有机发光材料和高分子活性聚合反应的多尺度模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光材料应用于通讯、信息、显示等许多领域,是当前国际上的一个研究热点。有机电致发光器件具有低压直流驱动、高亮度、高效率、制作工艺简单及易实现全色大面积显示等优点,从而引起了人们对该类器件开发与设计的极大兴趣。理论研究为理解发光材料的微观发光机制提供了理论分析和支持,对实验合成新的发光材料和开发发光材料的潜在应用价值具有重要的指导意义。
     自由基聚合(free radical polymerization, FRP)是指含有碳碳双键的单体通过自由基链式加成反应形成聚合物的反应。FRP已经成为合成功能性高分子很重要的一个途径。链长和化学组分分布对于共聚物的性质来讲是非常重要的,例如它们可以决定材料的物理和力学性质。因此运用理论模拟方法计算聚合反应速率常数并研究聚合速率、单体浓度、自由基分布、以及扩散速率等因素对自由基聚合过程和聚合产物的影响,引起人们越来越多的关注。
     表面引发聚合反应作为一种新兴的合成工艺,在材料表面的修饰与改性中发挥着越来越重要的作用。研究聚合反应速率和转化几率等因素对高密度下聚合物刷性质的影响非常有实际意义。可逆的活化反应中的原子转移自由基聚合反应(atom transfer radcial polymerization, ATRP),由于它的特殊优势,已经成为一种非常有力的合成技术。在理想的ATRP反应中,聚合反应速率应保持一个合理的值以确保反应效率,同时活化速率和去活化速率常数也应很大,这样才能更好地控制反应。体系中可控活性自由基的浓度取决于活化/去活化进程的平衡,因此,设计具有更多活性的新的催化体系是很有挑战性的工作。然而由于缺乏有效的技术,人们很少研究去活化过程的影响,而在可控自由基聚合反应中控制分子量的分布在很大程度上取决于去活化过程。
     上述体系涉及包括电子的不同空间、时间尺度上的行为,因此单一尺度模拟方法无法对这类材料的电子及结构信息进行整体的合理描述。多尺度计算机模拟方法可以更明确地给出这些物理现象的微观本质,从而帮助从本质上对这些规律进行理解和认识。本论文结合量子力学(quantum mechanics QM)、分子动力学(molecular dynamics, MD)和粗粒化分子动力学(coarse-grained molecular dynamics, CGMD)模拟方法,从不同尺度上对以上课题进行了细致研究。这些方法不但能直观地给出体系的静态图像,而且可以详尽地描述体系的动态行为,现在已经被广泛应用到材料学、化学、物理学、生物学等领域中。
     本论文结合QM、MD、CGMD方法并提出多尺度模拟模型,对以上课题进行了细致研究。主要内容包括:
     (1)利用密度泛函方法(density funetional methods, DFT)研究1,1’,2,3,4,5-六苯基硅杂环戊二烯(HPS)晶体的电子结构和电荷传输性质。利用MD结合DFT研究温度和压力的变化对HPS晶体的力学性能的影响。MD模拟结果表明,适当增加压力和温度有利于增加HPS晶体的电荷传输。通过能带机理和跳跃机理的分析,我们发现HPS晶体的空穴传输性质优于电子传输性质。因而得出以下结论:①空穴传输优于电子传输;②适当增加压力和温度都有利于获得更好的电荷传输性质。
     (2)结合量子化学和传统过渡态理论(transition state theory, TST)计算了乙烯和丙烯自由基聚合反应的速率常数。所有的电子结构在B3PW91/3-21G水平上进行了优化计算,稳定的单点能和最小能量路径(minimum energy path, MEP)上的附加点和传统过渡态理论的反应速率常数都是在MPW1PW91/6-311G(d,p)水平进行单点能校正。利用速率常数定义了聚合反应几率(Pijl),构造了乙烯丙烯共聚反应的粗粒化动力学模拟模型,并利用该模型研究了不同引发剂组成比例的乙烯丙烯共聚反应。聚合反应的数均分子量和链长分布都显示此模型能够反映真实的实验结果。我们发现反应速率常数和链端自由基周围的单体浓度都影响链上组分的序列分布。
     (3)利用粗粒化分子动力学方法研究了高密度表面引发聚合反应过程中,不同聚合速率和不同转化几率对产物聚合物刷性质的影响。鉴于活化/去活化过程非常重要,因此我们提出了一个表面引发聚合反应(surface initiated polymerization, SIP)模型,其中明确包含活化/去活化可逆过程。我们发现在SIP反应中生成的聚合物刷主要取决于聚合反应几率与活化/去活化动态过程。为了在相对短的时间内得到高密度引发下的低多分散性指数(polydispersity index, PDI)聚合物刷,可调节聚合反应几率和活化/去活化过程发生的比率。相对快或者相对慢的链增长过程都可以得到有较低PDI值和较高接枝密度的聚合物刷,但要采取不同的活化程度:对于较慢的链增长可以选择较快的活化反应;对于较快的链增长,活化反应需控制得足够慢才能得到理想的聚合物刷。
In the past decades, organic electroluminescent materials have become a fascinating field for their diverse potential applications in communication, information, and flat-panel displays. There has been great interest in investigating organic electroluminescent materials and devices. Theorical studies can help us to understand the microscpic electroluminescent mechanism and to design novel light-emitting materials by exploring their structure-property relations.
