稀土高分子材料的合成及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土高分子发光材料是指稀土离子掺杂或键合于高分子中的功能性聚合物。稀土金属离子作为一种有效的发光中心,在无机和有机发光材料中已有广泛应用。然而稀土无机材料存在着难加工成型、价格高等问题,稀土有机小分子配合物则存在稳定性差等问题,这些因素限制了稀土发光材料更为广泛地应用。高分子材料本身具有稳定性好、来源广、容易加工成型等特点,将稀土离子引入到高分子基质中制成稀土高分子发光材料,其应用前景将十分广阔。
     本论文根据所合成的稀土小分子配合物的性质分别选用水溶性高分子(包括天然高分子)和油溶性单体及相应高分子作为原料,将稀土离子掺杂或键合到这些高分子基质中,实现了它们的高分子化。采用核磁(NMR),质谱(MS),红外光谱(FT-IR),元素分析(EL)、差示扫描量热法(DSC),可见紫外分光光度仪(UV),凝胶渗透色谱法(GPC)和荧光光谱等方法对稀土小分子配合物和稀土高分子发光材料的结构和性能进行了表征,并系统研究了此类高分子的荧光性质。
     (1)论文选用聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、聚甲基丙烯酸甲酯(PMMA)作为高分子基质材料,采用掺杂的方法将铕/α-噻吩甲酰三氟丙酮/N-甲基吡咯烷酮[Eu(TTA)_3·2NMP]三元配合物引入高分子基质材料中。研究了这些成膜材料对铕/α-噻吩甲酰三氟丙酮/N-甲基吡咯烷酮[Eu(TTA)_3·2NMP]三元配合物发光性能的影响。荧光测试结果表明:不论三元配合物/聚合物是溶液状态,还是三元配合物/聚合物膜材料,它们的荧光强度均大于三元配合物的荧光强度。高分子薄膜的荧光强度比相应溶液的荧光强度高2~5倍。红外光谱研究表明配合物与这些成膜材料之间都存在相互作用。做成材料的荧光强度远高于Eu/有机小分子配合物的荧光强度,并且稳定性好。
     同时,论文还选用水溶性高分子聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)、聚丙烯酰胺(PAM)、淀粉(Starch)、环糊精(β-Cyclodextrin)作为高分子基质材料,采用掺杂的方法将以诺氟沙星药物分子为配体的铽(Ⅲ)配合物B引入其中。研究了其二元配合物在水溶性高分子中和相应的高分子成膜材料的荧光性能。荧光测试结果表明:固体配合物B的荧光强度只是高于B-PAM的荧光强度,与其它成膜材料的荧光强度相比都要弱。也就是说,淀粉、PVA、环糊精和PVP都对Tb~(3+)发光产生的增强效应。
     (2)论文合成了含稀土离子铕的有机小分子配合物Eu(TTA)_2AA单体,并分别与甲基丙烯酸甲酯(MMA)和乙烯基咔唑(NVK)单体进行共聚合反应,得到了一系列Eu含量不同的键合型Poly(MMA-co-Eu(TTA)_2AA)和Poly(NVK-co-Eu(TTA)_2AA)稀土发光共聚高分子。研究表明:键合型稀土发光共聚高分子的荧光强度随Eu含量的增加而增加,未出现浓度猝灭现象;在掺杂型聚合物中Eu(TTA)_2AA/PMMA和Eu(TTA)_2AA/PVK中,由于配合物的聚集,激子迁移过程以浓度猝灭占优势,从而导致聚合物的荧光强度随Eu含量的增加而减弱。
     (3)论文采用不饱和双键修饰法,以5-丙烯酰胺基-1,10-邻菲罗啉(AP)为配体,并采用两种不同的合成方法(1.先配合再聚合;2.先聚合再配合)分别合成得到两种不同的键合型稀土高分子发光材料。(1)以5-丙烯酰胺基-1,10-邻菲罗啉为配体,先与稀土离子铕配位得到含铕的配合物。并将它与甲基丙烯酸甲酯进行共聚得到稀土配合物共聚高分子;(2)以5-丙烯酰胺基-1,10-邻菲罗啉为单体与甲基丙烯酸甲酯的共聚物为高分子配体,配位基为芳环上的氮原子,并以N-甲基吡咯烷酮小分子配体协同反应,与Eu~(3+)配位形成了三元光致发光稀土高分子配合物,并对以上两种方法进行比较。结果表明,采用方法(1)得到的稀土配合物共聚高分子结构稳定,稀土离子Eu~(3+)分布均匀,荧光强度强且稳定。而采用方法(2)制得的稀土高分子配合物虽然也有荧光,但荧光很弱,需要加入第二配体才可能使Eu~(3+)的荧光得到提高。
     论文研制了五种稀土发光高分子材料,它们具有潜在的应用前景,可运用于光致发光器件中。
Luminescent rare earth complexes have attracted considerable attention to organic electroluminescent (EL) devices as well as for optical microcavity emitters owing to their inherent extremely sharp emission bands and potentially high internal quantum efficiency. However, there are many problems for the rare earth complexes that have small molecular weight such as the instability in organic solution and poor compatibility with other materials. Thus, to extend the application of rare earth-containing polymers has attracted attention in the past decade. In comparison with small molecular weight rare earth complexes, besides the advantage of the desired mechanical flexibility, polymer-based rare earth luminescent materials can be soluble or fused processable, which is attractive for optical and electronic applications.
     There are two techniques which are usually used to synthesize rare earth-containing polymers materials. One is the copolymerization of rare earth-containing monomers and polymeric monomers.The other is the direct reaction of the polymer ligands with rare earth ions.
     In this paper, the rare earth complexes serving as chromophores were attached successfully on polymers through two different methods mentioned above. The synthesized complexes and rare earth-containing polymers were characterized by the methods of nuclear magnetic resonance (NMR), mass spectrography (MS), infrared spectra (IR), ultra-violet-visible spectra (UV), element analysis (EA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and fluorescence spectra, respectively.
     (1) The ternary complex Eu/Thenoyltrifluoroaceton/N-methyl-2-pyrrolidone [Eu (TTA)_3·2 NMP] was doped into three types of polymer including Polyvinylpyrrolidone (PVP), Polyvinyl alcohol (PVA) and Polymethyl methacrylate (PMMA). The luminescence properties of the blends was studied in this paper. According to the results, it showed that the fluorescence intensity of the polymer doping with ternary complex was stronger than that of ternary complex itself, no matter what the ternary complex was both in solution and film state. The fluorescence intensity of polymer film was 2~5 times higher than that of solution. And the FT-IR spectra showed that there was interaction existing between the rare earth complex and film material. The polymer material had higher fluorescence intensity than that of small molecular weight rare earth complexes and was more stable.
     The luminescence properties of the doping materials of Tb/Norfloxacin [Tb(NFLX)_3·8H_2O] with five types of water soluble polymers including polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide (PAM),β-Cyclodextrin and Starth was studied. According to the results, it exhibitted that the fluorescence intensity of the doped-polymer except B-PAM was stronger than the binary complex. It also indicated that Starch, PVA,β-Cyclodextrin and PVP could enhance the fluorescence intensity of Tb~(3+).
     (2) An europium-containing polymer Poly(MMA-co-Eu(TTA)_2AA) was successfully prepared via copolymerization of MMA with the organic complex containing Eu(TTA)_2AA, which was synthesized via the reaction among EuCl_3, TTA, AA and MMA. Compared with the doped-polymer Eu(TTA)_2AA/PMMA, the fluorescence intensity of the copolymer Poly(MMA-co-Eu(TTA)_2AA) increased with the concentration of Eu increasing and there was no concentration quenching effect while the fluorescence intensity of Eu(TTA)_2AA/PMMA decreased upon increasing the concentration of Eu once the concentration of Eu was higher than 3.67% in the Eu(TTA)_2AA/PMMA. The decrease of fluorescence intensity of Eu(TTA)_2AA/PMMA was due to the aggregation of complex, excitonic transfer and concentration quenching. From the analysis of XRD, we found that Eu(TTA)_2AA could regularly be dispersed uniformly in the polymer complex and emit strong fluorescence.
     An europium-containing polymer Poly(NVK-co-Eu(TTA)_2AA) was successfully prepared via copolymerization of NVK with the organic complex containing Eu(TTA)_2AA, which was synthesized via the reaction among EuCl_3 ,TTA, AA and NVK. Compared with the doped-polymer Eu(TTA)_2AA/PVK, the fluorescence intensity of copolymer Poly(NVK-co-Eu(TTA)_2AA) increased with the concentration of Eu and there was no concentration quenching effect. From the analysis of XRD, we found that Eu(TTA)_2AA could regularly disperse in the polymer complex and emit strong fluorescence.
     (3) In this paper, 5-acrylamido-1, 10-phenanthroline (AP) was synthesized, then the luminescence material containing Eu-polymer complexes was obtained by two methods. Compared with the rare earth-containing polymer synthesied by the reaction of rare earth with the polymer ligand (Poly(MMA-co-AP)), the one prepared by copolymerization of polymeric monomer with small molecular complex (Poly(MMA-co-Eu(AP)_3) had high and stable fluorescence intensity with the Eu contents was incresed to 0.31%. By comparing the two materials prepared via different methods, we have set down the useful basement for the study of the luminescence material containing Eu-polymer complexes.
     In particularly, the typical features of rare earth-containing polymers prepared in this dissertation would make them very suitable to be used as polymer electroluminescence materials.
引文
[1].沈琪,张黎路.稀土有机化合物在催化聚合反应的应用.中国稀土学报,1997,15(2):169-177
    
