核磁共振系统的数字化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振(NMR)技术作为一种研究物质结构的重要工具,在物质检测和医学影像等领域中得到了广泛的应用。与此同时,其应用领域的拓展和科学研究的深入,又对核磁共振系统提出了更高的要求。本论文主要针对目前常规商业化NMR谱仪存在的问题,开展了谱仪技术的数字化研究,在保证谱仪功能和性能的前提下,对谱仪结构进行了优化,降低了设计成本。该研究工作为NMR设备的普及奠定了基础。
     论文的主要内容如下:
     1.核磁共振系统数字化研究的趋势。首先,介绍了核磁共振技术的发展,指出应用数字化技术是谱仪发展的一个重要方向。在此基础上,针对本论文的主要工作论述了数字化研究的意义。
     2.基于USB总线的一体化核磁共振谱仪控制台的数字化研究。首先,在总结常规核磁共振谱仪结构的基础上,提出了全数字、一体化的谱仪控制台的设计思想。然后,详细介绍了该谱仪控制台的设计思路和硬件结构。该谱仪控制台采用USB总线,实现了外置式架构。此外,该谱仪控制台将控制/通讯部分、脉冲序列控制部分、射频发射部分与信号接收部分集成于一块板卡之上,还可以实现两种工作模式。最后,采用常规NMR序列实验较好地验证了整套系统的性能。可以看到,在谱仪结构简化的同时保证了性能指标,增强了灵活性,拓宽了应用范围。
     3.多通道磁共振信号接收方法的数字化研究。首先,讨论了近年来随着相控阵和并行成像技术的飞速发展对信号采集系统的要求。然后,针对现有技术的不足,提出了F_TDM多通道接收方法,并进行了理论分析。最后,我们设计了基于PCI总线的四通道F_TDM数字接收机,通过成像实验论证了该方法的可行性。
     4.选择性激发脉冲的数字化研究。为提高射频功率放大器的效率,降低仪器的成本,我们提出了正负相位组合(P/N)选择性激发脉冲。首先,我们将P/N脉冲展开成傅立叶级数,分析了P/N脉冲和软脉冲在选择性激发上的等效性。然后通过密度矩阵的方法模拟了P/N脉冲的激发带宽曲线,并与软脉冲的激发带宽曲线作了比较。最后通过实验测量了P/N脉冲的激发带宽曲线,并给出了采用P/N脉冲选层获得的多层SE2D图像。
     5.磁共振系统数字化研究的总结与展望。总结了本论文的主要研究工作及其应用方向,对目前工作中存在的问题进行了分析并指出了改进的方向。
Nuclear Magnetic Resonance (NMR) technique has become one of the most important tools for probing the material structure, and has been widely used in the fields of substance analysis and medical imaging. Simultaneously, the development of the application field and scientific research in NMR has put high demands on its system technology research. To solve the problems existing in standard commercial spectrometers, we focus our research on the digital investigation of NMR system. This research can optimize the structure and reduce the cost of the system without performance lost. We believe it laid a foundation for the popularization of NMR spectrometers.
     The main contents in this dissertation are as follows:
     1. The trend in the digitalization of NMR system. To begin with, we provided an overview of the development of NMR technique. Then we dwelt on the significance of the research work.
     2. The digital investigation of integrated NMR spectrometer based on USB interface. Firstly, the structure of standard commercial spectrometers was introduced. Then, a complete digital integrated NMR spectrometer was designed. The spectrometer, in which the control/communication unit, pulse generator, RF waveform transmitter and digital receiver are integrated on one PCB card, can works in two modes. Its hardware structure is independent of PC and greatly simplified without the loss of flexibility and performance.
     3. The digital investigation of F_TDM receiver for parallel acquisition of MRI. In recent years, the rapid development of parallel acquisition in magnetic resonance imaging (MRI) has put high demands on receiver technology. Firstly, the disadvantages of the existing technology were pointed out. Then, an alternative technique F_TDM, which minimizes physical dimensions and system complexity, was proposed and the principle of this technique was discussed. Finally, a PCI-based four-channel F_TDM receiver was designed for verifying and demonstrating the scheme and the performance of this proposed technique.