     Free-radical polymerization (FRP) is a typical technology by which a polymer chain is formed from the successive addition of free radical blocks. Now FRP is a key synthesis route for obtaining a wide variety of different polymers and material composites. People are more and more interested in theoretical calculating the rate constants of polymerization reaction and studing the free radical polymerization processes and the polymer properties which are influenced by polymerization rate, monomer concentration, free radical distribution, and diffusion, and so on.
     As a kind of newly developed technology, surface-initiated polymerization plays a critical role in the field of surface grafting for the materials. In living radical polymerizations, the atom transfer radcial polymerization (ATRP) has emerged typically as one of the most powerful synthetic techniques in polymer sciences for its unique advantages. In the ideal ATRP, the polymerization rate is kept at a reasonable value, meanwhile both the activation and deactivation rate constants should be kept large to provide good control of polymerization. The radical concentration is predominantly determined by the equilibrium of the activation/deactivation processes. Thus, the exploitation of novel catalytic systems that are very active and efficient should be an encouraging work. However, for lack of effcient techniques, deactivation processes had been much less studied. As control over molecular weight distribution in ATRP is limited by the rate of deactivation, fully taking into account of deactivation process becomes especially important.
     The above systems include different space and time scales of electrons, so the simulation technique at a single scale can not describe the structural and electronic information of these materials. Multi-scale simulations can finely deliver the details of the physical processes. They can help us to understand and explore the laws in these natural phenomena clearly. According to different research objects, we combine quantum mechanics (QM), molecular dynamics (MD) and coarse-grained molecular dynamics (CGMD) simulations to study the topics mentioned above in detail. The main results are as follows:
     (1) The structural, electronic, and charge transport properties of 1,1’,2,3,4,5-hexaphenysilole (HPS) crystal are investigated using density functional theory (DFT). The influences of the temperature and pressure variations on the mechanical as well as the charge transport properties of HPS crystal are studied by MD simulations combining with DFT calculations. By the analysis of the hopping mechanism and the band-like mechanism, we find that the hole may move slightly easier than the electron for the HPS crystal. Thus we can conclude that (i) the mobility of the hole is larger than that of the electron; and (ii) moderately higher pressure and temperature are in favor of better charge transport properties.
     (2) A combined quantum chemistry and transition state theory (TST) rate constant calculation scheme is performed on different radical reactions involving ethylene and propylene to estimate the rate constants. The electronic structure information is obtained at the B3PW91/3-21G level, and the single-point energies of the stationary points, extra points along the minimum energy path (MEP) and the theoretical rate constants are calculated at the MPW1PW91/6-311G(d,p) level. We can define normalized polymerization probabilities (Pijl) by theoretical rate constants, and we propose a CGMD simulation model to study the copolymerization between ethylene and propylene. The copolymerization with different percentage of initiator has been investigated using our model. The results of the variation of number-averaged molecular weight during polymerization and the chain length distribution after polymerization show that our model can closely simulate the polymerization process of real experiment. We find that the rate constants and the number of monomers around the chain radical ends strongly influence the chain length distribution and the segment distribution along the chain backbone.
     (3) The surface initiated polymerizations (SIP) with different polymerization rate and different ratio of the transformation (activation/deactivation) probability under high grafting density are investigated using CGMD simulations. Regarding the significance of the activation/deactivation process, we present a model of SIP by taking into consideration of the activation/deactivation process explicity. We find that polymerization rate and the ratio of activation/deactivation process greatly determine the properties of polymer brushes in SIP reactions. By modifying the polymerization rate and tuning activation/deactivation process, we can obtain the polymer brushes with low polydispersity index (PDI) in relatively short time. For obtaining the surface initiated film in relatively short time and simultaneously with low PDI and high graft density, we can choose relatively fast or slow chain propagation process. For slow chain propagation, it is better to choose fast activation process, and for fast chain propagation, the activation should be controlled slower so that the properties of the brushes are acceptable.
引文
[1] POPE M, KALLMANN H P, MANGNANTE P. Electroluminescence in organic crystals[J]. J. Chem. Phys., 1963, 38: 2042-2043.
    [2] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51: 913-915.
    [3]尹盛,刘陈,钟志有.有机电致发光材料的研发现状[J].化工新型材料,2003,31(1):1-4.
    [4] BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light emitting diodes based on conjugated polymers[J]. Nature, 1990, 347: 539-541.
    [5] FORREST S R. Ultrathin organic films grown by organic molecular beam deposition and related techniques[J]. Chem. Rev., 1997, 97, 1793-1896.
    [6]邵炎,邱勇.有机金属配合物电致发光材料[J].现代显示,1998,2:32-37.
    [7] KALINOWSKI J. Electroluminescence in organics[J]. J. Phys. D: Appl. Phys., 1999, 32: R179-R250.
    [8] SHEN Z L, BURROWS P E, BULOVI? V, et al. Three-color, tunable, organic light-emitting devices[J]. Science, 1999, 276: 2009-2011.
    [9]李文连.有机EL和LED与无机EL和LED发光机制的异同[J].液晶与显示,2001,16 (1):33-37.
    [10]黄剑,曹镛.有机电致发光材料研究进展[J].化工新型材料,2001,29(9):10-15.
    [11] HASKAL E I, BüCHEL M, DUINEVELD P C, et al. Passive-matrix polymer light-emitting displays[J]. MRS Bulletin, 2002: 864-869.
    [12] FORREST S R. The road to high efficiency organic light emitting devices[J], Organic Electronics, 2003, 4: 45-48.
    [13]赵海莹,高建荣,王淑英,等.有机电致发光材料的研究[J].科学通报,2005,21(3):347-355.