    [2]. Soinie, Hemmilai. Fluoroimmunoassay: present status and problems. Clin Chem, 1979, 25 (3):353-361
    
    [3]. Yang Y S, Gong M L, Li Y Y, et al. Effects of the structure of ligands and their Ln~(3+)complexes on the liminescence of the central Ln~(3+)ions. Journal of Alloys and compounds, 1994,207-208: 112-114
    
    [4]. Wusl, Wuyl, Yang Y S. Rare earth (Ⅲ) complexes with indole-derived acetylacetones Ⅰ,Synthesis and characterization of Rare earth(Ⅲ) complexes. Journal of Alloys and compounds,1992,180 (1-2): 397-398
    
    [5]. Wusl, Wuyl, Yang Y S. Rare earth (Ⅲ) complexes with indole-derivedacetylacetones Ⅱ,Luminescence intensity for europium (Ⅲ) and terbium (Ⅲ) complexes. Journal of Alloys andcompounds, 1992, 180 (1-2): 399-402
    
    [6]. Wusl, Wuyl, Yang Y S. Rare earth (Ⅲ) complexes with indole-derived acetylace-acetylaceton-es Ⅲ, Quenching of Tb(Ⅲ) luminescence in Tb(Ⅲ)-L(or A)-phen by phen. Journal of Alloys andcompounds, 1992, 180 (1-2): 403-408
    
