微流控毛细管电泳分析系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规毛细管电泳(Capillary Electrophoresis, CE)系统通常采用数十厘米的石英毛细管做为分离通道,在数十分钟内实现分离,具有样品消耗量少、分析速度快、分离效率高、易自动化等优点。高速毛细管电泳(High-speed Capillary Electrophoresis, HSCE)系统通过采用短毛细管、高分离场强和窄进样区带,实现高速和高效率的毛细管电泳分离。
     第一章介绍了用于蛋白质分离的常规毛细管电泳、微流控芯片毛细管电泳和基于短毛细管的快速毛细管电泳系统的研究进展。
     第二章建立了一种基于缺口管阵列及短毛细管的高速毛细管SDS-凝胶电泳蛋白质分离系统。提出了一种适用于粘度较大的蛋白质分离缓冲体系的部分自发进样方法,可满足HSCE系统对进样的要求。实验考察了影响试样引入过程的主要因素,如毛细管进样端形状、平移台移动速度等。在优化实验条件下,进样区带长度达到65μm,相应的进样体积约500 pL。使用一根分离长度为1.5 cm的涂层毛细管,在凝胶电泳分离模式下,在60 s内实现了FITC标记的肌红蛋白、卵清蛋白、牛血清蛋白、磷酸化酶b和肌球蛋白的分离,各个电泳峰的每米理论塔板数在258,000-1,280,000,相应的塔板高度为0.78μm-3.88μm,且蛋白质分子量的对数与迁移时间呈现良好的线性关系,线性相关系数达0.9989,说明该系统还可应用于蛋白质分子量的测定。该系统的分离速度和分离效率与多数文献报道的基于微流控芯片的电泳系统相当。
     第三章研制了一种面向航天空间实验的微型毛细管电泳分析仪。仪器基于顺序注射分析和“T”型通道结构构建具有全封闭液路的毛细管电泳分离系统。仪器集成了全封闭液路系统、全自动试样引入、分离系统、高压电源控制系统、激光诱导荧光检测系统、数据采集存储记录系统和电子控制系统。仪器具有自动化程度高、体积小、功耗小、集成化程度高的特点,可在全封闭环境下实现试样引入和分离等操作。实验考察了影响分析仪性能的主要因素,包括分离场强、顺序注射系统进样体积、缓冲液流速和毛细管两端储液袋的液位差。在最优分离条件下,将该毛细管电泳分析仪应用于手性氨基酸对映体的分离分析,使用一根有效分离长度为13 cm的熔融石英毛细管,采用MEKC分离模式,在320 s内实现了FITC标记的精氨酸、丙氨酸和天冬氨酸三组氨基酸对映体的手性分离。连续8次测定,各组分的迁移时间RSD在0.70%-0.86%之间,峰高RSD在3.23%-4.33%之间,峰面积RSD在3.82%-5.39%之间。仪器连续工作19 h均能正常工作,表明分析仪具有良好的分析性能和工作稳定性,有望用于未来航天空间实验。
In capillary electrophoresis (CE) systems, the separation is usually performed in capillaries with separation lengths of several tens centimeters, separation times of several tens minutes, with the advantages of low sample consumption, high analysis speed, high separation efficiency and ease of automation. The high-speed capillary electrophoresis (HSCE) systems using short capillaries, high separation field strengths and narrow sample plugs, can achieve the CE separation with high speed and high separation efficiency.
     In chapter 1, the developments of conventional CE, microfluidic chip-based CE and short capillary-based CE systems for protein separation in the recent years are reviewed.
     In chapter 2, we developed a high-speed sodium dodecyl sulfate capillary gel electrophoresis (SDS-CGE) system for protein separation based on a short capillary and slotted-vial array. A partial translational spontaneous injection approach was proposed for high-viscosity buffer solution system used in protein separation under CGE mode, to obtain narrow injection volume in the picoliter range. Several factors affected the sample injection process were investigated, including the shape of the capillary inlet and the moving speed of the platform. A sample injection plug length of~65μm (corresponding to~500 pL) was obtained under the optimized conditions. Five fluorescein isothiocyanate (FITC)-labled proteins were separated within 60 s with an effective separation length of 1.5 cm. The theoretical plates per meter ranged from 258,000 to 1,280,000 (corresponding to 0.78μm-3.88μm plate heights). The RSD of the migration time was less than 1.3%(n=5). A good linear correlation with the logarithm molecular weight versus migration time was obtained in the molecular weight range of 17,200 to 500,000, which demonstrated the present system could be applied in protein molecular mass determination. The separation speed and separation efficiency of the system was comparable to most of the reported microfluidic chip-based on HSCE systems for protein separation.