    [14]程晓红,傅长金,鞠秀萍,等.有机电致发光材料研究新进展[J].云南化工,2005,32(4):1-6.
    [15]何东坡,陈靖民,曹继壮,等.活性自由基研究进展[J].复旦学报(自然科学版),1997,36(4):394-402.
    [16]丘坤元,刘俊婉,金碧辉.活性自由基聚合[J].中国基础科学·科学前沿,2005,3:25-26.
    [17]倪刚,杨武,何晓燕,等.表面引发聚合反应研究进展[J].化学进展,2005,17(6):1074-1080.
    [18] MA H, DAVIS R H, BOWMAN C N. A novel sequential photoinduced living graft polymerization[J]. Macromolecules, 2000, 33: 331-335.
    [19] ZHANG H, RUHE J. A novel sequential photoinduced viving graft polymerization polyelectrolyte brushes-polymer brushes as substrates for the layer-by-layer deposition of polyelectrolytes[J]. Macromolecules, 2003, 36: 6593-6598.
    [20] BIESALSKI M, RüHE J. Synthesis of a poly(p-styrenesulfonate) brush via surface-initiated polymerization[J]. Macromolecules, 2003, 36: 1222-1227.
    [21] ZHAO B, BRITTAIN W J. Synthesis of tethered polystyrene-block-poly(methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization[J]. J. Am. Chem. Soc., 1999, 121: 3557-3358.
    [22] ZHAO B, BRITTAIN W J.“Living”free radical photopolymerization initiated from surface-grafted iniferter mono-layers[J]. Macromolecules, 2000, 33: 342-348.
    [23] JORDAN R, WEST N, ULMAN A, et al. Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles[J]. Macromolecules, 2001, 34: 1606-1611.
    [24] ZHOU Q, FAN X, ADVINCULA R C, et al. Living anionic surface initiated polymerization (SIP) of styrene from clay surfaces[J]. Chem. Mater., 2001, 13: 2465-2467.
    [25] QURIK R P, MATHERS R T. Surface-initiated living anionic polymerization of isoprene using a 1,1-diphenylethylene derivative and functionalization with ethylene oxide[J]. Polymer Bull., 2001, 45: 471-477.
    [26] ADVINCULA R, ZHOU Q, PARK M, et al. Polymer brushes by living anionic surface initiated polymerization on flat silicon (SiOx) and goldsurfaces: homopolymers and block copolymers[J]. Langmuir, 2002, 18: 8672-8684.
    [27] FAN X, ZHOU Q, MAYS J, et al. Living anionic surface-initiated polymerization (LASIP) of styrene from clay nanoparticles using surface bound 1,1-diphenylethylene (DPE) initiators[J]. Langmuir, 2002, 18: 4511-4518.
    [28] CARROT G, HOUZE D R, DUBOIS P, et al. Surface-initiated ring-opening polymerization: A versatile method for nanoparticle ordering[J]. Macromolecules, 2002, 35: 8400-8404.
    [29] KIM C O, CHO S J, PARK J W. Hyperbranching polymerization of aziridine on silica solid substrates leading to a surface of highly dense reactive amine groups[J]. J. Colloid Interface Sci., 2003, 260: 374-378.
    [30] KIM H J, MOON J H, PARK J W. A Hyperbranched poly(ethyleneimine) grown on surface[J]. J. Colloid Interface Sci., 2000, 227: 247-249.
    [31] CHOI I S, LANGER R. Surface-initiated polymerization of L-Lactide: Coating of solid substrates with a biodegradable polymer[J]. Macromolecules, 2001, 34: 5361-5363.
    [32] KHAN M, HUCKW T S. Hyperbranched polyglycidol on Si/SiO2 surfaces via surface-initiated polymerization[J]. Macromolecules, 2003, 36: 5088-5093.
    [33] WIERINGA R H, SIESLING E A, SCHOUTEN A J, et al. Surface grafting of poly(L-glutamates). 1. Synthesis and characterization[J]. Langmuir, 2001, 17: 6477-6484.
    [34] WATSON K J, ZHU J, NAGUYEN S B T, et al. Hybrid nanoparticles with block copolymer shell structures[J]. J. Am. Chem. Soc., 1999, 121: 462-463.
    [35] JEON N L, CHOI I S, WHITESIDES G M, et al. Patterned polymer grouth on silicon surfaces using microcontact printing and surface-initiated polymerization[J]. Appl. Phys. Lett., 1999, 75: 4201-4203.
    [36] JUANG A, SCHERMAN O A, GRUBBS R H, et al. Formation of covalently attached polymer overlayers on Si (111) surfaces using ring-opening metathesis polymerization methods[J]. Langmuir, 2001, 17: 1321-1323.
    [37] BUCHMEISER M R, SINNER F, MUPA M, et al. Ring-opening metathesispolymerization for the preparation of surface-grafted polymer supports[J]. Macromolecules, 2000, 33: 32-39.
    [38] INGALL M D K, JORAY S J, BIANCONI P A, et al. Surface functionalization with polymer and block copolymer films using organometallic initiators[J]. J. Am. Chem. Soc., 2000, 122; 7845-7846.
    [39]陈小平,丘坤元.“活性”/控制自由基聚合的研究进展[J].化学进展,2001,13:224-233.
    [40] BOER B, SIMON H K, HADZIIOANNOU G, et al.“Living”Free radical photopolymerization initiated from surface-grafted iniferter monolayers[J]. Macromolecules, 2000, 33: 349-356.
