功能材料的制备与组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心纳米材料和稀土钒酸盐材料是功能钠米材料的主要组成部分。空心结构材料具有低密度、高比表面、热力学稳定性、单分散性、良好的生物相容性以及空心部分能容纳其他材料等优点。其在药物运载与释放、催化剂、光子晶体、纳米粒子合成反应器等领域有重要的应用,已成为当今纳米材料的前沿和热点。稀土钒酸盐材料在紫外灯照射下具有稳定的发光效率,在PDP和FED等领域有着广泛的应用,被认为是很有使用价值的发光基质。随着纳米材料技术的发展,钒稀土发光材料也步入新的研究领域。
     本文主要通过常温酸腐蚀法、水热合成法、溶剂热法分别制备了介孔材料,空心材料、稀土发光材料,并对所制备的材料进行了XRD,TEM,SEM,TGA,EDS等结构表征,对部分实验反应机理进行了探讨。本论文主要包括以下几部分:
     1以SiO2为模板,PVP为表面活性剂,在常温下采用酸侵蚀的方法制备多孔的具有空腔结构的二氧化硅球,产物分散性好,大小均匀。采用TEM、FTIR、TGA/DTA对制备的产物进行表征,系统的分析了反应条件的影响,并对反应机理进行解释.
     2利用水热法合成出空心结构的SiO2?Ln2O3纳米材料。本实验的创新在于酸性条件下合成,不同与一般文献报道的碱性环境,并系统分析反应时间、稀土的浓度对产物形貌的影响。采用TEM、HRTEM、SEM、XRD对制备的产物进行表征,并解释了反应机理,对掺Eu的SiO2空心球进行荧光测试。由于空心球的表面具有多孔性,我们进行药物释放试验。实验结果表明SiO2空心球具有较高的载药量,释放前后药物的性质未发生变化,可以用作布洛芬释放的药物载体。
     3采用溶剂热法,制备了发光YVO4 : Eu纳米球。本实验选用DMF为反应的溶剂可以降低稀土盐的水解率,从而较为容易控制反应条件。通过优化、调整反应条件,实现了具有发光效应的YVO4:Eu纳米球的制备,并对反应过程进行了研究。通过试验总结了pH、反应时间对产物形貌的影响,颗粒大小在30 nm左右。并通过XRD、TEM、FTIR、固体荧光光谱对样品进行表征。
As an important component of the functional material, hollow materials and vanadium rare-earth luminescence materials are applied with a great value.Hollow nanostructures have been one of the research frontier. They have the advantages of low density、high specific surface area、thermal stability、monodispersity、good compatibilities with other materials and different material can be combined into the hollow interiors et al. So they play an important role in our life.Such as delivery vehicle of drugs、efficient catalyst、photonic building and the reactor of the nanoparticles.The vanadium rare-earth luminescence materials have their stable luminous efficiency illuminated by vacuum ultraviolet and successfully applied in the field of PDP and FED .With the development of the nanotechnology , the vanadium rare-earth luminescence materials will step into a new step development phase.
     In this paper, porous silica , hollow materials and rare-earth luminescence materials were prepared via acid etching method , hydrothermal synthesis and solvothermal method , and by applying various characterizing methods, such as XRD, TEM, SEM, TGA, EDS et al. Some experiments are discussed about the reaction mechanism. The main contents were as follows:
     1 Well dispersed porous silica spheres were prepared via acid etching method .The reaction conditions were as follows: SiO2 as the template ,HF aqueous solution, PVP as the surfactant The products were characterized by means of transmission electron microscopy(TEM) ,Fourier transform infrared(FTIR)and DTA/TGA.The reaction mechanism was also explored.
     2 Hydrothermal method has been employed to fabricated hollow-structure SiO2:Ln materials. This experiment’s innovation is that the hollow materials are prepared under acidic condition, which is different from the report in the literature of alkaline condition. We also studied impact of the particles prepared in the condition ,the reaction temperature and the concentration of Ln3+ were the important influencing factors. The structure of the proucts was characterized by TEM , HRTEM, SEM, XRD.The optical properties of Eu-doped fluorescent silica were also characterized by flourence.Due to the porousness in the surface of the silica, the drug releasing and loading behaviors of hollow silica. were also studied.Through the testing ,the resuluts indicated that the hollow silica has high storage capacities and favorable drug released behavior.It is important that the properties of the drugs were not changed in the loading and released process.The synthesized hollow silica has potential for controlled drug IBU deliverty.