     In chapter 3, we developed a capillary electrophoresis analyzer toward space experiment based on sequential injection analysis (SIA) and "T" configuration channel sample introduceion system. The analyzer integrated closed liquid manipulation system, automated injection and separation system, high voltage power supply, laser-induced fluorescence (LIF) detection system, data collection, recording, storage system and control system. The factors affected the performance of the analyzer were investigated, including separation field strength, SI injection sample volume, the carrier flow-rate and the liquid difference. Under the MEKC separation mode, three fluorescein isothiocyanate (FITC)-labled chiral animo acids were separated within 320 s with an effective separation length of 13 cm. The repeatabilities for the migration time, peak height and peak area were 0.70%-0.86%, 3.23%-4.33% and 3.82%-5.39%(n=8), respectively. In the test for working stablility, the analyzer continuously worked for 19 h. We expect the capillary electrophoresis analyzer has good application potential in space experiment.
引文
[1]Lauer H H, McManigill D. Capillary zone electrophoresis of proteins in untreated fused silica tubing. Anal. Chem.1986,58:166-170.
    [2]Hu S, Dovichi N J. Capillary electrophoresis for the analysis of biopolymers. Anal. Chem. 2002,74:2833-2850.
    [3]Dolnik V. Capillary zone electrophoresis of proteins. Electrophoresis 1997,18:2353-2361.
    [4]Hjerten S. Free zone electrophoresis. Chromatogr Rev.1967,9:122-219.
    [5]Liu Y, Fu R, Gu J. Capillary zone electrophoretic separation of proteins using a column coated with epoxy polymer. J. Chromatogr. A 1995,694:498-506.
    [6]Herrin B J, Shafer S G, Alstine J V, Harris J M, Snyder R S. Control of electroosmosis in coated quartz capillaries. J. Colloid Interface Sci.1987,115:46-55.
    [7]Towns J K, Regnier F E. Polyethyleneimine-bonded phases in the separation of proteins by capillary electrophoresis. J. Chromatogr. A 1990,516:69-78.
    [8]Bentrop D, Kohr J, Engelhardt H. Poly(methylglutamate)-coated surfaces in HPLC and CE. Chromatographia 1991,32:171-178.
    [9]Liu Q, Lin F, Hartwick R A. Capillary zone electrophoretic separation of basic proteins and drugs using guaran as a buffer modifier. Chromatographia 1998,47:219-224.
    [10]Green J S, Jorgenson J W. Minimizing adsorption of proteins on fused silica in capillary zone electrophoresis by the addition of alkali metal salts to the buffers. J. Chromatogr.1989,478: 63-70.
    [11]陈义.毛细管电泳技术及应用.北京:化学工业出版社,2006.
    [12]Stathakis C, Arriaga E A, Dovichi N J. Protein profiling employing capillary electrophoresis with dendrimers as pseudostationary phase media. J. Chromatogr. A 1998,817:233-238.
    [13]Hjerten S. High-performance electrophoresis:Elimination of electroendosmosis and solute adsorption.J. Chromatogr.1985,347:191-198.
    [14]Schrnalzing D, Piggee C A, Foret F, Carrilho E, Karger B L. Characterization and performance of a neutral hydrophilic coating for the capillary electrophoretic separation of biopolymers.J. Chromatogr. A 1993,652:149-159.
    [15]Cifuentes A, Defrutos M, Santos J M, Diezrnasa J C. Separation of basic proteins by capillary electrophoresis using cross-linked polyacrylamide-coated capillaries and cationic. buffer additives.J. Chromatogr. A 1993,655:63-72.
    [16]Spanila M, Pazourek J, Havel J. Electroosmotic flow changes due to interactions of background electrolyte counter-ions with polyethyleneimine coating in capillary zone electrophoresis of proteins. J. Sep. Sci.2006,29:2234-2240.
    [17]Belder D, Deege A, Husmann H, Kohler F, Ludwig M. Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis. Electrophoresis 2001,22: 3813-3818.
    [18]Wan H, Ohman M, Blomberg L G. Bonded dimethylacrylamide as a permanent coating for capillary electrophoresis.J. Chromatogr. A 2001,924:59-70.