    [7]. Gong M L, Meng J X, Wu W N, et al. Synthesis and fluorescence of Tb~(3+) and Eu~(3+) complexeswith N, N, N" -1, 3, 5-triazine-2, 4, 6-triyltris-[N-(carbo-xymethyl)]glycine. Journal of rareearths, 1995, 13 (3): 166-169
    
    [8].史华红,杨燕生.人尿中IgG的时间分辨荧光免疫分析法,以铕标记链亲合素作为标记物.中山大学学报(自然科学版),1996,35(2):71-74
    
    [9]. Wolff N E, Pressley R J. Optical maser action in an Eu~(3+)-containing organic matrix. Application Physical Letter, 1963,2(8): 152-154
    
    [10].李建宁,曾红,于群等.稀土配合物-PAA-g-PE膜的荧光光谱.光谱学与光谱分析,2001,21(1):40-42
    
    [11].杨武,镧系(Eu~(3+),Tb~(3+))-β-二酮-醋酸纤维素荧光膜的的制备与性能.稀土,1998,19(1):10-14
    
    [12].苏锵,刘行仁.稀土发光及激光材料,见:徐光宪主编,稀土(下),第2版,北京:冶金工业出版社,1995,124-132
    
    [13].苏锵,刘行仁,稀土发光及激光材料,见:徐光宪主编,稀土(下),第2版,北京:冶金工业出版社,1995,185-186
    
    [14].韩万书,中国固体无机化学十年进展,北京:高等教育出版社,1998,4-5,26-46
    
    [15].黄春辉,稀土配位化学,北京:科学出版社,1997,363-379
    
    [16].江祖成,蔡汝秀,张华山.稀土元素分析化学,第2版,北京:科学出版社,2000,??222-233
    
    [17].杨迟,杨燕生,大学化学,1995,10(1):6-10
    
    [18]. Sabbatin N, Grardigle M, Lehn J-M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev, 1993, 123: 201-228
    
    [19].阎冰,张洪杰,王淑彬.稀土3,4-呋喃二甲酸,1,10-二氮杂菲配合物的光物理性质.中国稀土学报,1998,16(4):375-378
    
    [20].赵莹,谢大弢,吴瑾光等.发粉红色荧光的含铽络合物光谱表征.光谱学与光谱分析,1998,18(2):173-176
    
    [21]. Celso de Mello Donega, Severino A Junior, Gilbreto F de Sa. Europium(Ⅲ) mixedcomplexes with β-diketones and o-phenanthroline-N-oxidea as promising light-conversionmolecular devices. Chem Commun, 1996, 1199-1200
    
    [22]. Zhou D J, Li Q, Huang C H, et al. Room-temperature fluorescence, phosphorescence andcrystal structures of 4-acyl pyrazolone lanthanide complexes: Ln(L)_3·2H_2O. Polyhedron, 1997, 16(8): 1381-1389
    
    [23]. Okamoto Y, Uera Y, Nagata I, et al. Rare earth metal containing polymers (3).Characterization of ion-containing polymer structures using Rare earth metal fluorescence probes.Macromolecules, 1981, 14 (1): 17-22
    
    [24]. Okamoto Y, Uera Y, Nagata I, et al. Rare earth metal containing polymers (4).Macromolecules, 1981, 14 (3): 807-809
    
    [25]. Banks E, Okamoto Y. Synthrsis and characterization of rare earth metal containing polymersI. Fluorescent properties of ionomers containing Dy~(3+), Er~(3+), Eu~(3+) and Sm~(3+). JAppl Polym Sci,1980,25 (3): 359-368
    
    [26].赵莹,杨丽敏,张莉等.含三价铕荧光配合物与聚甲基丙烯酸甲酯的发光材料.高分子学报,2000,4:393-396
    
    [27]. Zhang R J, Yang K Z, Yu A C, et al. Fluorescence lifetime and energy transfer of rare earthdiketone complexes in organized molecular films. Thin Solid Films, 2000, 363 (1-2): 275-278
    
    [28]. Yu G, Liu Y Q, Wu X, et al. Soluble europium complexes for light-emitting diodes. ChemMater, 2000, 12 (9): 2537-2541
    
    [29]. Rosendo A, Flores M, Cordoba G, et al. Synthesis, characterization and luminescenceproperties of Eu~(3+) and Tb~(3+)-doped poly(acrylic acid). Mater Lett, 2003, 57 (19): 2885-2893
    
    [30]. Huang L, Wang K Z, Huang C H, et al. Bright red electroluminescent devices usingsecond-ligand contained europium complexes as emitting layers. J Mater Chem, 2001, 11,790-793
    
    [31]. Wang L H, Wang W. Synthesis and luminescence properties of novel Eu-containingcopolymers of Eu-acrylate-β-diketonate complex monomers and methacrylate. Chem Mater, 2000,12 (8): 2212-2216
    
    [32]. Zhong G L, Wang Y H, Wang C K, et al. Assemblies, characterization and luminescenceenhancement of organized molecular films based on rare earth complexes. Luminescence, 2002, 17??(4): 213-222
    
    [33]. Ling Q D, Yang M J, Wu Z F, et al. A novel high photoluminescence efficiency incorporaredwith pendant europium complexes. Polymer, 2001, 42 (10): 4605-4610
    
