锂离子电池用凝胶聚合物电解质的设计、制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计制备了半互穿网络(semi-IPN)凝胶聚合物电解质,两亲性网络凝胶聚合物电解质,聚醚胺改性网络凝胶聚合物电解质,碳纳米管复合凝胶聚合物电解质以及静电纺丝多孔纤维凝胶聚合物电解质等五种类型的电解质体系。采用FTIR、NMR、DSC、TGA、XRD、SEM,拉伸测试等表征手段,以及交流阻抗谱测试,研究凝胶聚合物电解质膜的化学结构、凝胶含量、形貌、热性能,力学性能和电化学性能。分析不同聚合物基体,组分组成比例对电解质膜性能的影响,以实现力学性能和电化学性能的统一,使制备的凝胶聚合物电解质具有实际应用前景。
     本文首先将聚氧化乙烯(PEO)与聚(丙烯腈-甲基丙烯酸缩水甘油酯)(P(AN-GMA))共混,采用二乙烯三胺(DETA)做交联剂,制备semi-IPN型凝胶聚合物电解质。XRD和DSC分析结果表明DETA与共聚物中环氧基团交联后,体系中PEO组分的结晶受到明显抑制,有利于锂离子在聚合物基体中的传导。拉伸性能测试结果显示,semi-IPN结构的聚合物膜拉伸强度提高。并且随着PEO组分含量的增加,semi-IPN结构的聚合物膜对液体电解质的吸附量增大,体系的离子电导率增加。当P(AN-GMA)/PEO质量比为1/1时,室温离子电导率为1.25×10-4 S/cm。
     研究制备了新型的两亲性网络(聚乙二醇200-甲基丙烯酸缩水甘油酯)-甲基丙烯酸甲酯(PEG200-b-GMA)-co-MMA和(PEG2000-b-GMA)-co-MMA聚合物电解质膜。DSC分析发现其具有两个玻璃化转变温度。接触角测试表明聚合物膜具有两亲性,平衡接触角大小与共聚物两亲性网络聚合物中PEG-b-GMA的分子量以及PEG-b-GMA与MMA摩尔组成的变化有关。两亲性共网络聚合物凝胶聚合物中,MMA组分越少,PEG-b-GMA组分含量越高,体系的交联度越大,离子电导率越高。并且(PEG2000-b-GMA)-co-MMA由于所含的EO基团链段长于(PEG200-b-GMA)-co-MMA体系,其离子电导率较高。
     研究制备了不同分子量的聚醚胺(Jeffamine D400, Jeffamine D2000)做交联剂,分别与P(AN-GMA)及聚(甲基丙烯酸缩水甘油酯-甲基丙烯酸聚乙二醇单甲醚酯)(P(GMA-PEGMA))交联的网络聚合物电解质体系。FTIR分析表明随着Jeffamine D400和Jeffamine D2000用量的增加,环氧基团反应程度提高。拉伸测试结果表明聚醚胺用量的增加会使交联体系的拉伸强度降低,断裂伸长率提高。所制备的凝胶聚合物电解质的DSC分析表明Jeffamine与P(AN-GMA)之间的相容性差于P(GMA-PEGMA)。分子量较大的Jeffamine所含的PPO链段较长,且Jeffamine用量越多,越有利于交联聚合物体系的链运动,体系的室温离子电导率较高。
     进一步研究将不同分子量的聚醚胺接枝到多壁碳纳米管表面,分别与P(AN-GMA)和P(GMA-PEGMA)两种聚合物复合,得到具有化学交联结构的杂化聚合物膜。SEM表征发现表面接枝的多壁碳纳米管在两种聚合物中被完全包裹,分散均匀。拉伸测试结果表明碳纳米管与聚合物之间的化学交联作用,提高了两者之间的结合力,体系的拉伸强度大大提高,且较长链段聚醚胺接枝的碳纳米管与聚合物之间的结合更加紧密,拉伸强度相对更高。由于P(GMA-PEGMA)的柔韧性高于P(AN-GMA),体系的断裂伸长率相对较大。多壁碳纳米管表面接枝的聚醚胺,有利于提高复合体系与锂离子的亲和力,离子电导率提高。且Jeffamine D400接枝的碳纳米管复合体系的离子电导率高于Jeffamine D2000接枝的碳纳米管复合体系。由于P(GMA-PEGMA)体系的玻璃化温度低于P(AN-GMA)体系,离子电导率更加优异。
     最后,采用静电纺丝法制备了PVdF/PEO和纳米SiO2复合PVdF/PMMA多孔纤维聚合物膜。SEM表征发现两种膜纤维表面比较光滑,纤维之间相互交织,形成大量尺寸不一的孔洞结构。纳米SiO2在PVdF/PMMA纤维表面分散比较均匀;含量较高时,部分纳米粒子出现团聚现象。XRD和DSC分析证明PVdF/PEO多孔纤维膜中随着PEO组分含量的增加,PVdF的结晶度降低,而PEO组分的结晶度提高。PVdF/PEO质量比为3/1时,体系的室温离子电导率最大。纳米SiO2粒子分散性越好,PVdF组分的结晶度越低。当纳米SiO2的添加量为6%时,体系的室温离子电导率最高,达2.55×10-3S/cm。
Novel gel polymer elelctrolytes (GPEs) for secondary lithium-ion batteries have been investigated. Five kinds of gel polymer electrolytes were prepared, i.e. semi-interpenetrating (semi-IPN) GPEs, amphiphilic conetwork GPEs, network-structured GPEs with polyetheramine as crosslinking agent, multiwall carbon nanotube/GPE hybrids and electrospun fibrous GPEs. The chemical structure and composition, morphology, thermal behavior, mechanical strength and ionic conductivity of these GPE membranes have been investigated by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction pattern (XRD), stess-strain test and alternating current impedance (AC Impedance). The influences of the structure and compositions of the polymers on the properties of resulting GPEs were studied, aiming at obtaining GPEs with both good ionic conductivity at room temperature and good mechanical strength for practical application.
     Novel semi-IPN GPEs based on poly(acrylonitrile-co-glycidyl methacrylate)/poly(ethylene oxide) (P(AN-GMA)/PEO) crosslinked by diethylenetriamine (DETA) were synthesized. DSC and XRD measurements showed that the crystallization of PEO fraction in the semi-IPN polymer electrolyte was greatly impeded by the crosslinking of DETA with epoxy group, which facilitated the transportation of lithium ion. The tensil tests revealed that the critical strength of the membrane was enhanced. Moreover, the semi-IPN GPEs exhibited better absorptive ability of liquid electrolyte and higher ionic conductivity with the increased in the content of PEO. The ionic conductivity of the GPE at room temperature reached 1.25×10-4S/cm when the weight ration of P(AN-GMA)/PEO was 1/1.
