在进一步展开。面对日、德、法等先进技术的竞争,研究具有自主知识产权高速铁路牵引供电自动化系统(TPSAS,Traction Power Supply Automatic System)是十分有意义的。控制自动化、管理信息化的TPSAS是高速铁路供电系统可靠运行的基础,可以替代进口,节省外汇和国家投资,同时也是高速铁路急需的重大技术装备。实现TPSAS的关键是通信,通信问题已成为牵引供电自动化系统研究和开发的核心问题。
     现在运行的供电调度系统(PSDS,Power Supply Dispatching System)、牵引变电所自动化系统(TSAS,Traction Substation integrated Automation System)、牵引供电管理信息系统(PSMIS,Power Supply Management Information System)、接触网工区、检测车、牵引供电维修管理中心、路局管理部门等通信接口复杂,信息流混乱,要求不清,很难实现真正意义上的管控一体化,同时存在“信息化孤岛”问题。在考虑系统的安全性和可靠性的前提下,按照管理和控制分流的原则,对TPSAS每个子系统的输入输出信息流进行了规范,提出了每个子系统的接口和要求,规划了TPSAS完整的信息流。按照铁路信息规范化要求,研究了相应的信息数据词典。按照TPSAS信息流对通信的要求,在现有通信网络的基础上,提出了TPSAS网络通信架构的解决方案。
     TPSAS系统实时性主要是TSAS网络以及PSDS控制网络的实时性。通过深入研究以太网技术,结合高速铁路对TSAS实时性要求,提出了一种新的工业控制以太网解决方案:分布交换式双环光纤自愈以太网。针对该方案,展开了研究:①详细设计了通信单元和TSAS中智能电子装置(IED,Intelligent Electric Device)的接口硬件。②提出了基于实时数据通道、最短路径表的最短路径算法,提高了通信的实时性。③提出了通信故障自愈和定位算法,使通信更易于维护,易于实现无人职守的TSAS,同时该方案也满足工业以太网对网络中断时间的要求。④利用最短路径的思想,给出了基于标准以太网的PSDS通信网络的实现方案。⑤考虑到现场环境,研制了相应的工业级分布交换式网络通信单元。该方案大大提高了PSDS控制网络实时性、可靠性,实现了PSDS与TSAS之间真正意义上的无缝连接。
     利用排队论,讨论了通信CPU处理能力与输入缓冲区大小的关系,输入报文到达率与缓冲区大小的关系,得到了通信接口硬件的设计原则,为工业以太网通信接口硬件设计中CPU的选择提供了依据。
     利用OPNET,对TSAS采用总线式、交换式、分布交换式以太网方案进行系统仿真,在相同的条件下,仿真结果表明,分布交换式以太网优于总线式和交换式以太网,且改进了以太网数据时延确定性,避免了冲突。利用故障树分析法,在元件可靠度相同的条件下,比较现有的PSDS网络结构和本文提出的2路双环SDH网络结构的可靠性,结果表明2路双环SDH网络可靠性优于现有的PSDS网络结构;比较了TSAS中采用交换式和分布交换式以太网的可靠性,结果表明分布交换式以太网可靠性大大高于交换式以太网。综上所述,PSDS采用2路双环SDH网络结构,TSAS采用分布交换式双环光纤自愈以太网,采用最短路径、故障自愈和故障定位算法,将是高速铁路TPSAS通信的一个较好的选择。
     基于本文所提出的分布交换式工业以太网架构,论文研究了IEC61850标准在TSAS的实现过程,从IED建模、数据对象和服务建立,GOOSE/GSSE特殊映射,MMS应用,实时操作系统,到硬件设计(IEC61850标准对硬件是有特殊要求的),IED和变电站层配置软件研究。
Our country's railway construction has entered a new development period at a high speed. The design and construction of High-speed Railway are further spreading out. In face of the competition of advanced technique from Japan, Germany, France and etc, it is significant for us to research on TPSAS (Traction Power Supply Automatic System) for High-speed Railway) with Self- Intellectual Property Rights. TPSAS with control automation and management information is the foundation of reliable operation of High-speed Railway power supply system, which can be instead of import and also can save foreign exchange, national investment, at the meantime, is the important technical equipment for the urgent need of High-speed Railway. The key problem is Communication to realize TPSAS. Communication problem has become the most kernel problem for the TPSAS research and development.