    [34]. Du C X, Xu Yan, Ma L, et al. Synthesis and fluorescent properties of europium-polymercomplexes containing naphthoate ligand. J of Alloys and Compounds, 1998,265 (1-2): 81-86
    
    [35]. Itaya T K, Honda T J, Kusumoto N, et al. Fluorescence behavior of water-soluble copolymerswith pendant(4-carboxylatophenoxy) cyclotriphosphazene/europium ion complexes. Polymer,2003, 44 (10): 2927-2932
    
    [36]. Yang M L, Ling X L, Yu W L, et al. Monochromatic-red-light emission of novel copolymerscontaining carbazole unit and europium-acrylate complexes. J Poly Science A: Poly Chem, 2000,38 (18): 3405-3411
    
    [37]. Pei J, Liu X L, Yu W L, et al. Efficient energy transfer to achieve narrow band-width redemission from Eu-grafting conjugated polymers. Macromolecules, 2002, 35 (19): 7274-7280
    
    [38]. Takuma Y, Takakazu Y. Synthsis and characterization of new luminescent 1,10-phenanthro-line and pyridine-cintaining π-conjugated polymers. Their optical response to protic acid, M~(n+),andsolvents. Macromolecules, 2003, 36 (20), 7513-7519
    
    [39]. Tapia M L, Burrow H D, Garcia J M, et al. Lanthanide ion interaction with a crown ethermethacrylic polymer, poly(1,4,7,10-tetraoxacyclclododecan-2-ylmethyl-methacrylate),as seen byspectroscopic, calorimetric, and theoretical studies. Macromolecules, 2004, 37 (3): 856-862
    
    [40].张洪杰.稀土高分子杂化发光材料的研究.发光学报,2002,23(3):228-232.
    
    [41].史素姣,王国光.聚合二极管结构激光器.激光杂志.1997,18(3):5-8.
    
    [42].王同林.高分子稀土配合物的发光应用研究进展.吕潍师专学报,2001(2):1-3.
    
    [43].杨武.镧系(Eu~(3+),Tb~(3+))-β-二酮-醋酸纤维素荧光膜的的制备与性能.稀土,1998,19(1):10-14
    
    [44].李曦,蒋青,李瑛等.铕-β-二酮螯合物有机电致发光器材研究.化学研究与应用,2003,15(6):835-837.
    
    [45]. Crofcheck C L, Nelson E W, Jacobs L, Scranton A B. Temperature-sensitive luminescence oftris(β-diketone) europium chelates for monitoring high speed cationic photopolymerizations,Journal of Polymer Science (part A: Polymer Chemistry), 1995, 33 (10), 1735-1744
    
    [46]. Takada, Noryuki, JPnKokai Tokkyo Koho JP. (10130639198130639), 1998, May, 19, 4 pp(Japan)
    
    [47]. Di Noto, Vlto et al. Conductivity, luminescence and vibrational studies of the poly(ethyleneglycol) 400 electrolyte based on europium trichloride. Macromol Chem Phys. 1996, 197 (1):375-388
    
    [48].杨云峰,高保娇,徐立等.光致发生稀土铕高分子配合物的合成研究初探.化北工学院学报,2002,(3):216-218
    
    [49].李文连.稀土有机聚合物EL进展及其若干问题.发光学报,2003,21(3):238-242
    
    [50]. Powell K R, Mccleskey T M, Tumas W, et al. Polymers with multiple ligand sites for metalextractions in dense-phase carbon dioxide. Ind Eng Chem Res, 2001, 40 (5): 1301-1305
    
    [51]. Philip 1, Kris D, Rik V D, and Koen b. Covalent coupling of luminescent tris(2-thenoyltriflu-oroacetonato) lanthanide (Ⅲ)complexes on a Merrifield resin. Chem Mater, 2005, 17 (8):2148-2154
    
    [52]. Yu S C, Hou S J, Chan W K.. Synthesis and properties of polyamides and polyesters on thebasis of 2,2-bipyridine-5,5-dicarboxylic acid and the corresponding polymer-ruthenium complexes.Macromolecules , 2000 , 33 (9): 3259-3273
    
    [53].唐洁渊,章文贡.聚丙烯酸/聚(苯乙烯-丙烯酸)二苯酰基甲烷铕(Ⅲ)配合物的合成及其荧光性能.高等学校化学学报,2003,24(3):541-546
    
    [54]. Wang Y P, Lei Z Q ,Feng H Y, et al. Synthesis and fluorescence properties of rare earthmetal ion-polymer ligand-low molecular weight ligand ternary complexes. J Appl Polym Sci ,1992,45(9): 1641-1648
    
    [55]. Lu J P, Hlil A R, Meng Y Z, et al. Synthesis and characterization of a novel AlQ_3-containingpolymer. Polym Sci .Part A:Polym Chem, 2000 , 38 (5): 2887-2892
    
    [56]. Yu S C ,Hou S J,Chan W K. Synthesis, metal complex formation, and electronic propertiesof a novel conjugate polymer with a tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligand.Macromolecules, 1999, 32 (16): 5251-5256
    
    [57]. Pautzsch T, Klemm E. Ruthenium-chelating poly(heteroaryleneethynylene)s: synthesis andproperties. Macromolecules, 2002, 35 (5): 1569-1575
    
    [58]. Lee J K,Yoo D, Rubner M F. Synthesis and characterization of an electroluminescentpolyester containing the Ru(Ⅱ) complex. Chem Mater, 1997, 9 (8): 1710-1712
    