     Novel amphiphilic conetwork GPEs based on (PEG200-b-GMA)-co-methyl methacrylate (MMA) and (PEG2000-b-GMA)-co-MMA have been investigated. Two glass transition temperatures were observed in the DSC curves. The measurements of the static contact angle of the polymer membranes revealed the amphiphilic nature of the polymers, and the contact angles were found to vary with the molecular weight of PEG-b-GMA and the mole ratio of PEG-b-GMA and MMA. With the increase of weight ratio of PEG-b-GMA, both the crosslinking degree and the ionic conductivity of the amphiphilic conetwork copolymer increased. And the ionic conductivity of (PEG2000-b-GMA)-co-MMA is higher than that of (PEG200-b-GMA)-co-MMA because of its longer ethylyne oxide (EO) chains.
     Crosslinked GPEs based on P(AN-GMA) and poly(glycidyl methacrylate-polyethylene glycol methyl ether methacrylate) (P(GMA-PEGMA)) with polyetheramine (Jeffamine D400, Jeffamine D2000) as crosslinking agents were prepared. The reaction degree of the epoxy group increased with the increase in the content of Jeffamine D400 and Jeffamine D2000 as indicated in FT-IR analysis. The stress-strain tests revealed that the critical strength of the crosslinked polymer membranes decreased with the weight content of polyetheramine, while their elongation at break increased accordingly. The DSC analysis of the resulting GPEs suggested that the compatibility between Jeffamine and P(AN-GMA) was worse than that between Jeffamine and P(GMA-PEGMA). The ionic conductivity of the crosslinked GPEs exhibited enhanced ionic conductivity with the increase in the molecular weight and weight ratio of Jeffamine, which is due to the fact that more PPO segments involved in the system facilitated the segment mobility of the crosslinked polymer.
     GPEs based on multiwall carbon nanotubes (MWCNTs)/polymer hybrids were prepared based on the blending of MWCNTs grafted with Jeffamine of different molecular weights with P(AN-GMA) and P(GMA-PEGMA), respectively. SEM images of the composite membranes showed that the MWCNTs were completely wrapped with polymers and dispersed finely in the polymer matrix. The stress-strain test revealed that the hybrids exhibited enhanced critical strength, which might be related to stronger binding force between MWCNTs and copolymer resulting from the chemical covalent crosslinking. Moreover the critical strength of the hybrids in which MWCNTs grafted with PPO of longer chains was higher due to stronger linkage between MWCNTs and copolymers. The elongation at break of P(GMA-PEGMA)/MWCNTs was higher than that of P(AN-GMA)/MWCNTs due to the different flexibility of the copolymers.higher content of Jeffamine grafted MWCNTs enhanced the ionophilicity of the hybrid GPEs and led to higher ionic conductivity. The GPEs based on Jeffamine D400 grafted MWCNTs exhibit higher ionic conductivity than that based on Jeffamine D2000 grafted MWCNTs. In contrast, the ionic conductivity of P(GMA-PEGMA)/MWCNTs was higher than that of P(AN-GMA)/MWCNTs due to its lower glass transition temperature of the former system.
     Electrospun PVdF/PEO and the composite of PVdF/PMMA and nano-SiO2 were fabricated. The resulting membranes were composed of fibers with smooth surface and large number of cavities of different sizes as indicated in SEM images. Moreover, it was found that the nano-SiO2 dispersed uniformly in PVdF/PMMA fiber. However, the nano particles tended to aggregate with the increase in its weight ratio. XRD and DSC results revealed that the crystallinity of PVdF decreased and the crystallinity of PEO increased with the increase in PEO in the PVdF/PEO fibrous membrane. The electrospun PVdF/PEO (3/1) exhibited the highest ionic conductivity. Better dispersity of nano-SiO2 led to lower crystallinity of PVdF. The electrospun composite of PVdF/PMMA and 6wt% of nano SiO2 showed the highest ionic conductivity of 2.55×10-3 S/cm at room temperature.
引文
[1]J. Zhou, P. S. Fedkiw. Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 2004; 166(3-4):275-293.
    [2]武桂玲,陈梅.2008年锂离子电池市场分析.电源技术2008;32(12):882-884.
    [3]郭炳焜,徐徽,王先友,肖立新.锂离子电池.长沙:中南大学出版社2002.
    [4]操建华.锂离子电池中聚合物电解质多孔膜的制备及其结构与性能的研究.浙江大学博士学位论文2005.
    [5]吴宇平,张汉平,吴锋,李朝晖.聚合物锂离子电池.北京:化学工业出版社2006.
    [6]周运鸿,陈军,郭向峰,詹晖.锂离子电池正极材料LiFeO4的进展.电源技术2009;33:649-651.
    [7]郭炳焜,徐徽,王先友,肖立新.锂离子电池.长沙:中南大学出版社2002.
    [8]S. S. Zhang. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 2007; 164(1):351-364.
    [9]P. Arora, Z. M. Zhang. Battery separators. Chem Rev 2004; 104(10):4419-4462.
    [10]郑洪河.锂离子电池电解质.北京:化学工业出版社2006.
    [11]吴萌,栾和林,姚文.锂离子电池电解液的研究进展.矿冶2004;13(3):57-60.
    [12]武山,庄全超.锂离子电池有机电解液材料研究进展.化学研究与应用2005;17(4):433-438.
    [13]高菲,戴永年,姚耀春.锂离子电池非水电解液添加剂的研究进展.电池工业2005;10(5):309-313.
    [14]J. Y. Song, Y. Y. Wang, C. C. Wan. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 1999; 77(2):183-197.
    [15]F. B. Dias, L. Plomp, J. B. J. Veldhuis. Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 2000; 88(2):169-191.
    [16]N. K. Chung, Y. D. Kwon, D. Kim. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly(ethylene glycol) hybrid-type polymer electrolytes. J Power Sources 2003; 124(1):148-154.
    [17]D. E. Fenton, J. M. Parker, P. V. Wright. Complexes of Alkali-Metal Ions with Poly(Ethylene Oxide). Polymer 1973; 14(11):589-589.
    [18]袁芳.PEG-PAN聚合物固体电解质研究.‘浙江大学硕士学位论文2005.
    [19]A. M. Rocco, C. P. Fonseca, F. A. M. Loureiro, R. P. Pereira. A polymeric solid electrolyte based on a poly(ethylene oxide) poly(bisphenol A-co-epichlorohydrin) blend with LiC104. Solid State Ionics 2004; 166(1-2):115-126.
    [20]E. Morales, M. Salmeron, J. L. Acosta. Crystallization, thermal behavior, and compatibility of poly(ethylene oxide) poly(propylene oxide) blends. J Polym Sci Pol Phys 1996; 34(16):2715-2721.
    [21]G. Venugopal, S. Krause, G. E. Wnek. Phase-Behavior of Poly(Ethylene Oxide) Poly(Methyl Methacrylate) Blends Containing Alkali-Metal Salts. Polymer 1993; 34(15):3241-3246.
    [22]C. G. Wu, C. H. Wu, M. I. Lu, H. J. Chuang. New solid polymer electrolytes based on PEO/PAN hybrids. J Appl Polym Sci 2006; 99(4):1530-1540.
    [23]J. Li, I. M. Khan. Highly Conductive Solid Polymer Electrolytes Prepared by Blending High-Molecular-Weight Poly(Ethylene Oxide), Poly(2-Vinylpyridine or 4-Vinylpyridine), and Lithium Perchlorate. Macromolecules 1993; 26(17):4544-4550.