     It is very hard to realize the integration of management and control at a true meaning today because of the complex of the communication interfaces between PSDS (Power Supply Dispatching System), TSAS (Traction Substation integrated Automatic System) , PSMIS (Power Supply Management Information System), OHL's(Over Head Line) Section, Detecting Car, the Maintenance and Management Center of the Traction Power Supply, the Management Department in Railway Bureau, etc., the disorder of the information flow, and the undefined demand and assignment. The problem of " Isolated Island of Information" exists in the meantime. On the basis of taking into account of security and reliability of the System, according to the principle which the control information flow and the management information flow are separated thoroughly, the input and the output information flow of every sub-system of TPSAS is standardized, the interface and requirements of every sub-system are posed, then, the whole information flow of TPSAS is planed. According to the standardization requirement of railway, related information data dictionary is researched. According to the communication requirements of TPSAS information flow, on the basis of communication networks on service, the solution plan of networks structure for TPSAS was brought up.
     The real-time quality of the TPSAS is mainly determined by the real-time quality of networks communication of TSAS and control networks of PSDS. Through studying deeply Ethernet technique, combining the TSAS real-time needs of TPSAS, a new industrial control Ethernet solution plan: the Distributed and Exchanged Double-loop Optical Self -repaired Ethernet was brought out. The research of the plan was carried out as follow:①The communication unit and interface hardware of IED(Intelligent Electric Device) in TSAS was designed in detail.②The most short path algorithm based on real-time data passageway and the most short path table was brought up, the real-time quality of communication was raised.③The communication fault self-repaired and fault location algorithm was given, so that communication networks was easily upheld, TSAS with nobody on duty is easily realized, the plan may meet the requirement of net-broken time of industrial Ethernet.④With the idea of the most short path, the realization plan of PSDS communication networks based on common Ethernet was brought out.⑤Taking field environment into account, industrial distributed and exchanged net communication unit has been developed. So, the real-time quality and reliability of the PSDS control networks has been improved, true link without gap between PSDS and TSAS may be realized.
     With queue theory, the relation between the process ability of communication CPU and the size of input buffer and the relation between reach-ratio of input telegram and the size of input buffer have been discussed, so that the design principle of the hardware of communication interface was carried out. The principle provides foundation for the choice of communication CPU in hardware of Ethernet interface design.
     With OPNET, system emulation about bus-type, exchange-type, distributed-exchanged-type Ethernet in TSAS was carried out. The conclusion of emulation appears that the distributed-exchanged-type is better than bus-type and exchange-type in real-time quality, improve the time-delay determination of date transmission in Ethernet, avoid the date collision. With analysis method of Fault Tree, on the condition that the degree of reliability of component of the communication system is same, comparing net structure of PSDS on service with 2 ways double-loop SDH net structure posed in this paper , it was approved that the reliability of 2 ways double-loop net structure is better than net structure of PSDS on service. Comparing exchange-type Ethernet with distributed-exchanged-type Ethernet in TSAS, it was approved that the reliability of distributed-exchanged-type Ethernet is better than exchange-type Ethernet. Summarizing above researches, the plan that PSDS adopts 2 ways double-loop SDH net structure, TSAS adopts Distributed and Exchanged Double-loop Optical Self -repaired Ethernet, The most short path algorithm, the communication fault self-repaired and fault location algorithm are applied should be better choice for communication of TPSAS for High-speed Railway.
     On the basis of Distributed and Exchanged Double-loop Optical Self -repaired Ethernet, the realization process of IEC61850 in TSAS was studied in this paper, which is from building module of IED,establishment of dateobject and service, special projection of GOOSE/GSSE, application of MMS,real- time operation, design of hardware with the special requirements ofIEC61850, to research of IED and substation's configuration software.