    [59]. Chan S H, Wong W T, Chan W K. Synthesis and properties of polyimide with diazacrownether moiety and the corresponding polymer barium complexes. Chem Mater, 2001, 13 (12):4635-4641
    
    [60]. Rasmussen S C, Thompson D W, Singh V, et al. Controlled synthesis of a new, soluble,conjugated metallopolymer containing ruthenium chromophoric units. Inorg Chem, 1996 ,35 (12):3449 -3450
    
    [61]. Ng W Y, Gong X, Chan W K. Electronic and light-emitting properties of some polyimidesbased on bis(2,2,6,2-terpyridine) ruthenium(Ⅱ) complex. Chem Mater, 1999, 11 (4): 1165-1170
    
    [62]. Peng Z H, Yu L P. Synthesis of conjugated polymers containing ionic transition metalcomplexes. J Am Chem Soc ,1996 ,118 (15): 3777-3778
    
    [63]. Peng Z H, Gharavi A R, Yu L P. Synthesis and characterization of photorefractive polymerscontaining transition metal complexes as photosensitizer. J Am Chem Soc,1997,119 (20):4622-4632
    
    [64]. Trouillet L, Nicola A D, Guillerez S. Synthesis and characterization of a new soluble,structurally well-defined conjugated polymer alternating regioregularly alkylated thiopheneoligomer and 2,2-bipyridine units: metal-free form and Ru(Ⅱ) complex. Chem Mater, 2000, 12 (6): 1611-1621
    
    [65]. Walters KA,Trouillet L,Guillerez S, et al. Photophysics and electron transfer in poly(3-octy Ithiophene) alternating with Ru(II)- and Os(II)-bipyridine complexes. Inorg Chem, 2000, 39 (24): 5496-5509
    
    [66]. Ley KD,Whittle C E,Bartberger M D,et al. Photophysics of π-conjugated polymers that incorporate metal to ligand charge transfer chromophores. J Am Chem Soc, 1997, 119(14): 3423-3424
    
    [67]. Leung A C W, Chong J H, Patrick B O, et al. Poly(salphenyleneethynylene): a new class of soluble, conjugated, metal-containing polymers. Macromolecuies, 2003, 36 (14): 5051-5054
    [68]. Chawdhury N, Kohler A, Friend R H. Synthesis and electronic structure of platinum-containing polymers with aromatic and heteroaromatic rings. Macromolecuies, 1998, 31 (3): 722-727
    
    [69]. Wilson J S, Chawdhury N, Mandhary M R A, et al. The Energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J Am Chem Soc ,2001, 123 (38): 9412-9417
    [70]. Fratoddi I ,Battocchio C ,Furlani A , et al. Study of chemical structure and conjugatio length in organometallic Pt(II) oligomers and polymers containing 1,4-diethynylbenzene derivatives as bridging units. Journal of Organometallic Chemistry, 2003 , 674 (1-2): 10-23
    [71]. Wang L H, Wang W, Zhang W G, et al . Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)-acrylate-P-diketonate complex monomers and methyl methacrylate. Chem Mater, 2000 ,12 (8): 2212-2218
    
    [72]. Serin J, Schultze X, Adronov A, et al. Synthesis and study of the absorption and luminescence properties of polymers containing Ru(BpyMe2)3~(2+) chromophores and coumarin laser dyes. Macromolecuies, 2002, 35 (14): 5396-5404
    
    [73]. Mitchell-Koch J T ,Borovik A S. Immobilization of a europium salen complex with in porous organic hosts: modulation of luminescence properties in different chemical environments. Chem Mater, 2003 , 15 (18): 3490-3495
    
    [74]. Wu X F, Collins J E, Mcalvin J E, et al . Ruthenium tris(bipyridine)-centered linear and star-shaped polystyrenes: making atom transfer radical polymerization and metal complex initiators compatible. Macromolecuies, 2001, 34 (9): 2812-2821
    
    [75]. Meyers A, Weck M. Design and synthesis of Alq_3-functionalized polymers. Macromolecuies, 2003, 36(6) :1766- 1768
    
    [76]. Chen H Y, Archer R D. Synthesis and characterization of linear luminescent schiff-base polyelectrolytes with europium(III) in the Backbone. Macromolecuies, 1996, 29 (6): 1957-1964.
    [77]. Seward C, Chan J, Song D T, et al . Anion dependent structures of luminescent silver(I) complexes. Inorg Chem, 2003, 42 (4): 1112-1120
    
    [78]. El-Gahami M A, Abdalla E M. Synthetic and spectroscopic studies of polymeric metal complexes involving 1, 4- [5-disulphonyl-8-hydroxyquinoline] piperazine. J of Organometallic Polymers, 2003, 13 (1): 41-48
    
    
    
    [79]. Kim Sung Hoon, Cui Jian Zhong, Park Jin Yong , et al. Synthesis and light emittingproperties of polymeric metal complex dyes based on hydroxyquinoline moiety. Dyes andPigments , 2002 , 55 (2-3): 91-97
    
    [80]. Thomsen D L Ⅲ, Bobin T P, Papadimitrakopoulos F. Zinc-bisquinoline coordinationassemblies of high refractive index and film uniformity. J Am Chem Soc, 1998, 120 (24):6177-6178
    
    [81].江涛,曾繁涤.聚8,8‘-二羟基-5,5’-偶氮苯二喹呆金属螯合物的合成及荧光性质.应用化学,2000,17(3):334-336
    
    [82]. Reddinger J L, Reynolds J R. Tunable redox and optical properties using transition metal-complexed polythiophenes. Macromolecules, 1997, 30 (3): 673-675
    