    [19]Sjodahl J, Emmer A, Karlstam B, Vincent J, Roeraade J. Separation of proteolytic enzymes originating from Antarctic krill (Euphausia superba) by capillary electrophoresis. J. Chromatogr. B 1998,705:231-241.
    [20]Dolnik V. Recent developments in the capillary zone electrophoresis of proteins. Electrophoresis 1999,20:3106-3115.
    [21]Luraschi P, Infusino I, Merlotti C, Franzini C. Analytical variation in the measurement of serum monoclonal component by capillary electrophoresis. Clin. Chim. Acta 2004,349: 151-156.
    [22]Visser N F C, Harmelen M van, Lingeman H, Irth H. On-line SPE-CE for the determination of insulin derivatives in biological fluids.J. Pharm. Biomed. Anal.2003,33:451-462.
    [23]Duly E B, Grimason S, Grimason P, Barnes G, Trinick T R. Measurement of serum albumin by capillary zone electrophoresis, bromocresol green, bromocresol purple, and immunoassay methods.J. Clin. Pathol.2003,56:780-781.
    [24]Zhang Z, Krylov S, Arriaga E A, Polakowski R, Dovichi N J. One-dimensional protein analysis of an HT29 human colon adenocarcinoma cell. Anal. Chem.2000,72:318-322.
    [25]Zhang Z, Carpenter E, Puyan X, Dovichi N J. Manipulation of protein fingerprints during on-column fluorescent labeling:Protein fingerprinting of six Staphylococcus species by capillary electrophoresis. Electrophoresis 2001,22:1127-1132.
    [26]Sanders E, Katzmann J A, Clark R, Oda R P, Shihabi Z, Landers J P. Development of capillary electrophoresis as an alternative to high resolution agarose electrophoresis for the diagnosis of multiple sclerosis. Clin. Chem. Lab.Med.1999,37:37-45.
    [27]Bean S R, Lookhart G L. Faster capillary electrophoresis separation of wheat proteins through modifications to buffer composition and sample handling. Electrophoresis 1998,19: 3190-3198.
    [28]Herrero-Martinez J M, Simo-Alfonso E F, Ramis-Ramos G, Gelfi C, Righetti P G. Determination of cow's milk and ripening time in nonbovine cheese by capillary electrophoresis of the ethanol-water protein fraction. Electrophoresis 2000,21:633-640.
    [29]Bossuyt X, Schiettekatte G, Bogaerts A, Blanckaert N. Serum protein electrophoresis by CZE 2000 clinical capillary electrophoresis system. Clin.Chem.1998,44:749-759.
    [30]Bienvenu J, Graziani M S, Arpin F, Bernon H, Blessum C, Marchetti C, Righetti G, Somenzini M, Verga G, Aguzzi F. Multicenter evaluation of the Paragon CZE (TM) 2000 capillary zone electrophoresis system for serum protein electrophoresis and monoclonal component typing. Clin. Chem.1998,44:599-605.
    [31]Friedberg M A, Shihabi Z K. Urine protein analysis by capillary electrophoresis. Electrophoresis 1997,18:1836-1841.
    [32]Jenkins M A. Clinical application of capillary electrophoresis to unconcentrated human urine proteins. Electrophoresis 1997,18:1842-1846.
    [33]Righetti P G, Verzola B. Folding/unfolding/refolding of proteins:Present methodologies in comparison with capillary zone electrophoresis. Electrophoresis 2001,22:2359-2374.
    [34]Rochu D, Masson P. Multiple advantages of capillary zone electrophoresis for exploring protein conformational stability. Electrophoresis 2002,23:189-202.
    [35]Hjerten S J. High-performance electrophoresis:the electrophoretic counterpart of high-performance liquid chromatography. J. Chromatogr.1983,270:1-6.
    [36]Guttman A. Capillary sodium dodecyl sulfate-gel electrophoresis of proteins. Electrophoresis 1996,17:1333-1341.
    [37]Manabe T, Oota H, Mukai J. Size separation of sodium dodecyl sulfate complexes of human plasma proteins by capillary electrophoresis employing linear polyacrylamide as a sieving polymer. Electrophoresis 1998,19:2308-2316.
    [38]Hu S, Zhang Z R, Cook L M, Carpenter E J, Dovichi N J. Separation of proteins by sodium dodecylsulfate capillary electrophoresis in hydroxypropylcellulose sieving matrix with laser-induced fluorescence detection. J. Chromatogr. A 2000,894:291-296.