引文
[1] 夏德春.德国铁路调度指挥系统[J].中国铁道科学.2004,25(4):141~142
    [2] 中国铁路行车指挥和列车编组自动化考察组.出国参观考察报告-日本铁路行车指挥自动化技术[M].北京,科学技术文献出版社,1977
    [3] JR EAST INFORMATION SYSTEM COMPANY.General System for New Shinkansen: COSMOS[R], 1999
    [4] 钱仲侯.高速铁路概论[M].北京,中国铁道出版社,1999
    [5] 姜春林.高速电铁牵引供电自动化系统方案研究[J].电力自动化设备.2000,20(5):1~5
    [6] 王牣,金海奇,王世香,等.铁路客运专线供电自动化系统关键技术研究.铁道学报.2006,第28卷第3期:116~120
    [7] 白昭.高速铁路综合调度系统模式探讨[J].铁道工程学报.2003,(3):121~124
    [8] 王壮锋,等.对我国高速铁路综合调度系统的思考[J].中国铁道科学.2003,24(2):29~33
    [9] 李群湛,连级三,高仕斌,等.高速铁路电气化工程[M].西南交通大学出版社,2006.5
    [10] 及燕丽等.现代通信系统[M].电子工业出版社,2001.2
    [11] 王小强.牵引供电运营管理信息系统分析与设计[D].西南交通大学硕士学位论文 2002.3
    [12] 高速铁路综合调度仿真系统试验环境初步设计说明[R].铁道科学研究院,2003
    [13] 钱清泉.电气化铁道监控技术[M].中国铁道出版社,2000.6
    [14] 沈国荣,黄健,等.2000国际大电网会议报道——通信技术是变电站自动化的关键[J].电力系统自动化.2001,25(5):1~5
    [15] Thomas. M. S, Kumar. P, Chandna. V. K. Design, development and commissioning of a supervisory control and data acquisition(SCADA) laboratory for research and training. [J] IEEE Transactions Power Systems, 2004, 19(3):1582~1588
    [16] Mcclanahan. R. H. SCADA and IP is network convergence really here?[J]. IEEE Industry Applications Magazine.2003, 27(992):219~236
    [17] ABB Switzerland Ltd SCADA over IP-based LAN-WAN connections, Utility Automation Systems[R], 2003
    [18] 高速铁路仿真中心系统技术要求[R].北京全路通信号研究设计院,2003
    [19] 崔坚,李佳,杨光,等.西门子工业网络通信指南[M].机械工业出版社,2006.1
    [20] 李正军编著.现场总线与工业以太网及其应用系统设计[M].人民邮电出版社,2006,2
    [21] Johannessen. S. Time synchronization in a local area network [J]. IEEE Control Systems Magazine, 2004, 24(2):61~69
    [22] Georges, J. P, Rondeau. E, Divoux. T. Evaluation of switched Ethernet in an industrial context by using the network calculus[C]. In; Proceeding of 4th IEEE International Workshop on Factory Communication Systems(WFCS'02), 2002, 19~26
    [23] Jaspernetite. J, Neumann. P, Theis. M, et al. Deterministic real-time communication with switched Ethernet[C]. In: Proceeding of 4th IEEE International Workshop on factory Communication System(wfcs'02), 2002, 11~18
    [24] Seifert. R. The Switch Book: The complete guide to LAN switching technology [M]. New York, John Wiley, 2000
    [25] Yahya Al-Salqan Cheoul-Shin Kang.A Simulation Study of a CSMA/CD with Connected Data Links[J]. Proceedings of the 24th Annual,IEEE 1991, 4(1-5):292~300
    [26] Tony Y. Mazraani, Gurudattta M. Parulkar. Performance Analysis of the Ethernet Under Condition of Bursty Traffic[J]. IEEE 1992, 12(6-9):592~596
    [27] Skeie T., Johannessen S., Brunner C. Ethernet in Substation Automation [J]. IEEE Control System Magazine 2002, 3(22):43~51.