     4. The investigation of selective-excitation radiofrequency (RF) pulse for MRI. A selective-excitation RF pulse that uses hard pulses composed of a sequence of composite pulses with positive and negative phases (P/N pulse) was proposed herein. It can be used for imaging studies to improve the efficiency of amplification at the lowest cost. Fourier series have been first used to analyze the equivalence between the proposed P/N pulse and the conventional soft pulse on selective excitation. Subsequently, computer simulations based on density-matrix theory were used to compare the excitation profiles of both the soft and the P/N pulses. In addition, the excitation profiles of the P/N pulses have been measured experimentally and several slices of images have been obtained as proofs by using the multislice SE2D sequence through replacement of the conventional soft pulse by the proposed P/N pulse.
     5. The summary and prospect of the digitalization of NMR system. We analyzed the existing problems in present works and pointed out the future research direction.
引文
[1]裘祖文,裴奉奎(1992)核磁共振波谱,科学出版社,北京,pp1
    [2]Bloch F(1951)Nuclear induction.Physica 17:272-281
    [3]Purcell EM(1951)Nuclear resonance in crystals.Physica 17:282-302
    [4]Proctor WG.,Yu FC(1950)The dependence of a nuclear magnetic resonance frequency upon chemical compound.Phys.Rev.77:717-717
    [5]Proctor WG.,Yu FC(1951)On the nuclear magnetic moments of several stable isotopes.Phys.Rev.81:20-30
    [6]Cooley,James W,Tukey JW(1965)An algorithm for the machine calculation of complex Fourier series.Math.Comput.19:297-301
    [7]Cooley,James W,Peter AWL,Peter DW(1967)Historical notes on the fast Fourier transform.IEEE Trans.on Audio and Electroacoustics 15:76-79
    [8]Cooley,James W,Peter AWL,Peter DW,(1969)The Fast Fourier Transform and its applications.IEEE Trans on Education 12:28-34
    [9]Ernst RR(1971)Fourier difference spectroscopy.J.Magn.Reson.4:280-296
    [10]Damadian RV(1971)Tumor detection by nuclear magnetic resonance.Science 171:1151
    [11]Lauterbur PC(1973)Image formation by induced local interactions:examples employing nuclear magnetic resonance.Nature 242:190-191
    [12]Kumar A,Welti D,Ernst RR(1975)NMR Fourier zeugmatography.J.Magn.Reson.18:69-83
    [13]Mansfielf P(1977)Multi-planar image formation using NMR spin-ethos.J.Phys.C:Solid State Physics 10:L55-L58
    [14]俎栋林(2004)核磁共振成像学,高等教育出版社,北京
    [15]Damadian(1972)Apparatus and method for detecting cancer in tissue.US Patent No.3789832
    [16]赵喜平(2004)磁共振成像,科学出版社,北京,pp35
    [17]中国医疗器械产业研究小组(2006)2006-2007年中国核磁共振市场研究报告
    [18]Li GY,Jiang Y,Yah XL,et al.(2001)Digital nuclear magnetic resonance spectrometer.Rev.Sci.Instrum.72:4460-4463
    [19]Shen J,Xu Q,Liu Y,et al.(2005)Home-built magnetic resonance imaging system(0.3 T)with a complete digital spectrometer.Rev.Sci.Instrum.76:5101-5107
    [1]Humbert F,Retoumard A,Mischler E,et al.(1992)NMR data acquisition,data processing,and spectrometer control with an IBM PC compatible.Rev.Sci.Instrum.63:5359-5361
    [2]Li GY,Jiang Y,Yah XL,et al.(2001)Digital nuclear magnetic resonance spectrometer.Rev.Sci.Instrum.72:4460-4463
    [3]Shen J,Xu Q,Liu Y,et al.(2005)Home-built magnetic resonance imaging system(0.3 T)with a complete digital spectrometer.Rev.Sci.Instrum.76:5101-5107
    [4]Compaq,Hewlett-Packard,Intel,Lucent,Microsoft,NEC,Philips(2000)Universal Serial Bus Specification.Rev.2.0
    [5]HP,Intel,Microsoft,NEC,NXP,TI(2007)Superspeed USB 3.0 promoter group enlists contributors for first industry-wide specification review.