    [39]Hu S, Jiang J, Cook L M, Richards D P, Horlick L,Wong B, Dovichi N J. Capillary sodium dodecyl sulfate-DALT electrophoresis with laser-induced fluorescence detection for size-based analysis of proteins in human colon cancer cells. Electrophoresis 2002,23: 3136-3142.
    [40]Bean S R, Lookhart G L. Sodium dodecyl sulfate capillary electrophoresis of wheat proteins. 1. Uncoated capillaries. J. Agric. Food Chem.1999,47:4246-4255.
    [41]Jin L J, Giordano B C, Landers J P. Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without preor postcolumn labeling. Anal. Chem.2001,73:4994-4999.
    [42]He Y, Yeung E S. Rapid determination of protein molecular weight by the Ferguson method and multiplexed capillary electrophoresis. J. Proteome Res.2002,1:273-277.
    [43]Luo S, Feng J M, Pang H M. High-throughput protein analysis by multiplexed sodium dodecyl sulfate capillary gel electrophoresis with UV absorption detection. J. Chromatogra. A 2004,1051:131-134.
    [44]Hjerten S, Zhu M D. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. J. Chromatogr.1985,346:265-270.
    [45]Shen Y, Xiang F, Veenstra T D, Fung E N, Smith R D. High-resolution capillary isoelectric focusing of complex protein mixtures from lysates of microorganisms. Anal. Chem.1999,71: 5348-5353.
    [46]Shimura K, Zhi W, Matsumoto H, Kasai K. Accuracy in the determination of isoelectric points of some proteins and a peptide by capillary isoelectric focusing:Utility of synthetic peptides as isoelectric point markers. Anal. Chem.2000,72:4747-4757.
    [47]Liu Z, Lemma T, Pawliszyn J. Capillary isoelectric focusing coupled with dynamic imaging detection:A one-dimensional separation for two-dimensional protein characterization. J. Proteome Res.2006,5:1246-1251.
    [48]Bo T, Pawliszyn J. Protein thermal stability and phospholipid-protein interaction investigated by capillary isoelectric focusing with whole column imaging detection. J. Sep. Sci.2006,29: 1018-1025.
    [49]Bo T, Pawliszyn J. Characterization of phospholipid-protein interactions by capillary isoelectric focusing with whole-column imaging detection. Anal. Biochem.2006,350:91-98.
    [50]Bo T, Pawliszyn J. Dynamic process of phospholipid-protein interaction studied by capillary isoelectric focusing with whole-column imaging detection. Electrophoresis 2006,27: 852-858.
    [51]Li N, Kessler K, Bass L, Zeng D. Evaluation of the iCE280 analyzer as a potential high-throughput tool for formulation development. J. Pharm. Biomed. Anal.2007,43: 963-972.
    [52]Lyubarskaya Y V, Carr S A, Dunnington D, Prichett W P, Fisher S M, Appelbaum E R, Jones C S, Karger B L. Screening for high-affinity ligands to the Src SH2 domain using capillary isoelectric focusing-electrospray ionization ion trap mass spectrometry. Anal.Chem.1998,70: 4761-4770.
    [53]Shen Y, Smith R D. High-resolution capillary isoelectric focusing of proteins using highly hydrophilic-substituted cellulose-coated capillaries. J. Microcol. Sep.2000,12:135-141.
    [54]Cifuentes A, Moreno-Arribas M V, Frutos M D, Diez-Masa J C. Capillary isoelectric focusing of erythropoietin glycoforms and its comparison with flat-bed isoelectric focusing and capillary zone electrophoresis. J. Chromatogr. A 1999,830:453-463.
    [55]Shen Y F, Smith R D. Proteomics based on high-efficiency capillary separations. Electrophoresis 2002,23:3106-3124.
    [56]Jorgenson J W, Lukacs K. D. High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr.1981,218:209-216.
    [57]Pesek J J, Matyska M T, Salgotra V. Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns. Electrophoresis 2008,29:3842-3849.
    [58]北野宏明.系统生物学基础.刘笔锋,周艳红(译).北京:化学工业出版社,2007.
    [59]赵良娟,邹娟娟,王秀丽,阎超,高如瑜,刘明羽,吕宪禹.梯度加压毛细管电色谱分离蛋白质.色谱2005,23:669-672.