    [24]J. S. Gnanaraj, R. N. Karekar, S. Skaria, C. R. Rajan, S. Ponrathnam. Studies on comb-like polymer blend with poly(ethylene oxide) lithium perchlorate salt complex electrolyte. Polymer 1997; 38(14):3709-3712.
    [25]J. S. Oh, S. H. Kim, Y. Kang, D. W. Kim. Electrochemical characterization of blend polymer electrolytes based on poly(oligo[oxyethylene]oxyterephthaloyl) for rechargeable lithium metal polymer batteries. J Power Sources 2006; 163(1):229-233.
    [26]C. Y. Chiu, H. W. Chen, S. W. Kuo, C. F. Huang, F. C. Chang. Investigating the effect of miscibility on the ionic conductivity of LiClO4/PEO/PCL ternary blends. Macromolecules 2004; 37(22):8424-8430.
    [27]A. M. Rocco, R. P. Pereira, M. I. Felisberti. Miscibility, crystallinity and morphological behavior of binary blends of poly(ethylene oxide) and poly(methyl vinyl ether-maleic acid). Polymer 2001; 42(12):5199-5205.
    [28]A. M. Rocco, C. P. da Fonseca, R. P. Pereira. A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4. Polymer 2002;43(13):3601-3609.
    [29]R. Tanaka, M. Sakurai, H. Sekiguchi, H. Mori, T. Murayama, T. Ooyama. Lithium ion conductivity in polyoxyethylene/polyethylenimine blends. Electrochim Acta 2001; 46(10-11):1709-1715.
    [30]吴宇平,张汉平,吴锋,李朝晖.聚合物锂离子电池.北京:化学工业出版社2006.
    [31]L. A. Guilherme, R. S. Borges, E. M. S. Moraes, G. G. Silva, M. A. Pimenta, A. Marietta, R. A. Silva. Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes. Electrochim Acta 2007; 53(4):1503-1511.
    [32]E. D. Gomez, A. Panday, E. H. Feng, V. Chen, G. M. Stone, A. M. Minor, C. Kisielowski, K. H. Downing, O. Borodin, G. D. Smith, N. P. Balsara. Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes. Nano Lett 2009; 9(3):1212-1216.
    [33]T. Niitani, M. Shimada, K. Kawamura, K. Kanamura. Characteristics of new-type solid polymer electrolyte controlling nano-structure. J Power Sources 2005; 146(1-2):386-390.
    [34]T. H. Epps, T. S. Bailey, R. Waletzko, F. S. Bates. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers. Macromolecules 2003; 36(8):2873-2881.
    [35]C. Y. Chiu, W. H. Hsu, Y. J. Yen, S. W. Kuo, F. C. Chang. Miscibility behavior and interaction mechanism of polymer electrolytes comprising LiClO4 and MPEG-block-PCL copolymers. Macromolecules 2005; 38(15):6640-6647.
    [36]A. V. G. Ruzette, P. P. Soo, D. R. Sadoway, A. M. Mayes. Melt-formable block copolymer electrolytes for lithium rechargeable batteries. J Electrochem Soc 2001; 148(6):A537-A543.
    [37]M. Singh, O. Odusanya, G. M. Wilmes, H. B. Eitouni, E. D. Gomez, A. J. Patel, V. L. Chen, M. J. Park, P. Fragouli, H. Iatrou, N. Hadjichristidis, D. Cookson, N. P. Balsara. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 2007; 40(13):4578-4585.
    [38]A. Panday, S. Mullin, E. D. Gomez, N. Wanakule, V. L. Chen, A. Hexemer, J. Pople, N. P. Balsara. Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes. Macromolecules 2009; 42(13):4632-4637.
    [39]N. S. Wanakule, A. Panday, S. A. Mullin, E. Gann, A. Hexemer, N. P. Balsara. Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order-Disorder and Order-Order Transitions. Macromolecules 2009; 42(1-5):5642-5651.
    [40]W. S. Young, T. H. Epps. Salt Doping in PEO-Containing Block Copolymers:Counterion and Concentration Effects. Macromolecules 2009; 42(7):2672-2678.
    [41]T. H. Epps, T. S. Bailey, H. D. Pham, F. S. Bates. Phase behavior of lithium perchlorate-doped poly (styrene-b-isoprene-b-ethylene oxide) triblock copolymers. Chem Mater 2002; 14(4):1706-1714.
    [42]G. Liu, C. L. Reeder, X. G. Sun, J. B. Kerr. Diffusion coefficients in trimethyleneoxide containing comb branch polymer electrolytes. Solid State Ionics 2004; 175(1-4):781-783.
    [43]Y. H. Liang, W. B. Cheng-Chien, C. Y. Chen. Comb-like copolymer-based gel polymer electrolytes for lithium ion conductors. J Power Sources 2008; 176(1):340-346.
    [44]R. Uchiyama, K. Kusagawa, K. Hanai, N. Imanishi, A. Hirano, Y. Takeda. Development of dry polymer electrolyte based on polyethylene oxide with co-bridging agent crosslinked by electron beam. Solid State Ionics 2009; 180(2-3):205-211.
    [45]T. Bando, Y. Aihara, K. Hayamizu, E. Akiba. Influences of the degree of cross-linking on electrochemical and thermal properties in polyether-based electrolytes doped with LiN-(SO2CF3)(2). J Electrochem Soc 2004; 151(6):A898-A904.
    [46]H. Mazor, D. Goodnitsky, E. Peled, W. Wieczorek, B. Scrosati. A search for a single-ion-conducting polymer electrolyte:Combined effect of anion trap and inorganic filler. J Power Sources 2008; 178(2):736-743.
    [47]Y. Tominaga, H. Ohno. High ionic conductivity of PEO/sulfonamide salt hybrids. Solid State Ionics 1999; 124(3-4):323-329.
    [48]E. Tsuchida, N. Kobayashi, H. Ohno. Single-Ion Conduction in Poly [(Oligo(Oxyethylene)Methacrylate)-Co-(Alkali-Metal Methacrylates)]. Macromolecules 1988;21(1):96-100.
    [49]D. P. Siska, D. F. Shriver. Li+ conductivity of polysiloxane-trifluoromethylsulfonamide polyelectrolytes. Chem Mater 2001; 13(12):4698-4700.
    [50]M. Watanabe, Y. Suzuki, A. Nishimoto. Single ion conduction in polyether electrolytes alloyed with lithium salt of a perfluorinated polyimide. Electrochim Acta 2000; 45(8-9):1187-1192.
    [51]X. W. Zhang, S. A. Khan, P. S. Fedkiw. Nanocomposite electrolytes using single-ion conducting fumed silica. Electrochem Solid St 2004; 7(10):A361-A364.
    [52]T. Aoki, A. Konno, T. Fujinami. Li-ion conductivity of aluminate and borate complex polymers containing fluoroalkane dicarboxylate. J Electrochem Soc 2004; 151(6):A887-A890.