    [28] B Shephard, Mc Janssen, H Schubert. Standardised Communication in Substation. Developments in Power System Protection, 2001, 7th Conference Publication No. 477, IEEE 2001, 4(9-12):270~274
    [29] LeBlanc.c, The future of Industrial networking and connectivity[J], Dedicated System Magazine. 2000, 3(3): 9~11
    [30] Roese J.J., Switched LAN's: Implementation, Operation, Maintence[M]. McGraw Hill, 1998
    [31] Babb.M., The future of industrial switched Ethernet[J]. Computing and Control Engineering. 2004, 15(1): 10~11
    [32] Babb.M. The race for real time Ethernet. Computing and Control Engineering[J]. 2004, 15(1): 8~9
    [33] Pozzuoli.M.P., Ethernet in substationautomation applications-issues and requirements. Distributed Conference and Exhibition[C], Orlando, Florida, USA, Janury 18—19, 2004
    [34] Sidhu.T.S, Demeter.E, Faried.S.O. Power system protection and control integration over Ethernet-based communication channels[C]. In: Proceeding of Canadian Conference on Electrical and Computer Engineering, 2004, 225~228
    [35] Yalla.M, Adamiak.M, Apostolov, A, et al. Application of peer-to-peer communication for protective relaying[J] IEEE Transactions on Power Delivery, 2002, 17(2): 446~451
    [36] Hilpert.G, Kern.T. The standard route to Ethernet-based substation automation[R]. ABB
    [37] Skeie.T, Johannessen.S, Brunner.C. Ethernet in substation automation [J]. IEEE Control Systems Magazine, 2002, 22(3): 43~51
    [38] Johannessen.S. Time synchronization in a local area network[J]. IEEE Control System Magazine. 2004, 24(4): 61~69
    [39] Hollman.J.A, Marti.J.R. Real time network simulation with PC-Cluster[J]. IEEE Transactions on Power System, 2003. 18(2): 63~69
    [40] IEEE Std 1588-2002[S]. IEEE standard for a precision clock synchronization protocol for networked measurement and control Systems
    [41] Stallings.W. High-speed networks and internet: performance and quality of service (Second Edition)[M]. Beijing: China Machine Press/Prentice Hall, 2002
    [42] Skendzic. V, Guamain. A, Enhancing power system automation through the use of real-time Ethernet[R]. Schweitzer Engineering Laboratories. 2004, Pullman, Washington
    [43] Comer. D, Stevens. D. Internetworking with TCP/IP, Volume Ⅲ: Client-Server Programming and Applications. Upper Saddle River[M]. NJ: Prentice Hall, 2001
    [44] Skeie. T, Schubert. H. The road to an end-to-end deterministic Ethernet[C]. In: Proceeding of 4th IEEE International Workshop on Factory Communication Systems(WFCS'02), 2002, 3~9
    [45] Tor Skeie, Svein Johannessen. Highly Accurate Time Synchronization over Switched Ethernet [J]. 2001 8th IEEE International Conference. 2001, 10(15-18):195~204
    [46] 佟为明,刘勇,赵志衡,等.几种主流工业以太网[J].低压电器,2005,(06):40~42/46
    [47] 彭杰,应启戛,等.工业以太网的安全性研究[J].仪器仪表学报.2004,(S1):516~517
    [48] 林涛,孙鹤旭,张妍,云利军,等.确定性工业以太网的研究[J].微计算机信息.2005,(09):48~50
    [49] 徐皑冬,王宏,邢志浩,等.工业以太网实时通信技术[J].信息与控制.2005,(01):60~65