    [60]Tegeler T J, Mechref Y, Boraas K, Reilly J P, Novotny M V. Microdeposition device interfacing capillary electrochromatography and microcolumn liquid chromatography with matrix-assisted laser desorption/ionization mass spectrometry. Ana. Chem.2004,76: 6698-6706.
    [61]Liang Z, Zhang L H, Duan J C, Yan C, Zhang W B, Zhang Y K. On-line concentration of proteins in pressurized capillary. electrochromatography coupled with electrospray ionization-mass spectrometry. Electrophoresis 2005,26:1398-1405.
    [62]Ichimura M, Okamoto M, Mori S, Tohge H, Ochi K, Harada H. Affinity isoelectric focusing of human serum apolipoprotein B-containing lipoproteins on agarose gels with cyclodextrins. Electrophoresis 1998,19:687-691.
    [63]Kosar-Hashemi B, Irwin J A, Higgins J, Rahman S, Morell M K. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis. Electrophoresis 2006,27:1832-1839.
    [64]Lee B S, Jayathilaka G D, Huang J S, Decresce D, Borgia J A, Zhou X, Gupta S. Modification of the immobilized metal affinity electrophoresis using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Electrophoresis 2008,29:3160-3163.
    [65]Baek W O, Haupt K, Colin C, Vijayalakshmi M A. Immobilized metal ion affinity gel electrophoresis:Quantification of protein affinity to transition metal chelates. Electrophoresis 1996,17:489-492.
    [66]Cunliffe J M, Liu Z, Pawliszyn J, Kennedy R T. Use of a native affinity ligand for the detection of G proteins by capillary isoelectric focusing with laser-induced fluorescence detection. Electrophoresis 2004,25:2319-2325.
    [67]Ding Y, Lin B, Huie C W. Binding studies of porphyrins to human serum albumin using affinity capillary electrophoresis. Electrophoresis 2001,22:2210-2216.
    [68]Pedersen J T, OStergaard J, Houen G, Heegaard N H. Affinity capillary electrophoresis for identification and investigation of human Gc-globulin (vitamin D-binding protein) and its isoforms interacting with G-actin. Electrophoresis 2008,29:1723-1733.
    [69]Huang C C, Cao Z H, Chang H T, Tan W H. Protein-protein interaction studies based on molecular aptamers by affinity capillary electrophoresis. Anal. Chem.2004,76:6973-6981.
    [70]Tran N T, Taverna M, Miccoli L, Angulo J F. Poly(ethylene oxide) facilitates the characterization of an affinity between strongly basic proteins with DNA by affinity capillary electrophoresis. Electrophoresis 2005,26:3105-3112.
    [71]Okun V M, Bilitewski U. Analysis of the biotin-binding protein actinavidin usingaffinity capillary electrophoresis. Electrophoresis 1996,17:1627-1632.
    [72]El-Hadya D, Kiihneb S, El-Maalia N, Wazigb H. Precision in affinity capillary electrophoresis for drug-protein binding studies. Journal of Pharmaceutical and Biomedical Analysis 2010,52:232-241.
    [73]Shimura K, Waki T, Okada M, Toda T, Kimoto I, Kasai K I. Analysis of protein-protein interactions with a multi-capillary electrophoresis instrument. Electrophoresis 2006,27: 1886-1894.
    [74]Hu S, Zhang L, Dovichi N J. Characterization of the interaction between phospholipid and protein by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogra. A 2001,924:369-375.
    [75]刘和春,田燕,杨春,张维冰,张玉奎.微透析中空纤维膜接口的制作及其在二维毛细管电泳联用中的应用.色谱2003,21:446-450.
    [76]Liu H C, Zhang L H, Zhu G J, Zhang W B, Zhang Y K. An etched porous interface for on-Line capillary electrophoresis-based two-dimensional separation system. Anal. Chem. 2004,76:6506-6512.
    [77]Yang C, Liu H C, Yang Q, Zhang L Y, Zhang W B, Zhang Y K. On-line hyphenation of capillary isoelectric focusing and capillary gel electrophoresis by a dialysis interface. Anal. Chem.2003,75:215-218.
    [78]Liu H C, Yang C, Yang Q, Zhang W B, Zhang Y K. On-line combination of capillary isoelectric focusing and capillary non-gel sieving electrophoresis using a hollow-fiber membrane interface:A novel two-dimensional separation system for proteins. J. Chromatogra. B 2005,817:119-126.