    [41] MULFORT K L, RYU J, ZHOU Q. Preparation of surface initiated polystyrenesulfonate films and PEDOT doped by the films[J]. Polymer, 2003, 44: 3185-3192.
    [42] HUSSEMAN M, HHDRICK J L, HAWKER C J, et al. Controlled synthesis of polymer brushes by“living”free radical polymerization techniques[J]. Macromolecules, 1999, 32: 1424-1431.
    [43] TSUJII Y, EJAZ M, FUKUDA T, et al. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration[J]. Macromolecules, 2001, 34; 8872-8878.
    [44] BAUM M, BRITTAIN W J. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique[J]. Macromolecules, 2002, 35: 610-615.
    [45] RAULA J, SHAN J, TENHU H, et al. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization[J]. Langmuir, 2003, 19: 3499-3504.
    [46] ZHAI G, YU W H, KANG E T, et al. Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization[J]. Ind. Eng. Chem. Res., 2004, 43: 1673-1680.
    [47] XIAO D, WIRTH M J. Kinetics of surface-initiated ttom transfer radicalpolymerization of acrylamide on silica[J]. Macromolecules, 2002, 35: 2919-2925.
    [48] KIM B, BRUENING M L, BAKER G L. Surface-initiated atom transfer radical polymerization on gold at ambient temperature[J]. J. Am. Chem. Soc., 2000, 122: 7616-7617.
    [49] KIM B, BRUENING M L, BAKER G L, et al. Synthesis of triblock copolymer brushes by surface-initiated atom transfer radical polymerization[J]. Macromolecules, 2002, 35: 5410-5416.
    [50] MORI H, BOKER A, MULLER A H E , et al. Surface-grafted hyperbranched polymers via self-condensing atom transfer radical polymerization from silicon surfaces[J]. Macromolecules, 2001, 34: 6871-6882.
    [51] PYUN J, KOWALEWSKI T, MATYJASZEWSKI K, et al. Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films[J]. Macromolecules, 2003, 36: 5094-5104.
    [52] CHEN X, RANDALL D P, ARMES S P, et al. Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization[J]. J. Colloid Interface Sci., 2003, 257: 56-64.
    [53] MORI H , SENG D C , MULLER A H E , et al. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces[J]. Langmuir, 2002 , 18: 3682-3693.
    [54] KIZHAKKEDATHU N J, JONES R N, BROOKS D E, et al. Synthesis of well-defined environmentally responsive polymer brushes by aqueous ATRP[J]. Macromolecules, 2004 , 37: 734-743.
    [55] MINKO S, SIDORENKO A, STAMM M, et al. Radical polymerization initiated from a solid substrate. 2. Study of the grafting layer growth on the silica surface by in situ ellipsometry[J]. Macromolecules, 1999, 32: 4532-4538.
    [56] MINKO S, GAFIJCHUK G, SIDORENKO A, et al. Radical polymerization initiated from a solid substrate. 1. Theoretical background[J].Macromolecules, 1999, 32; 4525-4531.
    [57] JONES D M, BROWN A A, HUSK W T S. Surface-initiated polymerizations in aqueous media: Effect of initiator density[J]. Langmuir, 2002, 18: 1265-1269.
    [58]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982.
    [59] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic configuration interaction. A general technique for determining electron correlation energies[J]. J. Chem. Phys., 1987, 87: 5968-5975.
    [60] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives in many-body methods. I. First derivatives[J]. J. Chem. Phys., 1989, 90: 1752-1766.
    [61] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a systematic molecular orbital theory for excited states[J]. J. Phys. Chem., 1992, 96: 135-149.
    [62] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140: A1133-A1138.
    [63] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys. Rev. B, 1964, 136: 864-871.
    [64] SLATER, J. C. Quantum theory of molecular and solids, Vol. 4: the self- consistent field for molecular and solids[M]. McGraw-Hill: New York, 1974.
    [65] SALAHUB D E, ZERNER M C. The challenge of d and f electrons[M]. ACS: Washington, D.C. 1989.
    [66] PARR R G, YANG W. Density-functional theory of atoms and molecules[M]. Oxford Univ., Press: Oxford, 1989.
    [67] LABANOWSKI J K, AADZELM J W. Density functional methods in chemistry[M]. Springer-Verlag: New York, 1991.
    [68] POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem. Phys. Letters, 1992, 199: 557-560.
    [69] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J. Chem. Phys., 1994, 100: 7429.
    [70] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Phys. Rev.,1964, 136: B864-B871.
    [71] PERDEW J P, PARR R G, LEVY M, et al. Density-funcational theory for fractional particle number: derivative discontinuities of the energy[J]. Phys. Rev. Lett., 1982, 49: 1691-1694.
    [72] HEDIN L, LUNDQVIST B. Explicit local exchange-correlation potentials[J]. J. Phys. C, 1971, 4(14): 2064-2083.
    [73] VOSKO S H, WILK L, NUSAIR M. Accurate spin dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Can. J. Phys., 1981, 58: 1200-1211.
    [74] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B, 1981, 23: 5048-5079.
    [75] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992, 46: 6671-6687.
    [76] HAMMER B, HANSEN L B, NOARSKOV J K. Improved adsorption energetics within density-funcational theory using revised Perdew-Burke-Ernzerhof funcationals[J]. Phys. Rev. B, 1999, 59: 7413-7421.
    [77] CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Gaussian-3(G3) theory for molecules containing first and second-row atoms[J]. J. Chem. Phys., 1998, 109: 7764-7776.
    [78] CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al. Gaussian-3 theory using reduced M?ller-Plesset order[J]. J. Chem. Phys., 1999, 110: 4703-4709.