    [6]许永和(2002)USB外围设备设计与应用,北京航空航天大学出版社,北京
    [7]Philips Semiconductors(2006)PDIUSBD12 Universal Serial Bus peripheral controller with parallel bus.Rev.09
    [8]Cypress Semiconductor Corporation(2002)CY7C68013 EZ-USB FX2~(TM)USB Microcontroller High-speed USB Peripheral Controller.Rev.C
    [9]Cypress Semiconductor Corporation(2002)Introduction to the EZ-USB FX2~(TM)GPIF engine.
    [10]Shenoy RK,Ramakrishna J,Srinivasan R(1976)A versatile and flexible digital pulse programmer for pulsed nuclear magnetic resonance.J.Phys.E:Sci.Instrum.9:779-783
    [11]Wachter EA,Sidky EY,Farrar TC(1988)Enhanced state-machine pulse programmer for very-high-precision pulse programming.Rev.Sci.Instrum.59:2285-2289
    [12]Job C,Pearson RM,Brown MF,(1994)A personal computer-based nuclear magnetic resonance spectrometer.Rev.Sci.Instrum.65:3354-3362
    [13]Toyoda T,Yoshida H,Oishi O,Miyajima S(1997)Personal computer-controlled 16 channel versatile pulse generator for nuclear magnetic resonance.Rev.Sci.Instrum.68:3140-3142
    [14]Shen J,Liu Y,Li Jianqi,Li Gengying(2005)A powerful graphical pulse sequence programming tool for magnetic resonance imaging.MAGMA 18:332-342
    [15]Programmed Test Sources Inc.PTS 160 Instruction Manual.
    [16]Sharuz SM(2001)A phase-locked loop.Rev.Sci.Instrum.72:1889-1892
    [17]Tiemey J,Rader CM,Gold B(1971)A digital frequency synthesizer.IEEE Trans.Audio Electroacoust.19:48-57
    [18]Webb J(1972)Digital signal generator synthesizer.US Patent No.3654450
    [19]Analog Device Inc.(1999)A Technical Tutorial on Digital Signal Synthesis.
    [20]Analog Devices Inc.(2004)CMOS,125 MHz Complete DDS Synthesizer AD9850.Rev.H
    [21]Analog Devices Inc.(2008)1 GSPS,14-Bit,3.3 V CMOS Direct Digital Synthesizer AD9910.Rev.A
    [22]Analog Devices Inc.(2008)1 GSPS quadrature digital upconverter with 18-Bit I/Q data path and 14-Bit DAC AD9957.Rev.A
    [23]Analog Devices Inc.(2002)CMOS 300 MSPS Quadrature Complete-DDS AD9854.Rev.B
    [24]Nicholas H,Samueli H(1987)An analysis of the output spectrum of Direct Digital Frequency Synthesizers in the presence of phase-accumulator truncation.IEEE Proc.41st AFCS 495-502
    [25]Venceslav FK,Senior M,VBclav C,et al.(2000)Spurious signals in Direct Digital Frequency Synthesizers due to the phase truncation.IEEE Trans.47:1166-1172
    [26]徐海燕,田增山(2007)直接数字频率合成中的相位杂散抑制方法研究.电信交换4:15-18
    [27]Ulrich LR,Jerry CW(2001)Communications Receivers:DSP,Software Radios,and Design.McGraw-Hill Education(Asia)Co.