    [50] IEC61850-7-2 Communication networks and systems in substations-part 7-2:Basic communication structure for substation and feeder equipment-Abstract communication service interface[S], 2003
    [51] IEC61850-9-1 Communication networks and systems in substations-part 9-1:Specific Communication Service Mapping (SCSM)-Sampled values over serial unidirectional multidrop point to point link[S], 2003
    [52] IEC61850-9-2 Communication networks and systems in substations-part 8-1:Specific Communication Serivce mapping (SCSM)-Sampled values over ISO/IEC 8802-3[S], 2003
    [53] IEC61850-5 Communication networks and systems in substations, Part 5:Communication Requirements for Functions and Device Models[S], 2003
    [54] IEC61850-6 Communication networks and systems in substations, Part 6: Configuration language for electrical substation IEDs, 2001
    [55] IEC61850-7-4 Communication networks and systems in substations-part 7-4: Basic Communication Structure for substations and feeder equipment-Compatible Logic node and data classes[S].2003
    [56] IEC61850-8-1 Communication networks and systems in substations-part8-1:Specific Communication Service Mapping(SCSM)-Mappings to MMS(ISO 9506-1 and ISO 9506-2)and to ISO/IEC 8802-3[S], 2003
    [57] IEC61850-10 Communication networks and systems in substations-part 5:Conformance testing[S], 2003
    [58] 谭文恕.远动的无缝通信系统体系结构[J].电网技术.2001,(08):7~10
    [59] 谭文恕.变电站通信网络和系统协议IEC61850介绍.电网技术.2001,25(9):8~12
    [60] McDonald. J. D. Substation automation IED integration and availability of information[J]. IEEE Power and Energy Magazine, 2003, 1(2):2~231
    [61] Adamiak. M, Baigent. D. Design and interoperability testing of a network IED: a manufacture's perspective [R]..GE Power Management Technical Report. May, 1999
    [62] Manish Chaturverdi. Substation IED Communication[C]. Panel Presentation for IEEE PES Winter Meeting 2002, (27-31):596
    [63] Andersson. L, Brand. K. P. The benefits of the coming standard IEC61850 for communication in substations [C]. Southern African Conference on Power System Protection, Johannesburg, South Africa, 2000
    [64] Andersson. L, Brunner. C, Engler. F. Substation automation based on IEC61850 with new process-close Technologies(C). In: Proceedings of IEEE Bologna PowerTech Conference 2003, 90~94
    [65] IEEE Std PC37. 115, 2003, Draft standard test method for use in the evaluation of message communications between intelligent electronic devices in an integrated substation protection, control and data Acquisition System [S]
    [66] Brunner. C, Ostermmeier. A. Serial communication between process and bay level[C]. CIGRE, Paris, France, 2000:34~106
    [67] Bush. R. Siemens Commissions the First Substation Control System Based On IEC61850[R]
    [68] IEEE Std P1646, 2003, Draft standard communication delivery time performance requirements for electric power substation automation[S]
    [69] Buse. D. P, Sun. P, Wu. Q. H, et al. Agent-Based Substation Automation[J]. IEEE Power and Energy Magazine, 2003.1 (2):50~55