    [79] FAST P L, TRUHLAR D G. MC-QCISD: Multi-ccoefficient correlation method based on quadratic configuration interaction with single and double excitations[J]. J. Phys. Chem. A, 2000, 104: 6111-6116.
    [80] LYNCH B J, ZHAO Y, TRUHLAR D G.. The 6-31G(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods[J]. J. Phys. Chem. A, 2005, 109: 1643-1649.
    [81] GLASSTONE S, LAIDLER K, ERYING H. Theory of rate processes[M]. New York: McGraw-Hill, 1941.
    [82] JOHNSTON H S. Gas phase reaction rate theory[M]. NewYork: Ronald Press Company, 1966.
    [83] THUHLAR D G, ISAACSON A D, GARREETT B C. The theory of chemical reaction dynamics[M]. Boca Raton: CRC Press, 1985, Vol.4, p65.
    [84] ATKINS P W. Physical chemistry[M]. New York: W. H. Freeman and Company, 1990.
    [85] WINN J S. Physical chemistry[M]. New York: Harper Collins College Publishers, 1995.
    [86]刘光恒,戴树珊,化学应用统计力学[M] ,科学出版社,2001.
    [87]陈良恒,热力学与统计物理学[M],吉林大学出版社,1987.
    [88]李如生,平衡和非平衡统计力学[M],清华大学出版社,1995.
    [89] WOODCOCK L V. Isothermal molecular dynamics calculations for liquid salts[J]. Chem. Phys. Lett., 1970, 10, 257-259.
    [90] LENNARD-JONES J E. Cohesion[J]. Proc. Phys. Soc., 1931, 43: 461-482.
    [91] UNDERHILL P T, DOYLE P S. On the coarse-graining of polymers into bead-spring chains[J]. J. Non-Newtonian Fluid Mech., 2003, 122: 3-31.
    [92] WEEKS J D, CHANDLER D, ANDERSEN H C. Role of repulsive forces in determining the equilibrium structure of simple liquids[J]. J. Chem. Phys., 1971, 54: 5237-5248.
    [93] SLATER G W, HOLM C, CHUBYNSKY M V, et al. Modeling the separation of macromolecules: A review of current computer simulation methods[J]. Electrophoresis, 2009, 30: 792-818.
    [94] GREST G S, KREMER K. Molecular dynamics simulation for polymers in the presence of a heat bath[J]. Phys. Rev. A, 1986, 33: 3628-3631.
    [95] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating micro-scopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhys. Lett., 1992, 19: 155-160.
    [96] KOELMAN J M V A, HOOGERBRUGGE P J. Dynamic simulations of hard-sphere suspensions under steady shear[J]. Europhys. Lett., 1993, 21: 363-368.
    [97] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem. Phys., 1997, 107: 4423-4435.
    [98] DüNWEG B,PAUL W. Brownian dynamics simulations without gaussian random numbers[J]. Int. J. Mod. Phys. C, 1991, 2: 817-827.
    [99] ESPA?OL P, WARREN P B. Statistical mechanics of dissipative particle dynamics[J]. Europhys. Lett., 1995, 30: 191-196.
    [100] NOVIK K E, COVENEY P V. Finite-difference methods for simulation models incorporating nonconservative forces[J]. J. Chem. Phys., 1998, 109: 7667-7677.
    [101] PAGONABARRAGA I, HAGEN M H J, FRENKEL D. Self-consistent dissipative particle dynamics algorithm[J]. Europhys. Lett., 1998, 42: 377-382.
    [102] VATTULAINEN I, KARTTUNEN M, BESOLD G, et al. Integration schemes for dissipative particle dynamics simulations: from softly interacting systems towards hybrid models[J]. J. Chem. Phys., 2002, 116: 3976-3979.
    [103] NIKUNEN P, KARTTUNEN M, VATTULAINEN I. How would you integrate the equations of motion in dissipative particle dynamics simulations?[J]. Comp. Phys. Comm., 2003, 153: 407-423.
    [104] SHARDLOW T. Splitting for dissipative particle dynamics[J]. SIAM J. Sci. Comp., 2003, 24: 1267-1282.
    [105] TUCKERMAN M, BERNE B J, MARTYNA G J. Reversible multiple time scale molecular dynamics[J]. J. Chem. Phys., 1992, 97: 1990-2001.
    [106] STRANG G. On the construction and comparison of difference schemes[J]. SIAM. J. Number. Anal., 1968, 5: 506-517.
    [107] LOWE C P. An alternative approach to dissipative particle dynamics[J]. Europhys. Lett., 1999, 47: 145-151.
    [108] ANDERSEN H C. Molecular dynamics simulations at constant press- ure and/or temperature[J]. J. Chem. Phys., 1980, 72: 2384-2393.
    [109] SCHNEIDER T,STOLL E. Molecular-dynamics study of a three- dimensional one-component model for distortive phase transitions[J]. Phys. Rev. B, 1978, 17: 1302-1322.
    [110] RISKEN H. The fokker-planck equation[M]. Berlin: Springer-Verlag, 1984.
    [111] DüNWEG B. Langevin methods, Computer simulation of surfaces andinterfaes[M]. Dordrecht: Kluwer, 2003.
    [112] GROOT R D, RABONE K L. Mesocsopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants[J]. Biophys. J., 2001, 81: 725-736.
    [113] BURROUGHES J H, BRADLY D D C, BROUN A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347: 539-541.