     3 The YVO4 : Eu were prepared under the solvothermal condition using the DMF as the solvent which can decrease the rate of the hydrolysis rate of Re salts.so that the reaction process can be controlled easily. Through optimizing the reaction conditions, monodispersed YVO4:Eu spheres were obtained and the reaction process were explored.,pH and reaction time were also discussed, the YVO4:Eu spheres diameters were about 30nm. The structure was characterized by TEM, SEM, and so on.
引文
[1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271: 933—937
    [2] Nirmal M, Brus L. Luminescence photophysics in semiconductor nanocrystals [J]. Acc Chem Res, 1999, 32: 407—414
    [3] Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals [J]. J Phys Chem, 1996, 100: 13226—13239
    [4] Antonietti M, Goltner C. Superstructures of functional colloids: Chemistry on the nanometer scale [J]. Angew Chem Int Ed Engl, 1997, 36: 910-928
    [5] Xia Y N, Yang P D.Chemistry and physics of nanowires [J]. Adv Mater, 2003, 15: 351-353
    [6] Zhang J Z. Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface [J]. Acc Chem Res, 1997, 30: 423-429
    [7] Chen C C, Herhold A B, Johnson C S, Alivisatos A P. Size dependence of structural metastability in semiconductor nanocrystals [J]. Science, 1997, 276: 398-401
    [8] Ozin G A.Chem.Commun, 2006(6):419-432
    [9] Ozin G A. The zeolate ligand:hydrolysis to capped semiconductor nanocluster[J] .Adv Mater, 1994, 6(1):71
    [10] Li Z Z, Wen L X, Shao L, Chen J F. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. Controlled Release,2004, 98 (2): 245-254
    [11] Chen J F, Din H M, Wang J X, Shao L. Shao L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application[J]. Biomaterials, 2004, 25, 723-727
    [12] Sharma R K, Das S, Maitra. A Enzymes in the cavity of hollow silica nanoparticles[J]. Colloid Interf Sci, 2005, 284(1): 58-361
    [13] Wang J, Ding H, Tao X. Storage and sustained release of volatile substances from a hollow silica matrix [J]. Nanotechnology, 2007, 18, 245705
    [14] Zhu Y F, Shi J L, Chen H R, Shen W H, Dong X P. Preparation of hollow silica Nano Spheres via colloidal templating and its application in Hydrogen storage[J] ,Microporous Mesoporous Mater, 2005, 84 (1-3), 218–222
    [15] Li Z Z, Xu S A, Wen L X, Liu F, Liu A Q, Wang Q, Sun H Y, Yu W, Chen J F. Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Controlled Release, 2006, 111 (1-2):81–88
    [16] Zhou J, Wu W, Caruntu D, Yu M H,Martin A, Chen J F, O’Connor C J, Zhou W L. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine Application[J] .Phys Chem C, 2007, 111 (47): 17473–17477
    [17] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548—552
    [18] Lu Y F, Fan H Y, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles[J]. Nature, 1999, 398(6724): 223—226
    [19] Kim T W, Kleitz F, Paul B, et al. MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system[J]. J Am Chem Soc, 2005, 127(20): 7601—7610
    [20] Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angew Chem Int Ed, 2006, 45(20): 3216—3251
    [21] Zou H, Wu S S, Ran Q P, Shen J.A simple and low-cost method for the preparation of monodisperse hollow silica spheres[J]. J Phys Chem C 2008, 112, 11623–1162
    [22] Jeong U, Wang Y, Ibisate M, Xia Y. Some new developments in the synthesis, functionalization and utilization of monodisperse colloidal spheres[J].Adv Funct Mater. 2005, 15: 1907 -1921
    [23] Zhang T R , Zhang Q , Ge J P, Yin Y D, et,al. A Self-Templated route to hollow silica microspheres[J]. Phys Chem C, 2009, 113, 3168–3175
    [24] Stober W, Fink A. Controll growth of monidisperse silica spheres in the micron size range[J]. Colloid Interface Sci,1968, 26:62~69