    [83]. Reddinger J L, Reynolds J R. Site specific electropolymerization to fForm transitionmetal-containing, electroactive polythiophenes. Chem Mater, 1998, 10 (5): 1236-1243
    
    [84]. Zhu S S ,Carroll P J , Swager T M. Conducting polymetallorotaxanes: a supramolecularapproach to Transition metal ion sensors. J Am Chem Soc, 1996, 118 (36): 8713-8714
    
    [85] Bloom C J ,ELliott C M,Schroeder P G, et al . Tervalent conducting polymers withtailor-Made work functions: preparation, characterization, and applications as cathodes inelectroluminescent devices. J Am Chem Soc, 2001, 123 (38): 9436-9442.
    
    [86].张秀菊,陈鸣才,冯嘉春等.PP-g-MAEu离聚物的合成与表征.中国稀土学报,2002,20(特刊):30-32
    
    [87]. Derosa M C, Mosher P J, Yap G P A , et al. Synthesis, characterization, and evaluation of[Ir(ppy)_2(vpy)Cl] as a polymer-bound oxygen sensor. Inorg Chem, 2003 , 42 (16): 4864-4872.
    
    [88]. Tang C W, Vanslyke S A. Organic electroluminescent diodes, Appl Phys Lett, 1987, 51 (12):913-915
    
    [89]. Kido J, Iizumi Y. Fabrication of highly efficient organic electroluminescent devices. ApplPhys Lett, 1998, 73 (19): 2727-2723
    
    [90]. Gao Z Q, Lee C S, Bello I, et al. Bright-blue electroluminescence from a silyl-substitutedter-(phenylene-vinylene) derivative. Appl Phys Lett, 1999, 74 (6): 865-867
    
    [91]. Tao Y T, Balasubramaniam E, Danel A. Dipyrazolopyridine derivatives as bright blueelectroluminescent materials. Appl Phys Lett, 2000, 77(7): 933-935
    
    [92]. Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin films. J ApplPhys, 1989, 65 (9): 3610-3616
    
    [93]. Chen C H, Shi J, Tang C W. Recent developments in molecular organic electroluminescentmaterials. Macromolecules Symp, 1998, 125: 1-48
    
    [94]. Chen C H, Tang C W, Shi J. Improved red dopants for organic electroluminescent devices.Macromolecules Symp, 1998, 125:49-58
    
    [95]. Chen C H, Tang C W, Shi J. Recent developments in the synthesis of red dopants for Alq_3hosted electroluminescence. Thin Sold Films, 2000, 363 (1-2): 327-331
    
    [96]. Zheng X H, Chen B J, Lin X Q, et al. A new family of red dopants based on chromene??containing compounds for organic electroluminescent devices. Chem Mater, 2001, 13 (5):1565-1569
    
    [97]. Chen B J, Sun X W, Lin X Q, et al. Improved luminescent efficiency of a red organic dyewith modified molecular structure. Mater Science Engineering B, 2003, 100 (1): 59-62
    
    [98]. Tao Y T, Miyata S, Sasabe H, et al. Efficient organic red electroluminescent device withnarrow emission peak. Appl Phys Lett, 2001, 78 (3): 279-281
    
    [99]. Li J Y, Liu D, Hong Z R, et al. A new family of isophorone-based dopants for red organicelectro-luminescent devices. Chem Mater, 2003, 15 (7): 1486-1490
    
    [100]. Ma C Q, Liang Z, Wang X S, et al. A new family of red fluoresnent materials forlight-emitting diodes.Synth Matel, 2003, 138 (8): 537-542
    
    [101]. Mitsuya M, Suszki T, Koyama T. Bright red organic light-emitting diodes doped with afluorescent dye. Appl Phys Lett, 2000, 77 (20): 3272-3274
    
    [102]. Yu J S, Shirota Y. A new class of high-performance red-fluorescent dyes for organicelectroluminescent devices, [7-diethylamino-3-(2-thienyl)chromen-2-ylidene]-2,2-dicyano-vinyl-amine and{10-(2-Thienyl)-2,3,6,7-tetrahydro-1H,5H-chromeno[8,7,6-ij]quinolizin-11-ylidene}-2,2-dicyanovinylamine. Chem Lett, 2002, 984-985
    
    [103]. Kido J, Nagai k, Okamoto Y,et al.Electroluminescence from polysilane film doped witheuropium complex. Chem Lett, 1991, 1267-1270
    
    [104]. Sano T, Fujita M, Fujii T. Novel europium complex for electroluminescent devices withsharp red emission. Jpn J Appl Phys,1995, 34 (4A): 1883-1887
    
    [105]. Campos R A, Kovalev I P, Guo Y, et al. Red electroluminescent from a thin organometalliclayer of europium. J Appl Phys, 1996, 80 (12): 7144-7150
    
    [106]. Kido J, Hayase H, Hongawa K, et al. Bright red light-emitting organic electroluminescentdevices having a europium complex as an emitter, Appl Phys Lett, 1994, 65 (17), 2124-2126
    
    [107]. Liang C J, Zhao D, Hong Z R,et al. Improved performance of electroluminescent devicesbased on an europium complex. Appl Phys Lett, 2000, 76 (1): 67-69
    
    [108]. Okada K, Wang Y F, Chen T M, et al. Bright red light-emitting organic electroluminescentdevices based on a novel thiophene-containing europium complex as an emitting layer. J MaterChem, 1999,3023-3026
    