    [70] Sanz. R, Clavijo, J. A, Segarra. M, et al. CORBA-based substation automation systems.[C] In: Proceeding of IEEE International Conference on Control Applications, 2001, 773~777
    [71] Kezunovic. M, Abur. A, Edris. A, etal. Data integration/exchange Part 1:Existing technical and business opportunities[J]. IEEE Power and Energy Magazine, 2004.2(3):24~29
    [72] 陈磊.从现场总线到工业以太网的实时性问题研究[D].浙江大学博士学位论文,2004
    [73] 王平,孙攀,等.EPA通信协议栈的设计与实现[J].重庆邮电学院学报(自然科学版).2006,(04):512~515
    [74] 阮冬茹,谢东光,基于EPA的工业以太网确定性研究[J],微计算机信息,2006,7,22(3):100~101
    [75] 浙大中控主持制定的《EPA标准》(征求意见稿)通过国家标委会的审核[J].工业控制计算机.2004,(06):28
    [76] 冯冬芹,金建祥,王为民,褚健,等.基于EPA的分布式网络控制系统结构[J].自动化仪表.2003,24(9):68~70
    [77] 祁寿枝,李国,秦立军,杜宏,等.新一代基于光纤以太网的SCADA系统——关于电网调度系统及其体系结构研讨[J].电力自动化设备.2001,(07):49~52
    [78] 黄晓莉,许海铭.国家电力数据通信网络建设方案[J].电力系统自动化.2003,27(20):82~87
    [79] 丁道齐.组建电力城域网的主流技术—IP技术[J].电力系统自动化.2002,26(2):1~8
    [80] 赵希才.2004年国际大电网会议系列报道—电力系统保护与自动化[J].电力系统自动化.2005,29(3):86~93
    [81] 段献忠,何飞跃,辛建波,潘垣,等.基于信息网络综合传输的电力系统运行与控制.电网技术.2004.28(9):38~41
    [82] 谭文恕,刘定国,刘佩娟,等.国际电工委员会第57技术委员会2003年会介绍[J].电力系统自动化.2004,28(4):1~3
    [83] 孙军平,盛万兴,王孙安,等.新一代变电站自动化网络通信系统研究[J].中国电机工程学报.2003,(3):16~19,145
    [84] 徐立子.IEC61850对变电站自动化系统报文性能的要求.电网技术[J].2002,24(8):64~64
    [85] 孟祥忠,等.变电站微机监控与保护技术[M].中国电力出版社,2004,1
    [86] 任雁铭,秦立军,杨奇逊,等.61850通信协议体系介绍和分析.电力系统自动化.2000,24(8):62~64
    [87] 王照,任雁铭,高峰,等.IEC61850客户端应用程序的实现.电力系统自动化.2005,29(19):76~78
    [88] 朱炳铨,任雁铭,姜健宁,等.变电站自动化系统实现IEC61850的过渡期策略.电力系统自动化.2005,29(23):54~57
    [89] 李永亮,袁志雄,陈斌,等.对基于TCP/IP的IEC61850特定通信服务映射MMS的分析与实现.电网技术.2004,28(24):33~38
    [90] 项洪印,高会生,杜晓晖.基于工业以太网技术的IEC61850协议应用分析.网络与通信.2006,3:67~69
    [91] 任雁铭,操丰梅,秦立军,等.MMS技术及其在电力系统通信协议中的应用.电力系统自动化.2000,24(19):66~69
    [92] 崔厚坤,汤效军,梁志成,等.IEC 61850一致性测试研究[J].电力系统自动化.2006,(08):80~88
    [93] 操丰梅,任雁铭,王照,等.变电站自动化系统互操作实验建议[J].电力系统自动化.2005,(03):86~89
    [94] 李蓓,沐连顺,苏剑,等.基于关系模型映射的IEC 61850 SCL配置器建模[J].电网技术.2006,(10):94~99
    [95] 殷志良,刘万顺,杨奇逊,等.基于IEC 61850的通用变电站事件模型[J].电力系统自动化.2005,(19):45~50
    [96] 王秉钧等.现代通信系统原理[M].天津大学出版社,1999.8
    [97] 张维明,等.信息系统集成技术[M].电子工业出版社,2002.1
    [98] 沈世镒,等.信息论与编码理论[M].科学出版社,2002.7
    [99] 唐朝京,等.信息论与编码基础[M].国防科技大学出版社,2003.1
    [100] 骆耀祖,等.计算机网络技术与应用[M].清华大学出版社,2003.8
    [101] Gilbert Held著.数据通信技术[M].魏桂英等译.清华大学出版社,1995.10
    [102] 霍绍周.系统论[M].科学技术文献出版社,1988.10
    [103] 左晓斯,史然译,等.系统论的思想与实践(英)[M].北京:科学出版社,1990
    [104] Ralph M. stair George W. Reynolds著.信息系统原理[M].张靖等译.机械工业出版社,2000.1
    [105] 张红麟.铁路信息化建设的核心——TMIS[J].计算机系统应用,2003,(07):9~12
    [106] 胡东源.全力推进铁路运输调度指挥现代化[J].中国铁路,2001,(04):14~18
    [107] 铁道部.全国铁路线路统计区段[M].中国铁道出版社,2003
    [108] 原荣.光纤通信网络[M].电子工业出版社,1999
    [109] Robert Elsenpeter, Toby J. Velte.光网络实用指南[M].王延华[译].清华大学出版社,2003
    [110] 张民,许进,黄学田,等编著.光以太网[M].北京邮电大学出版社,2003,12
    [111] Electric Power Research Institute (EPRI), UCA2.0 Standard Document[R], Part 1, USA
    [112] 辛建波.基于以太网的变电所自动化系统时延不确定性研究[D].华中科技大学博士论文,2005,11:46~56