    [25] Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors[J]. Small, 2005, 1: 566 [ 26] OkuboM, Ito A, Kanenobu T. Preparation of hollow polymer particles with a single hole in the method[J].Colloid and Polymer Science,Colloid Polym Sci. [J] , 1996, 274: 801-804
    [27] Jang J,Lee K. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization Chem .Commn,2002, 1098-1099
    [28] Tiarks F, Landfester K, Antonietti M. Preparation of polymetic nanocapsule by miniemulsion polymerition[J].Langmuir, 2001, 17:908-918
    [29] Li W J, Sha X X,Dong W.J.et al[J].W/O emusion Chem.Commun [J], 2002, 20:2434-2435
    [30]徐如人,庞文琴。无机合成与制备化学[M].北京:高等教育出社.2001.128-165
    [31]何磊,付静,李智洋.中空Fe3 O4纳米微球的制备与表征[J].化工时代,2009, 23(10):5-9
    [32] Sun X M, Li Y D.Ga2O3 and GaN semiconductor hollow spheres[J]. Angew Chem Int Ed, 2004, 43:3827-3831
    [33] Caruso F,Nanoengineering of particle surface[J]. Adv Mater, 2001, 3(1):11-22
    [34] Tartij, T González-Carreno, Serma C [J]. Adv Mater, 2001, 13: 1620-1624
    [35] Bruinsma P J, Kim A Y, Liu J, et al. Mesoporous silica synthesized by solvent evaporation: spun fibers and spray dried hollow spheres[J]. Chem Mater ,1997, 9:2507-2512
    [36]郝秀峰,李振宇,李冬妹等.从电纺丝到电喷离子化技术制备核壳纳米粒子[J].高等学校化学学报, 2005, 2(26):385-387
    [37] Sanji T, Nakatsuka Y, Ohnishi S, et al [J] .Macromolecules.2000,33:8524-8526
    [38]梁旭东,李晓晔,王文一.空心纳米结构的制备研究进展及应用[J].中国粉体工业. 2006,(1):14-17
    [39] WTEC Panel Report on Nanostructure and Technology ,September ,1999
    [40]彭卿,李亚栋.功能纳米材料的化学控制合成、组装、结构与性能[J].中国科学B辑. 2009:39(10):1028-1056
    [41]苏锵.稀土化学[M ].郑州:河南科技出版社,1993
    [42]陈占恒.稀土新材料及其在高技术领域中的应用[J].稀土, 2000 , 21(1):53-57
    [43]燕来,赵永亮,安晓萍.稀土配合物发光材料的研究及应用[J].内蒙古石油化工, 2002, 28:5-8
    [44]杨武,陈淼,高锦章等.镧系配合物的荧光光谱[J].光谱学与光谱分析, 1999, 19(2):227-229
    [45]王可嘉,邱克辉,鲁雪光.钒稀土发光材料的研究现状与进展[J].2008, 38(4):65-67
    [46] Erdei S. Growth of oxygen dificiency free YVO4 single crystal by top--seeded solution growth technique[J]. Cry Grow, 1993, 134(1):1-13
    [47] Zhang L Z, Wang G F, Lin S K. Growth and spectral properties of Tm3+/Yb3+ -Co doped YVO4 Crystal[J]. Cryst Growth, 2002, 241,325.
    [48] Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications[J].AdV Drug DeliVery ReV. 2008, 60, 299-327
    [49]刘行任,王晓军,谢宜华等[J].液晶与显示. 2001, 13(2):117-121.
    [50] He F, Yang P P, Niu N , Wang W X, Gai S L, Wang D. Hydrothermal synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy, and Sm) microspheres[J]. Colloid Interface Sci, 2010, 343, 71
    [51] Jia G, Liu K, Zheng Y H, Song Y H, You H P. Fabrication of lanthanide phosphate nanocrystals with well controlled morphologies by layer-by-layer adsorption and reaction method at room temperature[J] .Cryst.Growth Des. 2009, 9, 3703
    [52] (a) Zhou, Y. H; Lin, J. Luminescent properties of YVO4:Dy3+ phosphors prepared by spray pyrolysis[J] .Alloys Compd. 2006, 408, 856 (b) Wang J.; Xua Y H. Hydrothermal synthesis of well-dispersed YVO4:Eu3+ microspheres and their photoluminescence properties [J]. Alloys Compd. 2009, 481, 896
    [53] Li,G C , Chao K, Peng H R, Chen K Z. Hydrothermal Synthesis and Characterization of YVO4 and YVO4:Eu3+ Nanobelts and Polyhedral Micron Crystals [J]. Phys Chem. C 2008, 112, 6228-6231
    [54] Zhu H L , Zuo D T. Highly enhanced photoluminescence from YVO4:Eu3+@YPO4 core/shell hetero nanostructures [J]. Phys Chem C, 2009, 113, 10402–10406
    [1] Li Y J, Zhou G W, Li C J, et al. Adsorption and catalytic activity of porcine pancreatic lipase on rod-like SBA-15 mesoporousmaterial [J]. Colloids Surf A:Physicochem Eng Aspects, 2009, 341(1-3):79-85
    [2] Zhou G W, Chen Y J, Yang S H.Comparative studies on catalyticproperties of immobilized candida rugosa lipase in orderedmesoporous rod-like silica and vesicle-like silica [J].Micropor Mesopor Mater, 2009, 119(13):223-229
    [3] Yiu H P, Wright P A. Enzymes supported on ordered mesoporoussolids:a special case of an inorganic-organic hybrid [J]. J Mater Chem, 2005, 15(35-36):3690-3700.