    [79]Sheng L, Pawliszyn J. Comprehensive two dimensional separation based on coupling micellar electrokinetic chromatography with capillary isoelectric focusing. Analyst 2002,127: 1159-1163.
    [80]Hu S, Michels D A, Fazal M A, Ratisoontorn C, Cunningham M L, Dovichi N J. Capillary sieving electrophoresis/micellar electrokinetic capillary chromatography for two-dimensional protein fingerprinting of single mammalian cells. Anal. Chem.2004,76:4044-4049.
    [81]Harwood M M, Christians E S, Fazal M A, Dovichi N J. Single-cell protein analysis of a single mouse embryo by two-dimensional capillary electrophoresis. J. Chromatogra. A 2006, 1130:190-194.
    [82]Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T. Electrokinetic separations with micellar solution and open-tubular capillaries. Anal. Chem.1984,56:111-113.
    [83]Terabe S. Peer Reviewed:Micellar electrokinetic chromatography. Anal.Chem.2004,76: 240A-246A.
    [84]Jing P, Kaneta T, Imasaka T. Micellar electrokinetic chromatography with diode laser-induced fluorescence detection as a tool for investigating the fluorescence labeling of proteins. Electrophoresis 2002,23:550-555.
    [85]Jing P, Kaneta T, Imasaka T. Band broadening caused by the multiple labeling of proteins in micellar electrokinetic chromatography with diode laser-induced fluorescence detection. J. Chromatogra A 2002,959:281-287.
    [86]Viglio S, Valentini G, Zanaboni G, Cetta G, Gregorio A D, Iadarola P. Rapid detection of ornithine transcarbamylase activity by micellar electrokinetic chromatography. Electrophoresis 1999,20:138-144.
    [87]Sano M, Ueno K, Kamimori H. Enzyme assay for protein kinase using micellar electrokinetic chromatography with laser-induced fluorescence detection. J. Chromatogra. B 2003,794: 149-156.
    [88]周促驹.蛋白质和多肽研究的毛细管电泳技术.生物产业技术2007,1:62-68.
    [89]Foret F, E Szolo, Darger B L. Analysis of proteins by capillary electrophoresis with on-column transient isotachophoretic preconcentration. Backman Instruments inc. application bulletin# A-1740A,1993.
    [90]Yao S, Anex D S, Caldwel W B, Arnold D W, Smith K B, Schultz P Z. SDS capillary gel electrophoresis of proteins in microfabricated channels, Proc. Natl. Acad. Sci. USA 1999,96: 3572-3577.
    [91]Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R. Protein sizing on a microchip. Anal. Chem.2001,73:1207-1212.
    [92]Herr A E, Singh A K. Photopolymerized Cross-Linked Polyacrylamide Gels for On-Chip Protein Sizing. Anal. Chem.2004,76:4727-4733.
    [93]Nagata H, Tabuchi M, Hirano K, Baba Y. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution. Electrophoresis 2005,26:2687-2691.
    [94]Rodriguez I, Zhang Y, Lee H K, Li S F Y. Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G.J. Chromatogr. A 1997,781:287-293.
    [95]Lausch R, Scheper T, Reif O W, Schlosser J, Fleischer J, Freitag R. Rapid capillary gel electrophoresis of proteins. J. Chromatogr. A 1993,654:190-195.
    [96]Benedek K, Guttman A. Ultra-fast high-performance capillary sodium dodecyl sulfate gel electrophoresis of proteins. J. Chromatogr. A 1994,680:375-381.
    [97]Manale T. Sodium dodecyl sulfate-gel electrophoresis of proteins employing short capillaries. Electrophoresis 1995,16:1468-1173.
    [98]Chen F A. Rapid protein analysis by capillary electrophoresis.J. Chromatogr 1991,559: 445-453.
    [99]Hjerten S. Capillary electrophoretic separation in open and coated tubes with special reference to proteins. Methods in Enzymology 1996,270:296-319.
    [100]Wu J Q, Pawliszyn J. Fast analysis of proteins by isoelectric focusing performed in capillary array detected with concentration gradient imaging system. Electrophoresis 1993,14: 469-474.
    [101]Banks J B, Dresch T. Detection of fast capillary electrophoresis peptide and protein separations using electrospary ionization with a time-of-flight mass spectrometer. Anal. Chem. 1996,68:1480-1485.
    [1]Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R. Protein sizing on a microchip. Anal. Chem.2001,73:1207-1212.