    [53]A. Blazejczyk, M. Szczupak, W. Wieczorek, P. Cmoch, G. B. Appetecchi, B. Scrosati, R. Kovarsky, D. Golodnitsky, E. Peled. Anion-binding calixarene receptors:Synthesis, microstructure, and effect on properties of polyether electrolytes. Chem Mater 2005; 17(6):1535-1547.
    [54]M. Kalita, M. Bukat, M. Ciosek, M. Siekierski, S. H. Chung, T. Rodriguez, S. G. Greenbaum, R. Kovarsky, D. Golodnitsky, E. Peled, D. Zane, B. Scrosati, W. Wieczorek. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim Acta 2005; 50(19):3942-3948.
    [55]D. Golodnitsky, R. Kovarsky, H. Mazor, Y. Rosenberg, I. Lapides, E. Peled, W. Wieczorek, A. Plewa, M. Siekierski, M. Kalita, L. Settimi, B. Scrosati, L. G. Scanlon. Host-guest interactions in single-ion lithium polymer electrolyte. J Electrochem Soc 2007; 154(6):A547-A553.
    [56]H. R. Allcock, D. T. Welna, A. E. Maher. Single ion conductors-polyphosphazenes with sulfonimide functional groups. Solid State Ionics 2006; 177(7-8):741-747.
    [57]E. F. Ioannou, G. Mountrichas, S. Pispas, E. I. Kamitsos, G. Floudas. Lithium ion induced nanophase ordering and ion mobility in ionic block copolymers. Macromolecules 2008; 41(16):6183-6190.
    [58]S. W. Ryu, P. E. Trapa, S. C. Olugebefola, J. A. Gonzalez-Leon, D. R. Sadoway, A. M. Mayes. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J Electrochem Soc 2005; 152(1):A158-A163.
    [59]S. W. Ryu, A. M. Mayes. Synthesis and properties of heptadecane-functionalized poly(propylene oxide) based single-ion polymer electrolytes. Polymer 2008; 49(9):2268-2273.
    [60]P. E. Trapa, M. H. Acar, D. R. Sadoway, A. M. Mayes. Synthesis and characterization of single-ion graft copolymer electrolytes. J Electrochem Soc 2005; 152(12):A2281-A2284.
    [61]Y Ito, K. Kanehori, K. Miyauchi, T. Kudo. Ionic-Conductivity of Electrolytes Formed from Peo-Licf3so3 Complex with Low-Molecular-Weight Poly(Ethylene Glycol). J Mater Sci 1987; 22(5):1845-1849.
    [62]B. Sandner, T. Steurich, K. Wiesner, H. Bischoff. Solid Polymer Electrolytes Based on Oligo(Ethylene Glycol)Methacrylates.1. Conductivity of Plasticized Networks Containing a Polar Comonomer. Polym Bull 1992; 28(3):355-360.
    [63]G. Nagasubramanian, S. Distefano.12-Crown-4 Ether-Assisted Enhancement of Ionic-Conductivity and Interfacial Kinetics in Polyethylene Oxide Electrolytes. J Electrochem Soc 1990; 137(12):3830-3835.
    [64]S. Passerini, M. Lisi, T. Momma, H. Ito, T. Shimizu, T. Osaka. Gelified co-continuous polymer blend system as polymer electrolyte for Li batteries. J Electrochem Soc 2004; 151(4):A578-A582.
    [65]P. Jannasch, W. Loyens. Characteristics of gel electrolytes formed by self-aggregating comb-shaped polyethers with end-functionalised side chains. Solid State Ionics 2004; 166(3-4):417-424.
    [66]N. Yoshimoto, H. Nomura, T. Shirai, M. Ishikawa, M. Morita. Ionic conductance of gel electrolyte using a polyurethane matrix for rechargeable lithium batteries. Electrochim Acta 2004; 50(2-3):275-279.
    [67]K. M. Abraham, M. Alamgir. Li+-Conductive Solid Polymer Electrolytes with Liquid-Like Conductivity. J Electrochem Soc 1990; 137(5):1657-1657.
    [68]Z.X. Wang, B. Y. Huang, H. Huang, L. Q. Chen, R. J. Xue, F. S. Wang. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochim Acta 1996; 41(9):1443-1446.
    [69]G. B. Appetecchi, B. Scrosati. A lithium ion polymer battery. Electrochim Acta 1998; 43(9):1105-1107.
    [70]F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G. B. Appetecchi, B. Scrosati. Synthesis and Characterization of Highly Conducting Gel Electrolytes. Electrochim Acta 1994; 39(14):2187-2194.
    [71]S. Rajendran, R. Babu, P. Sivakumar. Optimization of PVC-PAN-Based Polymer Electrolytes. J Appl Polym Sci 2009; 113(3):1651-1656.
    [72]B. K. Choi, Y. W. Kim, H. K. Shin. Ionic conduction in PEO-PAN blend polymer electrolytes. Electrochim Acta 2000; 45(8-9):1371-1374.
    [73]K. H. Lee, J. K. Park, W. J. Kim. Preparation and ion conductivities of the plasticized polymer electrolytes based on the poly(acrylonitrile-co-lithium methacrylate). J Polym Sci Pol Phys 1999; 37(3):247-252.
    [74]W. H. Pu, X. M. He, L. Wang, Z. Tian, C. Y. Jiang, C. R. Wan. Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries. Ionics 2008; 14(1):27-31.
    [75]F. A. Amaral, C. Dalmolin, S. C. Canobre, N. Bocchi, R. C. Rocha, S. R. Biaggio. Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries. J Power Sources 2007; 164(1):379-385.
    [76]T. Iijima, Y. Toyoguchi, N. Eda. Quasi-solid organic electrolytes gelatinized with poly methylmethacrylate and their applications for lithium batteries. Denki Kagaku 1985; 53:619-623.
    [77]O. Bohnke, C. Rousselot, P. A. Gillet, C. Truche. Gel Electrolyte for Solid-State Electrochromic Cell. J Electrochem Soc 1992; 139(7):1862-1865.
    [78]O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche. Fast-Ion Transport in New Lithium Electrolytes Gelled with Pmma.1. Influence of Polymer Concentration. Solid State Ionics 1993; 66(1-2):97-104.
    [79]G. B. Appetecchi, F. Croce, B. Scrosati. Kinetics and Stability of the Lithium Electrode in Poly(Methylmethacrylate)-Based Gel Electrolytes. Electrochim Acta 1995; 40(8):991-997.
    [80]M. Deepa, S. A. Agnihotry, D. Gupta, R. Chandra. Ion-pairing effects and ion-solvent-polymer interactions in LiN(CF3SO2)(2)-PC-PMMA electrolytes:a FTIR study. Electrochim Acta 2004; 49(3):373-383.
    [81]H. J. Rhoo, H. T. Kim, J. K. Park, T. S. Hwang. Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochim Acta 1997; 42(10):1571-1579.
    [82]A. M. Stephan, N. G. Renganathan, T. P. Kumar, R. Thirunakaran, S. Pitchumani, J. Shrisudersan, N. Muniyandi. Ionic conductivity studies on plasticized PVC/PMMA blend polymer electrolyte containing LiBF4 and LiCF3SO3. Solid State Ionics 2000; 130(1-2):123-132.