    [4]曲凤玉,朱广山,黄世英等.水溶性药物巯甲丙脯酸/Si-MCM-41载药新体系的制备与缓释作用研究[J].高等学校化学学报, 2004, 25(12)2195-2198
    [5] Heikkil? T, Salonen J, Tuura J, et al. Mesoporous silica material TUD-1 as a drug delivery system [J]. Int J Pharm, 2007, 331(1):133-138
    [6]曲凤玉,崔凌飞,黄世英等.介孔分子筛孔道结构对药物巯甲丙脯酸释放能的影响[J].高等学校化学学报, 2007, 28(8):1440-1442
    [7]徐武军,高强,徐耀等.基于HPMCP包覆介孔SBA-15的pH敏感药物缓释系统[J].化学学报, 2008, 66(14):1658-1662
    [8] Gao Q, Xu Y, Wu D, et al.pH-responsive drug release frompolymer-coated mesoporous silica spheres[J]. J Phys Chem C, 2009, 113(29):12753-12758
    [9]邢伟,禚淑萍,司维江等.磁性有序介孔炭的制备及药物吸附行为研究[J].化学学报,2009,67(8):761-766
    [10] Arcos D, Lopez-Noriega A, Ruiz-Hernandez E, et al. Ordered mesoporous microspheres for bone grafting and drugdelivery[J].Chem Mater, 2009, 21(6):1000-1009
    [11] Zhu Y F, Shi J L, Chen H R, Shen W H, Dong X P.A facile method to synthesize novel hollow mesoporous silica spheres and advanced storageproperty [J]. Micropor Mesopor Mat, 2005, 84: 218-222
    [12] Du L, Song H Y, Yang X, Liao S J, Petrik L. A novel hollow sphere mesoporous material synthesized by using DADD templateembedding Nd into framework simultaneously [J]. Micropor Mesopor Mat, 2008, 113: 261-267
    [13]徐红涛,王新收,陶雷鸣等,一种新型介孔空腔纳米微球的制备与缓释行为[J].中国科学:化学, 2010, 40:309-31
    [14] Zhang Q, Zhang T R, Ge J P, Yin Y D.Permeable silica shell through Surface-Protected etching[J]. Nano Lett, 2008, 8: 2867-2871
    [15] Stoer W, Fink A. Controlled growth of monidispersed silica spheres in the micrmon size range[J]. Colloide Interface Sci, 1968,26:62-69
    [16] Cohenstuart M A, Fleer G J, Bijsterbosch B H. Adsorption of poly(vinyl pyrrolidone) on silica. The fraction of bound segments measured by a variety of techniques[J] .Colloid Interface Sci, 1982, 90, 321–334
    [17] Nelson A., Jack K S, Cosgrove T, Kozak D. NMR solvent relaxation in studies of multicomponent polymer adsorption[J]. Langmuir, 2002, 18:2750–2755
    [18] Gun’ko V M, Zarko V I,Voronin E F, Goncharuk E V, Andriyko L S, Guzenko N V, Nosach L V, Janusz W. Successive interaction of pairs of soluble organics with nanosilica in aqueous media [J]. Colloid Interface Sci, 2006, 300, 20–32
    [19] Saegusa T. Organic-inorganic polymers hybrids Pure Appl. Chem. 1995, 67, 1965–1970
    [1] Li Z Z, Wen L X, Shao L, Chen J F. Fabrication of porous hollow silica nanoparticles and their applications in drug release control [J].Controlled Release, 2004, 98, 245–254
    [2] Chen J F, Ding H M, Wang J X, Shao L. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application [J].Biomaterials. 2004, 25, 723-727
    [3] Sharma R K,Das S, Maitra A. Enzymes in the avityof hollow silica nanoparticles [J]. Colloid Interf Sci, 2005, 284, 358-361
    [4] Wang J,Ding H, Tao X. Storage and sustained release of volatile substances from a hollow silica matrix [J]. Nanotechnology ,2007, 18, 245705
    [5] Zhu Y F, Shi J L, Chen H R, Shen W H, Dong X P. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property[J].Microporous and Mesoporous Mater, 2005, 84 (1-3), 218–222
    [6] Li Z Z, Xu S A, Wen L X, Liu F, Liu A Q, Wang Q, Sun H Y, Yu W, Chen J F. Influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Controlled Release, 2006, 111 (1-2), 81–88
    [7] Zhou J, Wu W, Caruntu D, Yu M H, Martin A, Chen J F, Zhou W L. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application [J]. Phys Chem C ,2007, 111 (47), 17473–17477