    [114] WARREN P B. Vapor-liquid coexistence in many-body dissipative particle dynamics[J]. Phys. Rev. E, 2003, 68: 066702, 1-8.
    [115] BULOVIC V, BURROWS P E, FORREST S R. Transparent light-emitting devices[J]. Nature, 1996, 380: 29-33.
    [116] BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395: 151-154.
    [117] BALDO M A, THOMPSON M E, FORREST S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J]. Nature, 2000, 403: 750-753.
    [118] KARL N. Charge carrier transport in organic semiconductors[J]. Synth. Met., 2003, 133: 649-657.
    [119] BRéDAS J L, CALLBERT J P, DA-SILVA-FILHO D A, et al. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport[J]. Proc. Natl. Acad. Sci. USA, 2000, 99: 5804-5809.
    [120] MARCUS R A. Electron transfer reactions in chemistry. Theory and experiment[J]. Rev. Mod. Phys., 1993, 65: 599-610.
    [121] YANG Y T, GENG H, SHUAI Z G, et al. First-principles electronic structure of light-emitting and transport materials: Zinc(II)2-(2-hydroxyphenyl)- benzothiazolate[J]. Synth. Met., 2006, 156: 1287-1291.
    [122] DENG W Q, GODDARD W A. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations[J]. J. Phys. Chem. B, 2004, 108: 8614-8621.
    [123] ZENG H P, OU-YANG X H, WANG T T, et al. Synthesis, crystalstructure, and prediction of hole mobilities of 2,7’-ethylene-bis(8-hydroxyquinoline)[J]. Cryst. Growth Design, 2006, 6: 1697-1702.
    [124] VALEEV E F, COROPCEANU V, DA-SILVA-FILHO D A, et al. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors[J]. J. Am. Chem. Soc., 2006, 128: 9882-9886.
    [125] LI H, BRéDAS J L. First-principles theoretical investigation of the electronic couplings in single crystals of phenanthroline-based organic semiconductors[J]. J. Chem. Phys., 2007, 126: 164704, 1-7.
    [126] NORTON J E, BRéDAS J L. Theoretical characterization of titanyl phthalocyanine as p-type organic semiconductor: short intermolecularπ-πinteractions yield large electronic couplings and hole transport bandwidths[J]. J. Chem. Phys., 2008, 128: 034701, 1-7.
    [127] YOSHIDA H, SATO N. Crystallographic and electronic structures of three different polymorphs of pentacene[J]. Phys. Rev. B, 2008, 77: 235205, 1-11.
    [128] LEE J, LIU Q D, MOTALA M, et al. Photoluminescence, electroluminescence, and complex formation of novel N-7-azaindolyl- and 2,2’-dipyridylamino-functionalized siloles[J]. Chem. Mater., 2004, 16: 1869-1877.
    [129] RISKO C, ZOJER E, BROCORENS P, et al. Bis-aryl substituted dioxaborines as electron-transport materials: a comparative density functional theory investigation with oxadiazoles and siloles[J]. Chem. Phys., 2005, 313: 151-157.
    [130] YAMAGUCHI S, ENDO T, UCHIDA M, et al. Toward new materials for organic electroluminescent devices: synthesis, structures and properties of a series of 2,5-diaryl-3,4-diphenylsiloles[J]. Chem. Eur. J., 2000, 6: 1683-1692.
    [131] MURATA H, MALLIARAS G G, UCHIDA M, et al. Non-dispersive and air-stable electron transport in an amorphous organic semiconductor[J]. Chem. Phys. Lett., 2001, 339: 161-166.
    [132] MAURATA H, KAFAFI Z H, UCHIDA M. Efficient organic light-emitting diodes with undoped active layers based on silolederivatives[J]. Appl. Phys. Lett., 2002, 80: 189-191.
    [133] PALILIS L C, M?AKINEN A J , UCHIDA M, et al. Highly efficient molecular organic light-emitting diodes based on exciplex emission[J]. Appl. Phys. Lett., 2003, 82: 2209-2211.
    [134] YAMAGUCHI S, TAMAO K. Theoretical study of the electronic structure of 2,2’-bisilole in comparison with 1,1’-bi-1,3-cyclopentadiene:σ*→π* conjugation and a low-lying LUMO as the origin of the unusual optical properties of 3,3’,4,4’-tetraphenyl-2,2’-bisilole[J]. Bull. Chem. Soc. Jpn., 1996, 69: 2327-2334.
    [135] YAMAGUCHI S, JIN R Z, TAMAO K. Modification of the electronic structure of silole by the substituents on the ring silicon[J]. J. Organomet. Chem., 1998, 559: 73-80.
    [136] YU G, YIN S W, LIU Y Q, et al. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles[J]. J. Am. Chem. Soc., 2005, 127; 6335-6346.
    [137] YIN S, YI Y, LI Q, et al. Balanced carrier transports of electrons and holes in silole-based compounds-A theoretical study[J]. J. Phys. Chem. A, 2006, 110: 7138-7143.
    [138] SUN Y, LI Y, CHEN Y, et al. Excited state properties of neutral, anionic and cationic 1,1-disubstituted 2,3,4,5-tetraphenylsiloles: A quantum chemical characterization[J]. J. Mol. Struc.: THEOCHEM, 2006, 770: 51-56.
    [139] TROISI A, ORLANDI G. Band structure of the four pentacene polymorphs and effect on the hole mobility at low temperature[J]. J. Phys. Chem. B, 2005, 109: 1849-1856.
    [140] HADDON R C, CHI X, ITKIS M E, et al. Band electronic structure of one- and two-dimensional pentacene molecular crystals[J]. J. Phys. Chem. B, 2002, 106: 8288-8292.