    [109]. Mcgehee M D, Bergstedt T, Zhang C, et al. Narrow bandwidth luminescence from blendswith energy transfer from semiconducting conjugared polymers to europium complexes. AdvMater, 1999, 11 (16): 1349-1354
    
    [110]. Jiang X Z, Jen A K, Huang D, et al. The effect of ligand conjugation length on europiumcomplex performance in light-emitting diodes. Synth Matel, 2002, 125 (3): 331-336
    
    [111]. Robinson M R, O'Regan M B Bazan G C, Synthesis morphology and optoelectronicproperties of tris [ (N-ethylcarbazolyl) (3A,5A-hexyIoxybenzoyl) methane ] (phenanthroline )europium. Chem Commun, 2000, 1645-1646
    
    [112]. Sun P P, Duan J R, Shih H T, et al. Europium complex as a highly efficient red emitter in??electroluminescent devices. Appl Phys Lett, 2002, 81 (5): 792-794
    
    [113]. Gao D Q, Bian Z Q, Wang K Z, et al. Synthesis and electroluminescence properties of anorganic europium complex. J Alloys and Compounds, 2003, 358(1-2): 188-192
    
    [114]. Sun M, Xin h, Wang K Z, et al. Bright and monochromic red lightemittingelectroluminescent devices based on a new ultifunctional europium ternary complex. ChemCommun, 2003, 6: 702-703
    
    [115]. Huang L, Wang K Z, Huang C H, et al. Bright red electroluminescent devices usingsecond-ligand contained europium complexes as emitting layers. J Mater Chem, 2001, 11,790-793
    
    [116]. Huang L, Wang K Z, Huang C H, et al. Synthesis and electroluminescence properties of twonovel europium complexes with benzimidazoie derivatives as second-ligands. Synth Matel, 2002,128 (3): 241-245
    
    [117]. Wang K Z, Huang L, Gao L H, et al. An alkylated europium complex for photoelectricdevices. Solid State Commun. 2002, 122 (3-4): 233-236
    
    [118]. Liang F S, Zhou Q G, Cheng Y X, et al.Oxadiazole functionalized europium β -diketonatecomplex for efficient red electroluminescence. Chem Mater, 2003,15 (10): 1935-1937
    
    [119]. Hu W P, Matsumura M, Wang M Z. Red electroluminescence from an organic europiumcomplex with triphenylphosphine oxide ligand. Jpn J Appl Phys, 2000, 39 (11): 6445-6448
    
    [120]. Misuhary N, Kazutaka I, Masanao E. Efficient red electroluminescence from new europiumcomplex. Chem Lett, 2001: 320-321
    
    [121]Yu G, Liu Y Q, Wu X, et al. Soluble europium complexes for light-emitting diodes. ChemMater, 2000, 12 (9): 2537-2541
    
    [122]. Zhu W G, Wei X Q, Zhu M X, et al. Red electroluminescence and photoluminescence fromnovel binuclear europium complex with squaric acid ligand.Chinese Chem Lett, 2001, 12: 921-924
    
    [123]. Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission fromorganic electroluminescent devices. Nature, 1998, 395 (6698): 151-154
    
    [124]. O'Brien D F, Giebeler C, Fletcher R B, et al. Electrophosphorescence from a dopedpolymer light emitting diode. Synth matel, 2001, 116 (1-3): 379-383
    
    [125]. Kwong R C, Sibley S, Dubovoy T, et al. Efficient, saturated red organic light emittingdevices based phosphorescent platinum (Ⅱ) porphyrins. Chem Mater, 1999, 11 (12): 3709-3713
    
    [126]. Tsutsui T, Yang M J, Yahiro M, et al. High quantum efficiency in organic light-emittingdevices with iridium-complex as a triplet emissive center. Jpn J Appl Phys, 1999,38 (12B):1502-1504
    
    [127]. Lamansky S, Djurovich P, Murphy D, et al. Highly phosphorescent bis-cyclemetalatediridium complex: synthesis, photophysical characterization, and use in organic light emittingdiodes. J Am Soc Chem, 2001, 123 (18): 4304-4312
    
    [128]. Adachi C, Baldo M A, Forrest S R, et al. High-efficiency red electrophosphorescencedevices. Appl Phys Lett, 2001, 78(11): 1622-1624
    [129]. Gong X, Ostrowski J C, Bazan G C, et al. Red electrophosphorescence from polymer doped with iridium complex. Appl Phys Lett, 2002, 81 (20): 3711-3713
    
    [130]. Duan J P, Sun P P, Cheng C H. New iridium complexes as highly efficient organic-red emitters in organic light-emitting diodes. Adv Mater, 2003, 15 (3): 224-228
    [131]. Lee J K, Yoo D S, Handy E S, et al. Thin film light emitting devices from an electroluminescent ruthenium complex. Appl Phys Lett, 1996, 69(12): 1686-1688
    [132]. Handy E S, Pal A J, Rubner M F. Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex. 2. tris(bipyridyl) ruthenium(II) as a High-Brightness Emitter. J Am Soc Chem, 1999, 121(14): 3525-3528
    