    [83]X. P. Hou, K. S. Siow. Mechanical properties and ionic conductivities of plasticized polymer electrolytes based on ABS/PMMA blends. Polymer 2000; 41(24):8689-8696.
    [84]D. W. Kang, D. W. Kim, S. I. Jo, H. J. Sohn. Preparation and characterization of gel polymer electrolytes based on methyl methacrylate-styrene copolymers. J Power Sources 2002; 112(1):1-7.
    [85]S. I. Jo, S. Lee, Y. B. Jeong, D. W. Kim, H. J.Sohn. Spectroscopic investigation of the gel polymer electrolytes based on methyl methacrylate-styrene copolymers. Electrochim Acta 2004; 50(2-3):327-330.
    [86]S. I. Kim, H. S. Kim, S. H. Na, S. I. Moon, Y. J. Kim, N. J. Jo. Electrochemical characteristics of TMPTA- and TMPETA-based gel polymer electrolyte. Electrochim Acta 2004; 50(2-3):317-321.
    [87]T. Tatsuma, M. Taguchi, N. Oyama. Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation. Electrochim Acta 2001; 46(8):1201-1205.
    [88]E. Tsuchida, H. Ohno, K. Tsunemi. Conduction of Lithium Ions in Polyvinylidene Fluoride and Its Derivatives.1. Electrochim Acta 1983; 28(5):591-595.
    [89]K. Tsunemi, H. Ohno, E. Tsuchida. A Mechanism of Ionic-Conduction of Poly (Vinylidene Fluoride)-Lithium Perchlorate Hybrid Films. Electrochim Acta 1983; 28(6):833-837.
    [90]M. M. Nasef, R. R. Suppiah, K. Z. M. Dahlan. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization. Solid State Ionics 2004; 171(3-4):243-249.
    [91]J. Y. Xi, X. P. Qiu, J. Li, X. Z. Tang, W. T. Zhu, L. Q. Chen. PVDF-PEO blends based microporous polymer electrolyte:Effect of PEO on pore configurations and ionic conductivity. J Power Sources 2006; 157(1):501-506.
    [92]Y. J. Shen, M. J. Reddy, P. P. Chu. Porous PVDF with LiClO4 complex as 'solid' and 'wet' polymer electrolyte. Solid State Ionics 2004; 175(1-4):747-750.
    [93]J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, B. C. Kim. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta 2004; 50(1):69-75.
    [94]J. H. Cao, B. K. Zhu, Y. Y. Xu. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membrane Sci 2006; 281(1-2):446-453.
    [95]G. C. Li, P. Zhang, H. P. Zhang, L. C. Yang, Y. P. Wu. A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem Commun 2008; 10(12):1883-1885.
    [96]H. P. Zhang, P. Zhang, G. C. Li, Y. P. Wu, D. L. Sun. A porous poly(vinylidene fluoride) gel electrolyte for lithium ion batteries prepared by using salicylic acid as a foaming agent. J Power Sources 2009; 189(1):594-598.
    [97]E. Quartarone, M. Brusa, P. Mustarelli, C. Tomasi, A. Magistris. Preparation and characterization of fluorinated hybrid electrolytes. Electrochim Acta 1998; 44(4):677-681.
    [98]C. L. Cheng, C. C. Wan, Y. Y. Wang. Microporous PVdF-HFP based gel polymer electrolytes reinforced by PEGDMA network. Electrochem Commun 2004; 6(6):531-535.
    [99]D. H. Gray, S. L. Hu, E. Juang, D. L. Gin. Highly ordered polymer-inorganic nanocomposites via monomer self-assembly:In situ condensation approach. Adv Mater 1997; 9(9):731-736.
    [100]Y. Liu, J. Y. Lee, L. Hong. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes. J Power Sources 2004; 129(2):303-311.
    [101]W. Wieczorek, P. Lipka, G. Zukowska, H. Wycislik. Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s. J Phys Chem B 1998; 102(36):6968-6974.
    [102]M. Marcinek, A. Bac, P. Lipka, A. Zalewska, G. Zukowska, R. Borkowska, W. Wieczorek. Effect of filler surface group on ionic interactions in PEG-LiC104-A1203 composite polyether electrolytes. J Phys Chem B 2000; 104(47):11088-11093.
    [103]B. Scrosati, F. Croce, L. Persi. Impedance spectroscopy study of PEG-based nanocomposite polymer electrolytes. J Electrochem Soc 2000; 147(5):1718-1721.
    [104]F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998; 394(6692):456-458.
    [105]S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati, E. Plichta. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 2001; 97-8:644-648.
    [106]B. Kumar, L. G. Scanlon, R. J. Spry. On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J Power Sources 2001; 96(2):337-342.
    [107]B. Kumar, S. J. Rodrigues, L. G. Scanlon. Ionic conductivity of polymer-ceramic composites. J Electrochem Soc 2001; 148(10):A1191-A1195.
    [108]B. Kumar, S. J. Rodrigues, R. J. Spry. Dipoles and their possible effects on conductivity in polymer-ceramic composite electrolytes. Electrochim Acta 2002; 47(8):1275-1281.
    [109]H. M. Xiong, J. S. Chen, D. M. Li. Controlled growth of Sb2O5 nanoparticles and their use as polymer electrolyte fillers. J Mater Chem 2003; 13(8):1994-1998.
    [110]J. E. Weston, B. C. H. Steele. Effects of Inert Fillers on the Mechanical and Electrochemical Properties of Lithium Salt Poly (Ethylene-Oxide) Polymer Electrolytes. Solid State Ionics 1982; 7(1):75-79.
    [111]T. J. Singh, S. V. Bhat. Increased lithium-ion conductivity in (PEG)(46)LiC104 solid polymer electrolyte with delta-A12O3 nanoparticles. J Power Sources 2004; 129(2):280-287.
    [112]F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. A. Hendrickson. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 2001; 46(16):2457-2461.
    [113]L. Sannier, A. Zalewska, W. Wieczorek, M. Marczewski, H. Marczewska. Impact of "Super Acid" like filler on the properties of a PEGDME/LiC104 system. Electrochim Acta 2007; 52(18):5685-5689.
    [114]J. Syzdek, R. Borkowska, K. Perzyna, J. M. Tarascon, W. Wieczorek. Novel composite polymeric electrolytes with surface-modified inorganic fillers. J Power Sources 2007; 173(2):712-720.
    [115]F. Croce, L. Settimi, B. Scrosati. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun 2006; 8(2):364-368.
    [116]B. Kumar, L. Scanlon, R. Marsh, R. Mason, R. Higgins, R. Baldwin. Structural evolution and conductivity of PEO:LiBF4-MgO composite electrolytes. Electrochim Acta 2001; 46(10-11):1515-1521.
    [117]Q. Li, H. Y. Sun, Y. Takeda, N. Imanishi, J. Yang, O. Yamamoto. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. J Power Sources 2001; 94(2):201-205.