    [28]Li GY,Xie HB(1999)Digital quadrature detection in nuclear magnetic resonance spectroscopy.Rev.Sci.Instrum.70:1511-1513
    [29]Li GY,Jiang Y,Yah XL(2000)Combination of digital quadrature detection and over-sampling techniques.Chinese J Magn Reson.17:73-78
    [30]Analog Devices Inc.(2003)IF Digitizing Subsystem AD9874.Rev.A
    [31]Boser BE(1988)The design of sigma-delta modulation analog-to-digital converters.Solid-State Circuits 23:1298-1308
    [32]Temes GC,Candy JC.(1990)A tutorial discussion of the oversampling method for A/D and D/A conversion.IEEE Circ.and Syst.2:910-913
    [33]Joyce Van de Vegte(2003)Fundamentals of Digital Signal Processing.Pearson Education
    [34]孙璐,王家礼(2003)Σ-Δ调制噪声整形的研究.现代电子技术 3:43-45
    [35]Yin G.A(1993)16-bit 320-kHz CMOS A/D converter using two-stage third Σ-Δnoise shaping.Solid-State Circuits 28:640-647
    [36]Wasshuber C(2001)Computational single-electronics.Springer Verlag,New York
    [1]Shaw D(1984)Fourier Transform NMR Spectroscopy.Elsevier,Amsterdam.
    [2]Sodickson DK,Manning WJ(1997)Simultaneous acquisition of spatial harmonics(SMASH):fast imaging with radiofrequency coil arrays.Magn.Reson.Med.38:591-603
    [3]Pruessmann KP,Weiger M,Scheidegger MB,et al.(1999)Sensitivity encoding for fast MRI.Magn.Reson.Med.42:952-962
    [4] Pruessmann PK, Weiger M, Scheidegger BM, Boesiger P (1999) SENSE: Sensitivity Encoding for Fast MRI, Magn. Reson. Med. 42:952-962
    [5] Jakob PM, Griswold MA, Edelman RR, et al. (1998) AUTO-SMASH: a self-calibrating technique for SMASH imaging. MAGMA 7:42-54
    [6] Heidemann RM, Griswold MA, Haase A, et al. (2001) VD-AUTO-SMASH imaging. Magn. Reson. Med. 45:1066-1074
    [7] Griswold MA, Jakob PM, Heidemann RM, et al. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47:1202-1210
    [8] Bydder M, Larkman DJ, Hajnal JV (2002) Generalized SMASH imaging. Magn. Reson. Med. 47:160-170
    [9] Griswold MA, Jakob PM, Nittka M, et al. (2000) Partially parallel imaging with localized sensitivities (PILS). Magn. Reson. Med. 44:602-609
    [10] Wang J, Kluge T, Nittka M, et al. (2001) Parallel acquisition techniques with modified SENSE reconstruction mSENSE. In:Proceedings of the First Wurzburg Workshop on Parallel Imaging Basics and Clinical Applications.Germany, 89
    [11] Kyriakos WE, Panych LP, Kacher DF, et al. (2000) Sensitivity profiles from an array of coils for encoding and reconstruction in parallel(SPACE RIP). Magn. ResonO Med. 44:301-308
    [12] McDougall MP, Wright SM (2005) 64-Channel Array Coil for Single Echo Acquisition Magnetic Resonance Imaging. Magn. Reson. Med. 54:386-392
    
    [13] Hyde JS, Jesmanowicz A, Froncisz W, Kneeland JB, Grist TM (1986) Parallel image acquisition from noninteracting local coils. J. Magn. Reson. 70:512-517
    [14] Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn. Reson. Med. 16:192-225
    [15] Wright SW, Porter JR (1992) Rarallel acquisition of MR images using time multiplexed coils. Electron. Lett. 28:71-72
    [16]Beckman RA,Zuiderweg RP(1995)Guidelines for the use of oversampling in protein NMR.J.Magn.Reson.113:223-231
    [17]Behin R,Bishop J,Henkelman RM(2005)Dynamic Range Requirements for MRI.Concepts in MR 26B:28-35
    [18]Analog Devices Inc.(2005)AD6654-14bit,92.16 Msps,4-channel/6-channel wideband IF to Base bind Receiver Datasheet.Rev.0
    [19]Intersil Inc.(2003)HSP50216 Four-channel programmable digital down converter Datasheet.