    [113] 殷志良,刘万顺,杨奇逊,等.基于IEEE1588实现变电站过程总线采样值同步新技术[J].电力系统自动化.2005,13(29):60~63
    [114] IEEE 802.1p, Standard for local and metropolitan area networks supplement to media access control (MAC)bridges: traffic class expediting and dynamic muticast filtering[S]. 1998
    [115] ANSI/IEEE Std 802.1D, ISO/IEC 15802-3, Media Access Control (MAC) Bridges [R], New York: IEEE 1998
    [116] 沈钢,魏震,蔡云泽等.一种实时以太网介质访问控制协议的时延性能分析[J].电子学报.2003,31(02):175~179
    [117] Hauser. C. H, Bakken. D. E, Bose. A. A failure to communicate[J]. IEEE Power and Energy Magazine. 2005, 3(2):47~55
    [118] Reng wang, Deming Chen, Qingquan Qian. Research of Double Loop Optical Fiber Self-Cicatrized Network Based on Neuron3150[C]. ISADS2005, April, 2005, 352~355
    [119] 吴在军,胡敏强,杜炎森,等.变电站通信网络实时性能仿真分析[J]电力系统自动化.2005,Vol.29,No.8:45~49
    [120] 戴梅萼,史嘉权,等.微型计算机技术及应用[M].清华大学出版社,1996
    [121] 李维铮,郭耀煌,等.运筹学[M].北京:清华大学出版社,1982
    [122] 吴旭凡,杨军,等.基于排队模型的总线缓冲估计[J].应用科学学报.,2006,1,24(01):45~49
    [123] 盛招友.排队论及其在计算机通信中的应用[M].北京:北京邮电大学出版社,1998
    [124] Gross. D., Harris. C., Fundamentals of queneing theory[M]. New York:Wiley, 1998
    [125] Chang. C. S, Stability, queue length and delay, Part Ⅰ; Deterministic queuing networks[R] IBM Technical Report, RC 17708, 1992
    [126] Boudec. J. L, THIRAN. P. Network Calculus:a theory of deterministic queuing systems for the ingternet[C], Berlin:Spring Verlag, 2002
    [127] Braden. B, Clark. D, Croweroft. J, et al. Recommendations on queue management and congestion avoidance in the internet[R] RFC 2309, 1998
    [128] 韩小涛,聂一雄,尹项根,等.基于OPNET的变电站二次回路通信系统仿真研究[J].电网技术.2005,29(6):67~71/77
    [129] 王文博,张金文,等.OPNET Modeler与网络仿真[M].北京:人民邮电出版社,2003.
    [130] OPNET, Introduction to OPNET Modeler: Accelerating Network R & D[M], 2003
    [131] 郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003
    [132] 黄玉行.系统可靠性实用计算方法[M].北京:科学出版社,1986
    [133] 系统设计和应用的可靠性工程(加)[M].周广涛,梁思礼译.北京:宇航出版社,2003
    [134] 梅启智,廖炯生,孙惠中.系统可靠性工程基础[M].北京:科学出版社,1992
    [135] 徐平,李全灿,等.电控及其自动化设备可靠性工程技术[M],北京:机械工业出版社,1998
    [136] 韩小涛,尹项根.故障树分析法在变电站通信系统可靠性分析中的应用[J].电网技术.2004.1,28(1):56~59
    [137] Bowles. J. B. A combined hardware, software and usage model of network reliability and availability[C], 1990. In: Proceeding of Ninth Annual International Phoenix Conference on Computers and Communications, 1990, 649~654
    [138] Scheer. G. W, Dolezilek. D. J. Comparing the reliability of Ethernet network togologies in substation control and monitoring networks[C]. Western Power Delivery Automation Conference, Spokane, Washington, April 4-6, 2000
    [139] 别朝红,王秀丽,王锡凡.复杂配电系统的可靠性评估[J].西安交通大学报.2000,34(5):9~13
    [140] R. N. Allan, R. Billinton, etc. Bibliography on the Application of Probability Methods in Power System Reliability Evaluation[J] 1987-1991, IEEE Trans. Power Apparatus and System, 1994, 9(1):41~49
    [141] Grimmett. G, Stirzaker. D. Probability and random process[M]. Oxford: Oxford University Press, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700