    [118]J. B. Xie, R. G. Duan, Y. B. Han, J. B. Kerr. Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles. Solid State Ionics 2004; 175(1-4):755-758.
    [119]A. S. Best, A. Ferry, D. R. MacFarlane, M. Forsyth. Conductivity in amorphous polyether nanocomposite materials. Solid State Ionics 1999; 126(3-4):269-276.
    [120]H. M. Xiong, Z. D. Wang, D. P. Xie, L. Cheng, Y. Y. Xia. Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. J Mater Chem 2006; 16(14):1345-1349.
    [121]H. M. Xiong, D. P. Liu, H. Zhang, J. S. Chen. Polyether-grafted SnO2 nanoparticles designed for solid polymer electrolytes with long-term stability. J Mater Chem 2004; 14(18):2775-2780.
    [122]H. J. Zhang, P. Maitra, S. L. Wunder. Preparation and characterization of composite electrolytes based on PEO(375)-grafted fumed silica. Solid State Ionics 2008; 178(39-40):1975-1983.
    [123]S. Kitajima, Y. Tominaga. Enhanced Cationic Conduction in a Polyether/Clay Composite Electrolyte Treated with Supercritical CO2. Macromolecules 2009; 42(15):5422-5424.
    [124]Y. W. Chen-Yang, Y.T. Chen, H. C. Chen, W. T. Lin, C. H. Tsai. Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 2009; 50(13):2856-2862.
    [125]M. J. Reddy, P. P. Chu. Li-7 NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte. J Power Sources 2004; 135(1-2):1-8.
    [126]J. Y. Xi, X. P. Qiu, X. M. Ma, M. Z. Cui, J. Yang, X. Z. Tang, W. T. Zhu, L. Q. Chen. Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 2005; 176(13-14):1249-1260.
    [127]X. L. Wang, L. Z. Fan, Z. H. Xu, Y. H. Lin, C. W. Nan. Temperature dependent ionic transport properties in composite solid polymer electrolytes. Solid State Ionics 2008; 179(27-32):1310-1313.
    [128]J. Y. Xi, S. J. Miao, X. Z. Tang. Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules 2004; 37(23):8592-8598.
    [129]J. Y. Xi, X. P. Qiu, J. S. Wang, Y. X. Bai, W. T. Zhu, L. Q. Chen. Effect of molecular sieves ZSM-5 on the crystallization behavior of PEO-based composite polymer electrolyte. J Power Sources 2006; 158(1):627-634.
    [130]J. Syzdek, M. Armand, M. Gizowska, M. Marcinek, E. Sasim, M. Szafran, W. Wieczorek. Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes-A novel approach. J Power Sources 2009; 194(1):66-72.
    [131]H. M. J. C. Pitawala, M. A. K. L. Dissanayake,V. A. Seneviratne. Combined effect of A12O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)(9)LiTf. Solid State Ionics 2007; 178(13-14):885-888.
    [132]J. Adebahr, N. Byrne, M. Forsyth, D. R. MacFarlane, P. Jacobsson. Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochim Acta 2003; 48(14-16):2099-2103.
    [133]Y. J. Wang, D. Kim. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 2007; 52(9):3181-3189.
    [134]M. M. E. Jacob, E. Hackett, E. P. Giannelis. From nanocomposite to nanogel polymer electrolytes. J Mater Chem 2003; 13(1):1-5.
    [135]Z. H. Li, P. Zhang, H. P. Zhang, Y. P. Wu, X. D. Zhou. A lotus root-like porous nanocomposite polymer electrolyte. Electrochem Commun 2008; 10(5):791-794.
    [136]S. Ahmad, S. Ahmad, S. A. Agnihotry. Nanocomposite electrolytes with fumed silica in poly(methyl methacrylate):thermal, rheological and conductivity studies. J Power Sources 2005; 140(1):151-156.
    [137]Y. H. Liao, M. M. Rao, W. S. Li, C. L. Tan, J. Yi, L. Chen. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries. Electrochim Acta 2009; 54(26):6396-6402.
    [138]Z. H. Li, G. Y. Su, X. Y. Wang, D. S. Gao. Micro-porous P(VDF-HFP)-based polymer electrolyte filled with A12O3 nanoparticles. Solid State Ionics 2005; 176(23-24):1903-1908.
    [139]A. Subramania, N. T. K. Sundaram, A. R. S. Priya, G. V. Kumar. Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membrane Sci 2007; 294(1-2):8-15.
    [140]N. T. K. Sundaram, A. Subramania. Nano-size LiAlO2 ceramic filler incorporated porous PVDF-co-HFP electrolyte for lithium-ion battery applications. Electrochim Acta 2007; 52(15):4987-4993.
    [141]J. K. Kim, G. Cheruvally, X. Li, J. H. Ahn, K. W. Kim, H. J. Ahn. Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources 2008; 178(2):815-820.
    [142]Y. Geng, X. L. Wang, W. Chen, Q. Cai, C. W. Nan, H. D. Li. Synthesis, characterization and application of novel bicontinuous mesoporous silica with hierarchical pore structure. Mater Chem Phys 2009; 116(1):254-260.
    [143]M. Walkowiak, A. Zalewska, T. Jesionowski, M. Pokora. Stability of poly(vinylidene fluoride-co-hexafluoropropylen)-based composite gel electrolytes with functionalized silicas. J Power Sources 2007; 173(2):721-728.
    [144]J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, P. C. Warren. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 1996; 86-8:49-54.
    [145]M. Walkowiak, A. Zalewska, T. Jesionowski, D. Waszak, B. Czajka. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries. J Power Sources 2006; 159(1):449-453.
    [146]M. Osinska, M. Walkowiak, A. Zalewska, T. Jesionowski. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J Membrane Sci 2009; 326(2):582-588.
    [147]张留成,刘玉龙.互穿网络聚合物.北京:烃加工出版社1990.
    [148]X. P. Hou, K. S. Siow. Novel interpenetrating polymer network electrolytes. Polymer 2001; 42(9):4181-4188.
    [149]H. S. Kim, J. H. Shin, S. I. Moon, S. P. Kim. Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim Acta 2003; 48(11):1573-1578.
    [150]P. Basak, S. V. Manorama. PEO-PUTAN semi-interpenetrating polymer networks for SPEs:influence of physical properties on the electrical characteristics. Solid State Ionics 2004; 167(1-2):113-121.
    [151]P. Basak, S. V. Manorama, R. K. Singh, O. Parkash. Investigations on the mechanisms of ionic conductivity in PEO-PU/PAN semi-interpenetrating polymer network-salt complex polymer electrolytes:An impedance spectroscopy study. J Phys Chem B 2005; 109(3):1174-1182.
    [152]T. Sato, K. Banno, T. Maruo, R. Nozu. New design for a safe lithium-ion gel polymer battery. J Power Sources 2005; 152(1):264-271.
    [153]S. Kalapala, A. J. Easteal. Novel poly(methyl methacrylate)-based semi-interpenetrating polyelectrolyte gels for rechargeable lithium batteries. J Power Sources 2005; 147(1-2):256-259.