    [20]Texas Instruments Inc.(2004)GC5316 High density digital down converter and up converter Datasheet.
    [21]Analog Devices Inc.(2006)Ultralow Noise VGAs with Preamplifier and Programmable R_(IN)AD8331/AD8332.Rev.D
    [22]Analog Devices Inc.(2003)250 MHz,Voltage Output 4-Quadrant Multiplier AD835.Rev.B
    [23]Analog Devices Inc.(2005)4-Channel 500 MSPS DDS with 10-Bit DACs AD9959.Rev.O
    [24]Analog Devices Inc.(2004)Wideband 4 GHz,43 dB Isolation at 1 GHz,CMOS 1.65 V to 2.75 V,2:1 Mux/SPDT Switches ADG918/ADG919.Rev.A
    [25]Analog Devices Inc.(2005)14-Bit,40 MSPS/65 MSPS A/D Converter AD9244.Rev.C
    [26]Analog Devices Inc.(2002)Four-Channel,100 MSPS Digital Receive Signal Processor(RSP)AD6624A.Rev.O
    [27]Porter JR,Wright,SM,Famili N(1994)A four-channel time domain multiplexer:a cost-effective alternative to multiple receivers.Magn.Reson.Med.32:499-504
    [28]Analog Devices Inc.(2005)16-Bit,80/100 MSPS ADC AD9446.Rev.O
    [1]裘祖文,裴奉奎(1992)核磁共振波谱,科学出版社,北京,pp360
    [2]Xu F,Huang YR(2002)The design and computer simulation of a shaped pulse.Acta Phys.Sin.51:2617-2622
    [3]Freeman R,Wittekoek S(1969)Selective determination of relaxation times in high resolution NMR.J.Magn.Reson.1:238-276
    [4]Sutherland RJ,Hutchison JMS(1978)Three-dimensional NMR imaging using selective excitation.J.Phys.E.11:79-83
    [5]Bauer C,Freeman R,Frenldel T,Keeler J,Shaka AJ(1984)Gaussian pulses.J.Magn.Resort.58:442-457
    [6]Marinus T,Laardingerbroek V,Jacques A den Boer(1999)Magnetic Resonance Imaging Theory and Practice.Springer,Berlin,pp59
    [7]Shen J,Xu Q,LiuY,Li GY(2005)Home-built magnetic resonance imaging system(0.3 T)with a complete digital spectrometer.Rev.Sci.Instrum.76:105101
    [8]Raab FH,Asbeck P,Cripps S(2003)RF microwave and power amplifier and transmitter technologies.High frequency electronics.Verona
    [9]Chan F,Pauly J,Macovski A(1992)Effects of RF amplifier distortion on selective excitation and their correction by prewarping.Magn.Reson.Med.23:224-238
    [10]Li GY,Chen SZ,Wu XW(1997)Selective-excitation RF pulse using FIR filtering method.Chin.Sci Bull.42:596-598
    [11]Geen H,Wu XL,Xu P,Friedrich J,Freeman R(1989)Selective excitation at two arbitrary frequencies.The double-DANTE sequence.J.Magn.Reson.81:646-652
    [12]Boudot D,Canet D,Brondeau J,Boubel JC(1989)DANTE-Z.A new approach for accurate frequency selectivity using hard pulses.J.Magn.Reson.83:428-439
    [13]Bilds(?)e H,Jacobsen JP,Schaumburg K(1976)Application of density matrix formalism in NMR spectroscopy.I.Development of a calculation scheme and some simple examples.J.Magn.Reson.23:137-151
    [14]Li GY(1996)Response of a spin-3/2 nuclear quadmpole resnonce system to comb-pulse train for powdered samples.Acta Phys.Sin.45:681-688
    [15]Pauly J,Patrick LR,Nishimura D,Macovski A(1991)Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm.IEEE Trans.Med.Imaging 10:53-65
    [16]Jiang Y,Jiang Y,Tao HY,Li GY(2002)A complete digital radio-frequency source for nuclear magnetic resonance.Rev.Sci.Instrnm.73:3329-3331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700