    [141] DE-WIJS G A, MATTHEUS C C, DE-GROOT R A, et al. Anisotropy of the mobility of pentacene from frustration[J]. Synth. Met., 2003, 139: 109-114.
    [142] HUMMER K, AMBROSCH-DRAXL C. C4 defect and its precursors in Si: First-principles theory[J]. Phys. Rev. B, 2005, 77: 205205, 1-8.
    [143] FRISH M J, TRUCK G W, SCHLEGEL H B, et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford CT, 2004.
    [144] PERDEX J R, BURKE K, ERNZERHOF M, Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
    [145] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys.: Condens. Matter, 2002, 14: 2717-2744.
    [146] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990, 41: 7892-7895.
    [147] CHEN J W, LAW C C W, LAM J W Y, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles[J]. Chem. Mater., 2003, 15: 1535-1546.
    [148] BERENDSEN H J C, POSTMA J P M, VAN-GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. J. Chem. Phys., 1984, 81: 3684-3691.
    [149] SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B, 1998, 102: 7338-7364.
    [150] SUN H, REN P, FRIED J R. The COMPASS force field: parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci., 1988, 8: 229-246.
    [151] KOH S E, RISKO C, DA-SLIVA-FILHO D A, KWON O, et al. Modeling electron and hole transport in fluoroarene-oligothiopene semiconductors: investigation of geometric and electronic structure properties[J]. Adv. Funct. Mater., 2008, 18: 332-340.
    [152] SONG Y, DI C, YANG X, LI S, et al. A cyclic triphenylamine dimer for organic field-effect transistors with high performance[J]. J. Am. Chem. Soc., 2006, 128: 15940-15941.
    [153] YANG X D, WANG L J, WANG C L, et al. Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes[J]. Chem. Mater., 2008, 20: 3205-3211.
    [154] GARCíA-FRYTOS E M, GYTIERREZ-PUEBLA E, MOGEN M A, et al. Crystal structure and charge-transport properties of N-trimethyltriindole:Novel p-type organic semiconductor single crystals[J]. Org. Electron., 2009, 10: 643-652.
    [155] VOOREN A V, KIM J S, CORNIL J. Intrachain versus interchain electron transport in poly(fluorene-alt-benzothiadiazole): A quantum-chemical insight[J]. ChemPhysChem, 2008, 9: 989-993.
    [156] HUTCHISON G R, RATNER M A, MARKS T J. Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects[J]. J. Am. Chem. Soc., 2005, 127: 2339-2350.
    [157] KIM E G, BRéDAS J L. Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): From the isolated chain to the pristine and heavily doped crystals[J]. J. Am. Chem. Soc., 2008, 130: 16880-16889.
    [158] VAN-SPEYBROECK V, CAUTE K V, COUSSENS B, et al. Ab initio study of free-radical polymerizations: Cost-effective methods to determine the reaction rates[J]. ChemPhysChem, 2005, 6: 180-189.
    [159] CAUTE K V, VAN-SPEYBROECK V, VANTEENKISTE P, et al. Ab initio study of free-radical polymerizations: Polyethylene propagation kinetics[J]. ChemPhysChem, 2006, 7: 131-140.
    [160] SABBE M K, REYNIERS M F, VAN-SPEYBROECK V, et al. Carbon-centered radical addition andβ-scission reaction: Modeling of activation energies and pre-exponential factors[J]. ChemPhysChem, 2008, 9: 124-140.
    [161] GóMEZ-BALDERAS R, COOTE M L, HENRY D J, et al. Reliable theoretical procedures for calculating the rate of methyl radical addition to carbon-carbon double and triple bonds[J]. J. Phys. Chem. A, 2004, 108: 2874-2883.
    [162] IZGORODINA E I, COOTE M L, RADOM L. Trends in R-X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): A surprising shortcoming of density functional theory[J]. J. Phys. Chem. A, 2005, 109: 7558-7566.
    [163] IZGORODINA E I, COOTE M L. Accurate ab initio predication of propagation rate coefficients in free-radical polymerization: Acrylonitrile and vinyl chloride[J]. Chem. Phys., 2006, 324: 96-110.
    [164] FISCHER H, RADOM L. Factors controlling the addition of carbon-centered radicals to alkenes-An experimental and theoretical perspective[J]. Angew. Chem. Int. Ed., 2001, 40: 1340-1371.
    [165] DE?IRMENCI ?, AVIYENTE V, VAN-SPEYBROECK V, et al. DFT study on the propagation kinetics of free-radical polymerization ofα-substituted acrylates[J]. Macromolecules, 2009, 42: 3033-3041.
    [166] WILLEMSE R X E, STAAL B B P, VAN-HERK A M, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in pulsed laser polymerization. chain-length-dependent propagation rate coefficients at high molecular weight: An artifact caused by band broadening in size exclusion chromatography?[J]. Macromolecules, 2003, 36: 9797-9803.
    [167] OLAJ O F, VANA P, ZODER M, et al. Is the rate constant of chain propagation kp in radical polymerization really chain-length independent?[J]. Macromol. Rapid Commun., 2000, 21: 913-920.
    [168] OLAJ O F, ZODER M, VANA P, et al. Chain Length Dependence of Chain Propagation Revisited[J]. Macromolecules, 2005, 38: 1944-1948.
    [169] HILL D J, O'DONNELL H, O'SULLIVAN P W. Analysis of the mechanism of copolymerization of styrene and maleic anhydride[J]. Macromolecules, 1985, 18: 9-17.