    [154]Y. H. Wang, D. Kim. The effect of F127 addition on the properties of PEGDA/PVdF cross-linked gel polymer electrolytes. J Membrane Sci 2008; 312(1-2):76-83.
    [155]F. B. Dias, J. P. Voss, S. V. Batty, P. V. Wright, G. Ungar. Smectic Phases in a Novel-Alkyl-Substituted Polyether and Its Complex with Lithium Tetrafluoroborate. Macromol Rapid Comm 1994; 15(12):961-969.
    [156]F. B. Dias, S. V. Batty, J. P. Voss, G. Ungar, P. V. Wright. Ionic conductivity of a novel smectic polymer electrolyte. Solid State Ionics 1996; 85(1-4):43-49.
    [157]F. B. Dias, S. V. Batty, G. Ungar, J. P. Voss, P. V. Wright. Ionic conduction of lithium and magnesium salts within laminar arrays in a smectic liquid-crystal polymer electrolyte. J Chem Soc Faraday T 1996; 92(14):2599-2606.
    [158]F. B. Dias, S. V. Batty, A. Gupta, G. Ungar, J. P. Voss, P. V. Wright. Ionic conduction of lithium, sodium and magnesium salts within organised smectic liquid crystal polymer electrolytes. Electrochim Acta 1998; 43(10-11):1217-1224.
    [159]P. V. Wright, Y. Zheng, D. Bhatt, T. Richardson, G. Ungar. Supramolecular order in new polymer electrolytes. Polym Int 1998; 47(1):34-42.
    [160]Y. G. Zheng, A. Gibaud, N. Cowlam, T. H. Richardson, G. Ungar, P. V. Wright. Structure and conductivity in LB films of low-dimensional polymer electrolytes. J Mater Chem 2000; 10(1):69-77.
    [161]Y. G. Zheng, P. V. Wright, G. Ungar. Insertion of ionophobic components into amphiphilic low-dimensional polymer electrolytes. Electrochim Acta 2000; 45(8-9):1161-1165.
    [162]Y. G. Zheng, F. S. Chia, G. Ungar, P. V. Wright. Self-tracking in solvent-free, low-dimensional polymer electrolyte blends with lithium salts giving high ambient DC conductivity. Chem Commun 2000; (16):1459-1460.
    [163]Y. Zheng, F. Chia, G. Ungar, P. V. Wright. Self-tracking, solvent-free low-dimensional polymer electrolyte blends with lithium salts. J Power Sources 2001; 97-8:641-643.
    [164]Y. G. Zheng, J. G. Lui, G. Ungar, P. V. Wright. Solvent-free low-dimensional polymer electrolytes for lithium-polymer batteries. Chem Rec 2004; 4(3):176-191.
    [165]P. Gavelin, P. Jannasch, B. Wesslen. Amphiphilic polymer gel electrolytes. Ⅰ. Preparation of gels based on poly(ethylene oxide) craft copolymers containing different ionophiobic groups. J Polym Sci Pol Chem 2001; 39(13):2223-2232.
    [166]P. Gavelin, D. Ostrovskii, J. Adebahr, P. Jannasch, B. Wesslen. Amphiphilic polymer gel electrolytes. Ⅱ. Influence of the ethylene oxide side-chain length on the gel properties. J Polym Sci Pol Phys 2001; 39(13):1519-1524.
    [167]P. Gavelin, R. Ljungback, P. Jannasch, B. Wesslen. Amphiphilic polymer gel electrolytes. 3. Influence of the ionophobic-ionophilic balance on the ion conductive properties. Electrochim Acta 2001; 46(10-11):1439-1446.
    [168]P. Gavelin, P. Jannasch, I. Furo, E. Pettersson, P. Stilbs, D. Topgaard, O. Soderman. Amphiphilic polymer gel electrolytes.4. Ion transport and dynamics as studied by multinuclear pulsed field gradient spin-echo NMR. Macromolecules 2002; 35(13):5097-5104.
    [169]J. A. Yerian, S. A. Khan, P. S. Fedkiw. Crosslinkable fumed silica-based nanocomposite electrolytes:role of methacrylate monomer in formation of crosslinked silica network. J Power Sources 2004; 135(1-2):232-239.
    [170]Y. X. Li, J. A. Yerian, S. A. Khan, P. S. Fedkiw. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries. J Power Sources 2006; 161(2):1288-1296.
    [171]K. P. Lee, A. I. Gopalan, K. M. Manesh, P. Santhosh, K. S. Kim. Influence of finely dispersed carbon nanotubes on the performance characteristics of polymer electrolytes for lithium batteries. Ieee T Nanotechnol 2007; 6(3):362-367.
    [172]S. W. Choi, S. M. Jo, W. S. Lee, Y. R. Kim. An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 2003; 15(23):2027-2032.
    [173]S. S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, K. S. Han. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 2004; 50(2-3):339-343.
    [174]S. W. Choi, J. R. Kim, S. M. Jo, W. S. Lee, Y. R. Kim. Electrochemical and spectroscopic properties of electrospun PAN-based fibrous polymer electrolytes. J Electrochem Soc 2005; 152(5):A989-A995.
    [175]A. I. Gopalan, P. Santhosh, K. M. Manesh, J. H. Nho, S. H. Kim, C. G. Hwang, K. P. Lee. Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Membrane Sci 2008; 325(2):683-690.
    [176]A. I. Gopalan, K. P. Lee, K. M. Manesh, P. Santhosh. Poly(vinylidene fluoride)-polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries. J Membrane Sci 2008; 318(1-2):422-428.
    [177]H. R. Jung, D. H. Ju, W. J. Lee, X. W. Zhang, R. Kotek. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim'Acta 2009; 54(13):3630-3637.
    [178]J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, B. C. Kim. Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc 2005; 152(2):A295-A300.
    [179]X. Li, G. Cheruvally, J. K. Kim, J. W. Choi, J. H. Ahn, K. W. Kim, H. J. Ahn. Polymer electrolytes based on an electrospun poly{vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries. J Power Sources 2007; 167(2):491-498.
    [180]Y. H. Ding, P. Zhang, Z. L. Long, Y. Jiang, F. Xu, W. Di. The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J Membrane Sci 2009; 329(1-2):56-59.
    [181]P. Raghavan, X. H. Zhao, J. K. Kim, J. Manuel, G. S. Chauhan, J. H. Ahn, C. Nah. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta 2008; 54(2):228-234.
    [182]Q. Z. Xiao, Z. H. Li, D. S. Gao, H. L. Zhang. A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery. J Membrane Sci 2009; 326(2):260-264.
    [183]S. S. Hou, Y. P. Chung, C. K. Chan, P. L. Kuo. Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A. Polymer 2000; 41(9):3263-3272.
    [184]X. M. Qian, N. Y. Gu, Z. L. Cheng, X. R. Yang, E. K. Wang, S. J. Dong. Impedance study of (PEO)(10)LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 2001; 46(12):1829-1836.
    [185]赵峰,钱新明,古宁宇,董绍俊.阻抗虚部计算聚合物电解质电导率.分析化学2002;30:1153-1157.