    [8] Trissot I, Reymond J P, Lefebvre F,et al. A step toward the synthesis of hollow silica nanoparticles [J] Chem. Mater,2002, 14:1352-1331 [ 9] Yang Z Z, Niu Z W, Lu Y F. et al. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core–shell gel particles [J].Angew Chem, 2003, 115:1987-1989
    [10] Zhong Z, Yin Y, Gates B, et al. Crystalline arrays of polystyrene beads [J].Adv Mater, 2000, 12:206-209
    [11] Zou H, Wu S S, Ran Q P, Shen J. preparation of monodisperse hollow silica spheres [J]. Phys Chem C, 2008, 112, 11623–11629
    [12] Zhang Q, Zhang T R, Ge J P, Yin Y D. Permeable silica shell through Surface-Protected etching[J]. Nano Lett, 2008, 8:2867-2871
    [13] Sugimoto T. Fine particles:synthesis characterization and mechanisms of growth [J]. New York:Marcel Dekker, 2000, 126-155
    [14] Evonne M R, David R K, Janelle L F, et al. Targeted drug delivery utilizing protein-like molecular architecture [J]. J Am Chem Soc, 2007, 129(16) 4961-4972
    [15]何晓晓,王柯敏,谭蔚泓等.基于氨基化SiO2纳米颗粒的新型基因载体,科学通报[J]. 2002, 47 (18):1365-1369
    [16] Liu Y Y , Miyoshi H , et al. Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: Preparation and fluorescein isothiocyanate (FITC) release kinetics Colloids and Surfaces [J]. B:Biointerfaces,2007, 58: 180-187
    [17] Huang S S, Yang P P, Cheng Z Y, et al.Synthesis and characterization of magnetic FexOy@SBA-15 composites with different morphologies for controlled drug release and targeting[J]. J Phys Chem C, 2008, 112(18): 7130-7137
    [18] Schwarz S,Lunkwitz K,Keβler B,et al,Adsorbtion and stable of colloidal silica [J]. Colloid Surface A, 2000 (163) 17-27
    [19] Chang Y, Teo J J, Zeng H C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to Hollow Cu2O nanospheres [J]. Langmuir, 2005, 21:1074– 1079
    [20] M Ohta, M Yasuda, M Takami. Emission quantum yield of europium (Ⅲ) mixed complexes with thenoyltrifluoroacetonate and some aromatic ligands [J]. Alloys Compounds, 2000, 320:303–304
    [21] M Ohta, M Takami J.Silica Sol-Gel Coatings on Metals Produced by EPD[J].Sol–Gel Sci Tech, 2000, 19:737
    [22] Zhu H L, Yang D R, Zhu L M, Li D S, Chen P H, Yue G. X.Synthesis of YVO4:Eu3+/YBO3 heteronanostructures with enhanced photoluminescence Properties [J]. J Am Ceram Soc, 2007, 90, 3095
    [1] S polosan, M bettinelli, T tsuboi. Photolum inescence Ho:YVO4 crystals[J]. Phys Stat Sol, 2007( 3): 1352- 1355
    [2] Erdei S. Growth of oxygen dificiency free YVO4 single crystal by top-seeded solution growth technique[J].Cry Grow, 1993, 134(1):1-13
    [3]张洪武,牛淑云,彭鲲,孙功全,辛勤.纳米级发光粉体YVO4:Eu的合成及光谱性质研究[J].功能材料, 2003, 34(5):575-576
    [4] Sun Y J, Liu H J, Wang X, Kong X G, Zhang H, Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+ Nanocrystals Synthesized by aHydrothermal Process[J]. Chem Mater, 2006, 18, 2726-2732
    [5] Wang G F, Qin W P, Zhang D S, Wang L L, Wei G D, Zhu P F, Kim R. Enhanced Photoluminescence of Water Soluble YVO4:Ln3+ (Ln ) Eu, Dy, Sm, and Ce) Nanocrystals by Ba2+ Doping[J]. 2008, 112, 17042-17045
    [6] Hirano S,Yogo T, Kikuta K,Sakamoto W, Koganei H. Synthesis of Nd: YVO4 Thin Films by a Sol-Gel Method [J]. J Am Ceram Soc, 1996, 79, 3041
    [7] Saegusa T. Organic-inorganic polymers hybrids Pure Appl Chem .1995, 67, 1965–1970
    [8] Zhuang Z B, Lu X T, Peng Q, Li Y D. Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity [J]. J Am Chem Soc, 2010, 132, 1819

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700