    [2]Hree A E, Singh A K. Photopolymerized Cross-Linked Polyacrylamide Gels for On-Chip Protein Sizing. Anal. Chem.2004,76:4727-4733.
    [3]Nagata H, Tabuchi M, Hirano K, Baba Y. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution. Electrophoresis 2005,26:2687-2691.
    [4]Rodriguez I, Zhang Y, Lee H K, Li S F Y. Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G. J. Chromatogr. A 1997,781:287-293.
    [5]Lausch R, Scheper T, Reif O W, Schlosser J, Fleischer J, Freitag R. Rapid capillary gel electrophoresis of proteins. J. Chromatogr. A 1993,654:190-195.
    [6]Wu J, Pawliszyn J. Fast analysis of proteins by isoelectric focusing performed in capillary array detected with concentration gradient imaging system. Electrophoresis 1993,14: 469-474.
    [7]Wu X Z, Pawliszyn J. Whole-column imaging capillary electrophoresis of proteins with short capillary. Electrophoresis 2002,23:542-549.
    [8]Gordon M J, Huang X, Pentoney S L, Scheller R H, Zare R N. Capillary electrophoresis. Science 1988,242:224-228
    [9]Du W B, Fang Q, He Q H, Fang Z L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal. Chem. 2005,77:1330-1337.
    [10]Zhang T, Fang Q, Du W B, Fu J L. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis. Anal. Chem.2009,81: 3693-3698.
    [11]Cheng Y Q, Yao B, Zhang H D, Fang J, Fang Q. An automated capillary electrophoresis system for high-speed separation of DNA fragments based on a short capillary. Electrophoresis 2010,31:3184-3191.
    [12]Hooker T F, Jorgenson J W. A transparent flow gating interface for the coupling of microcolumn LC with CZE in a comprehensive two-dimensional system. Anal. Chem.1997, 69:4134-4142.
    [13]Barnidge D R, Nilsson S, Markides K E, Rapp H, Hjort K. Metallized sheathless electrospray emitters for use in capillary electrophoresis orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.1999,13:994-1002.
    [14]Fishman H A, Amudi N M, Lee T T, Scheller R H, Zare R N. Spontaneous injection in microcolumn separations. Anal. Chem.1994,66:2318-2329.
    [1]Aubrey A D, Chalmers J H, Bada J L, Grunthaner F J, Amashukeli X, et al. The urey instrument:An advanced in situ organic and oxidant detector for mars exploration. Astrobiology 2008,8:583-595.
    [2]Skelley A M, Cleaves H J, Jayarajah C N, Bada J L, Mathies R A. Application of the mars organic analyzer to nucleobase and amine biomarker detection. Astrobiology 2008,8: 824-837.
    [3]Chiesl T N, Chu W K, Stockton A M, Amashukeli X, Grunthaner F, Mathies R A. Enhanced amine and amino acid analysis using pacific blue and the mars organic analyzer microchip capillary electrophoresis system. Anal. Chem.2009,81:2537-2544.
    [4]Fang Q, Wang F R, Wang S L, Liu S S, Xu S K, Fang Z L. Sequential injection sample introduction microfluidic-chip based capillary electrophoresis system. Analytica Chimica Acta 1999,390:27-37.
    [5]Lu X N, Chen Y. Chiral separation of amino acids derivatized with fluoresceine-5-isothiocyanate by capillary electrophoresis and laser-induced fluorescence detection using mixed selectors of β-cyclodextrin and sodium taurocholate. J. Chromatogr. A 2002,955:133-140.
    [6]卢小宁,陈义.基于二元手性选择剂协同作用的毛细管电泳拆分氨基酸对映体研究.高等学校化学学报2002,23:822-824.
    [7]陈义.毛细管电泳技术及应用.北京:化学工业出版社,2006,205-210.
    [8]Chen F, Zhang S F, Qi L, Chen Y. Chiral capillary electrophoretic separation of amino acids derivatized with 9-fluorenylmethylchloroformate using mixed chiral selectors of β-cyclodextrin and sodium taurodeoxycholate. Electrophoresis 2006,27:2896-2904.
    [9]Han Y L, Chen Y. On-column labeling technique and chiral CE of amino acids with mixed chiral selectors and UV detection. Electrophoresis 2007,28:2765-2770.
    [10]邸乃庸.太空科学实验.太空探索2004,4:2-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700