    [186]G. Erdodi, J. P. Kennedy. Amphiphilic conetworks:Definition, synthesis, applications. Prog Polym Sci 2006; 31(1):1-18.
    [187]C. S. Harris, D. F. Shriver, M. A. Ratner. Complex-Formation of Poly(Ethylenimine) with Sodium Triflate and Conductivity Behavior of the Complexes. Macromolecules 1986; 19(4):987-989.
    [188]朱诚身.聚合物结构分析.北京:科学出版社2004:58.
    [189]Y. H. Liang, C. C. Wang, C. Y. Chen. The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group (Ⅱ):The effect of free ion in the plasticized polymer electrolyte. Electrochim Acta 2006; 52(2):527-537.
    [190]W. H. Hou, C. Y. Chen. Studies on comb-like polymer electrolyte with a nitrile group. Electrochim Acta 2004; 49(13):2105-2112.
    [191]Y. H. Liang, C. C. Wang, C. Y. Chen. The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group. J Power Sources 2005; 148:55-65.
    [192]R. M. Laine, S. G. Kim, J. Rush, R. Tamaki, E. Wong, M. Mollan, H. J. Sun, M. Lodaya. Ring-opening polymerization of epoxy end-terminated polyethylene oxide (PEO) as a route to cross-linked materials with exceptional swelling behavior. Macromolecules 2004; 37(12):4525-4532.
    [193]焦剑,雷渭媛.高聚物结构、性能与测试.北京:化学工业出版社2003.
    [194]H. S. Kim, G. Y. Choi, S. I. Moon, S. P. Kim. Electrochemical properties of Li ion polymer battery with gel polymer electrolyte based on polyurethane. J Appl Electrochem 2003; 33(6):491-496.
    [195]L. Zhang, S. C. Zhang. Preparation and characterization of gel polymer electrolytes based on acrylonitrile-methoxy polyethylene glycol (350) monoacrylate-lithium acrylate terpolymers. Electrochim Acta 2008; 54(2):606-610.
    [196]W. Huang, Y. Zhou, D. Yan. Direct Synthesis of Amphiphilic Block Copolymers from Glycidyl Methacrylate and Poly(ethylene glycol) by Cationic Ring-Opening Polymerization and Supramolecular Self-Assembly Thereof. Journal of Polymer Science:Part A:Polymer Chemistry 2005; 43:2038-2047
    [197]王新平,陈志方,沈之荃.高分子表面动态行为与接触角时间依赖性.中国科学B辑2005;35:64-69.
    [198]X. J. Zhang, H. J. Mei, G.Hu,Z. L. Zhong R. X. Zhuo. Amphiphilic Triblock Copolycarbonates with Poly(glycerol carbonate) as Hydrophilic Blocks. Macromolecules 2009; 42(4):1010-1016.
    [199]R. A. Scott, N. A. Peppas. Compositional effects on network structure of highly cross-linked copolymers of PEG-containing multiacrylates with-acrylic acid. Macromolecules 1999; 32(19):6139-6148.
    [200]殷敬华,莫志深.现代高分子物理学.北京:科学出版社2001:619.
    [201]W. J. Liang, T. Y. Chen, P. L. Kuo. Solid polymer electrolytes. VII. Preparation and ionic conductivity of gelled polymer electrolytes based on poly(ethylene glycol) diglycidyl ether cured with alpha,omega-diamino poly(propylene oxide). J Appl. Polym Sci 2004; 92(2):1264-1270.
    [202]W. J. Liang, Y. P. Chen, C. P. Wu, P. L. Kuo. Solid polymer electrolytes. XI. Preparation, characterization and ionic conductivity of new plasticized polymer electrolytes based on chemical-covalent polyether-siloxane hybrids. J Appl Polym Sci 2006; 100(2):1000-1007.
    [203]A. Hayek, Y. G. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, S. Yang. Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography. J Mater Chem 2008; 18(28):3316-3318.
    [204]赵敏,高俊刚.苯酐固化邻甲酚醛环氧的热性能与热分解动力学.热固性树脂2004;19:20-23.
    [205]马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能.北京:科学出版社1995.
    [206]P. L. Kuo, W. J. Liang, T. Y. Chen. Solid polymer electrolytes V:microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer 2003; 44(10):2957-2964.
    [207]C. S. Wang, C. S. Lin, N. Lai. Crystallization kinetics and multiple melting point phenomena of polybutylene naphthalate terephthalate (PBNT) copolyesters. Polym Bull 1997; 39(2):185-192.
    [208]C. C. Chen, W. J. Liang, P. L. Kuo. Solid polymer electrolytes III:Preparation, characterization, and ionic conductivity of new gelled polymer electrolytes based on segmented, perfluoropolyether-modified polyurethane. J Polym Sci Pol Chem 2002; 40(4):486-495.
    [209]V. D. Athawale, S. S. Raut. New interpenetrating polymer networks based on uralkyd/poly(glycidyl methacrylate). Eur Polym J 2002; 38(10):2033-2040.
    [210]C. Gao, C. D. Vo, Y. Z. Jin, W. W. Li, S. P. Armes. Multihydroxy polymer-functionalized carbon nanotubes:Synthesis, derivatization, and metal loading. Macromolecules 2005; 38(21):8634-8648.
    [211]W. F. Chen, J. S. Wu, P. L. Kuo. Poly(oxyalkylene)diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites:Synthesis, water state, and conductivity. Chem Mater 2008; 20(18):5756-5767.
    [212]王建国.多璧碳纳米管/环氧树脂复合材料结构与性能的研究.浙江大学博士学位论文2006.
    [213]A. Allaoui, N. El Bounia. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?-A review. Express Polym Lett 2009; 3(9):588-594.
    [214]J. Y. Song, Y. Y. Wang, C. C. Wan. Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride)-A comparison with polypropylene separators. J Electrochem Soc 2000; 147(9):3219-3225.
    [215]S. Ramesh, T. F. Yuen, C. J. Shen. Conductivity and FTIR studies on PEO-LiX [X CF3SO3-, SO42-] polymer electrolytes. Spectrochim Acta A 2008; 69(2):670-675.
    [216]Y. M. Shin, M. M. Hohman, M. P. Brenner, G. C. Rutledge. Experimental characterization of electrospinning:the electrically forced jet and instabilities. Polymer 2001; 42(25):9955-9967.
    [217]史铁钧,周玉波,廖若谷,王华林.电纺聚氧化乙烯纤维的分散形态和结晶行为研究.高分子学报2005;5:760-763.
    [218]冯继昌.荧光共轭聚合物的合成,表征及荧光传感特性.浙江大学博士学位论文2010.
    [219]赵薇,苑会林,王婧,王浩博,朱天戈.PVDF/PMMA复合材料的微观结构及形态.合成树脂及塑料2008;25(5):55-62.
    [220]李卫.PVDF/PMMA和PVDF/PMMA/TiO2共混体系结构与性能研究.上海交通大学硕士学位论文2009.
    [221]符远翔,孙艳辉,葛杏心.单分散纳米二氧化硅的制备与表征.硅酸盐通报2008;27(1):154-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700