    [170] FUKUDA T, MA Y D, INAGAKI H. Free-radical copolymerization. 3. Determination of rate constants of propagation and termination for the styrene/methyl methacrylate system. A critical test of terminal-model kinetics[J]. Macromolecules, 1985, 18: 17-26.
    [171] MA Y D, FUKUDA T, INAGAKI H. Free-radical copolymerization. 4. Rate constants of propagation and termination for the p-chlorostyrene/methyl acrylate system[J]. Macromolecules, 1985, 18: 26-31.
    [172] YU X, LEVINE S E, BROADBELT L J. Kinetic study of the copolymerization of methyl methacrylate and methyl acrylate using quantum chemistry[J]. Macromolecules, 2008, 41: 8242-8251.
    [173] MOHAMMADI Y, NAJAFI M, HADDADI-ASL V. Comprehensive study of free radical copolymerization using a Monte Carlo simulationMethod, 1 Both reactivity ratios less than unity (rA<1 and rB<1)[J]. Macromol. Theor. Simul., 2005, 14: 325-336.
    [174] NAJAFI M, HADDADI-ASL V, MOHAMMADI Y. Appoication of the Monte Carlo simulation method to the investigation of peculiar free-radical copolymerization reaction: Systems with both reactivity ratios greater than unity (rA>1 and rB>1)[J]. J. Appl. Polym. Sci., 2007, 106: 4138-4147.
    [175] NAJAFI M, SALAMI-KALAJAHI M, HADDADI-ASL V. Quantitative evaluation of arrangement of monomers in linear binary copolymers using a Monte Carlo simulation method[J]. Chinese J. Polym. Sci., 2009, 27: 195-208.
    [176] TABASH R Y, TEYMOUR F A, DEBLING J A. Modeling linear free radical copolymerization by digital encoding[J]. Macromolecules, 2006, 39: 829-843.
    [177] CORCHADO J C, CHUANG Y Y, FAST P L, et al. POLYRATE, version 9.3.1, University of Minnesota: Min-neapolis, MN, 2005.
    [178] LIU H, LI M., Lu Z Y, et al. Influence of surface-initiated polymerization rate and initiator density on the properties of polymer brushes[J]. Macromolecules, 2008, 42: 2863-2872.
    [179]赵英,谢宇,吕中元,等. P123 (PEO20-PPO70-PEO20)嵌段共聚物水溶液物理凝胶化行为的耗散粒子动力学模拟[J].高等学校化学学报,2009,30(12):2455-2459.
    [180]何彦东,尤莉艳,王晓琳,等.高分子在受限稀溶液中的结构和动力学性质[J].高等学校化学学报, 2009, 30(1):191-195.
    [181] LIU H, QIAN H J, ZHAO Y, et al. Dissipative particle dynamics simulation study on the binary mixture phase separation coupled with polymerization[J]. J. Chem. Phys., 2007, 127: 144903, 1-8.
    [182] AKKERMANS R L C, TOXVAERD S, BRIELS W J. Molecular dynamics of polymer growth[J]. J. Chem. Phys., 1998, 109: 2929-2940.
    [183] CATES M E. Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions[J]. Macromolecules, 1987, 20: 2289-2296.
    [184] MILNER S T, WITTEN T A, CATES M E. Theory of the grafted polymer brush[J]. Macromolecules, 1988, 21: 2610-2619.
    [185] KATO M, KAMIGAITO M, SAWAMOTO M, et al. Polymerization of methyl methacrylate with the carbon tetrachloridel/dichlorotris(triphenylphosphine)ruthedum(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating System: Possibility of viving radical polymerization[J]. Macromolecules, 1995, 28: 1721-1723.
    [186] WANG J S, MATYJASZEWSKI K. Controlled“living”radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexe [J]. J. Am. Chem. Soc., 1995, 117: 5614-5615.
    [187]安丽娟,李兆强,王燕萍,等.表面引发原子转移自由基聚合方法合成Fe3O4/PMMA复合纳米微粒[J].高等学校化学学,2006, 27(7):1372-1375.
    [188] TSUJII Y, OHNO K, YAMAMOTO S, et al. Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization[J]. Adv. Polym. Sci., 2006, 197: 1-45.
    [189] TSAREVSKY N V, MATYJASZEWSKI K.“Green”atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials[J]. Chem. Rev., 2007, 107: 2270-2299.
    [190] BRAUNECKER W A, MATYJASZEWSKI K. Recent mechanistic developments in atom transfer radical polymerization[J]. J. Mol. Catal. A: Chem., 2006, 254: 155-164.
    [191] PRUCKER O, RüHE J. Polymer layers through self-assembled monolayers of initiators[J]. Langmuir, 1998, 14: 6893-6898.
    [192] KIM J B, HUANG W X, MILLER M D, et al. Kinetics of surface-initiated atom transfer radical polymerization[J]. J. Polym. Sci. A1, 2003, 41: 386-394.
    [193] VATTULAINEN I, KARTTUNEN M, BESOLD G, et al. Integration schemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models[J]. J. Chem. Phys., 2002, 116: 3967-3979.
    [194] DEVAUX C, COUSIN F, BEYOU E, et al. Low swelling capacity ofhighly stretched polystyrene brushes[J]. Macromolecules, 2005, 38: 4296-4300.
    [195] BHAT R R, TOMLINSON M R, WU T, et al. Surface-grafted polymer gradients: formation, characterization, and applications[J]. Adv. Polym. Sci., 2006, 198: 51-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700