    [133]. Rudmann H, Shimada S, Rubner M F. Solid-state light-emitting devices based on the tris-chelated ruthenium( II) complex. 4. high-efficiency devices based on derivatives of the tris(2,2-bipyridyl) ruthenium( II) complex. J Am Soc Chem, 2002, 124 (17): 4918-4921
    [134]. Li M, Yu J, Chen Z J, et al. New red electroluminescent devices using tris(2,2-bipyridyl) ruthenium( II )hexafluoro-phosphate as emitter. Jpn J Appl Phys, 2000, 39 (11B): 1171-1173
    [135]. Bernhard S, Barron J A, Houston P L, et al. Electroluminescence in ruthenium(II) complexes. J Am Soc Chem, 2002, 124 (45): 13624-13628
    
    [136]. Fetterolf M L, Offen H W. Luminescence of ruthenium(II) and osmium(II) polypyridyls in acetonitrile at high pressures. J phys Chem, 1985, 89 (15): 3320-3323
    
    [137]. Jiang X z, Jen A K Y, Carlson B, et al. Red electrophosphorescence from osmium complexes. Appl Phys Lett, 2002, 80 (5): 713-715
    
    [138]. Jiang X z, Jen A K Y, Carlson B, et al. Red-emitting Electroluminescent devices based on osmium- complexes doped blend of poly(vinylnaphthalene) and 1,3,4-oxadiazole derivative. Appl Phys Lett, 2002, 81 (17): 3125-3127
    
    [139]. Carlson B, Phelan G D, Kaminsky W, et al. Divalent osmium complexes: synthesis, characterization, strong red phosphorescence and electrophosphorescence. J Am Soc Chem, 2002, 124 (47): 14162-14172
    
    [140]. Greenham N C, Moratti S C, Friend R H, et al. Efficient light-emitting-diodes based on polymers with high electron-affinities. Nature, 1993, 365 (6447): 628-630
    [141]. Baigent D R, Greenham N C, Marks R N, et al. Light-emitting-diodes fabricated with conjugated polymers-recent progress. Synth Metal, 1994, 67 (1-3): 3-10
    
    [142]. Liu Y Q, Yu G, Zhu D B. Synthesis and characterization of newpoly(cyanoterephthalyli-dene) for light-emitting-diodes. Synth Metal, 2001, 122 (2): 401-408
    
    [143]. Shi J M, Zheng S Y. Conjugated polymers containing arylamine pendants for light emitting diodes. Macromolecules, 2001, 34 (19): 6571-6576
    
    [144]. Kim J H, Lee H. Synthesis, electrochemistry and electroluminescence of novel red-emitting poly(p-phenylenevinylene) derivative with 2-pyran-4-ylidene- malononitrile obtained by the heck reaction. Chem Mater, 2002, 14 (5): 2270-2275
    [145]. Michelle S L, Jiang X Z, Liu S, et al. Effect of cyano substituents on electron affinity and
    
    ??electron-transporting properties of conjugated polymers. Macromolecules, 2002, 35(9): 3532-3538
    
    [146]. Beaupre S, Leclerc M, Fluorene-based copolymers for red-light-emitting diodes. Adv FunctMater,2002, 12(3): 192-196
    
    [147]. Cho N S, Hwang D H, Lee J I, et al. Synthesis and color turning of new fluorine-basedcopolymers. Macromolecules, 2002, 35 (4): 1224-1228
    
    [148]. Hou Q, Xu Y S, Yang W, et al. Novel red-emitting fluorine-based copolymers. J MaterChem, 2002, 12:2887-2892
    
    [149]. Huang J, Niu Y H, Yang W, et al. Novel electroluminescent polymers derived fromcarbazole and benzothiadiazole. Macromolecules, 2002, 35 (16): 6080-6082
    
    [150]. Huang J, Xu Y S, Hou Q, et al. Novel electroluminescent polymers derived from carbazoleand 4,7 -bis(2-thienyl)-2,1,3-benzothiadiazole. Macromol Rapid Commun, 2002, 23 (12): 709-712
    
    [151]. Morin J F, Leclerc M. 2,7-Carbazole-based conjugated polymers for blue, green, and redlight emission. Macromolecules, 2002, 35 (22): 8413-8417
    
    [152]. Christophe E, Dirk M, Stefan B, et al. Attaching perylene dyes to polyfluorene: three simple,efficient methods for facile color tuning of light-emitting polymers. J Am Soc Chem, 2003, 125 (2):437-443
    
    [153]. Favid M C, Aurelie F, Nina R, et al. Multi-color organic light-emitting displays by solutionprocessing. Nature, 2003, 421(6925): 829-833
    
    [154]. Baek N S, Kim H K, Lee Y I, et al. Temperature effect on photoluminescent properties ofred light-emitting materials based on Ru (II )-chelated complexes. Thin Solid Films, 2002, 417(1-2): 111-115
    
    [155]. Chen X W, Liao J L, Liang Y M, et al. High-efficiency red-light emission frompolyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety, J AmSoc Chem, 2003, 125 (3): 636-637
    
    [156]. Ling Q D, Yang M J, Zhang W G, et al. PL and EL properties of a novel Eu-containingcopolymer. Thin Solid Films, 2002, 417 (1-2): 127-131
    
    [157].Zhu W G, Jiang Q, Lu Z Y, et al. Red eletroluminescence from a novel europium P-diketonecomplex with acrylpyrazolone ligand. Synthetic Metals, 2000, 111-112: 445-447
    
    [158].Yan B, Zhou L. In situ sol-gel synthesis and luminescence of Y_xGd_(2-x_O_3:Eu~(3+) nanophosphorsby assembling hybrid polymeric precursors. J of Alloys and Compounds, 2004, 372 1-2):238-242
    
    [159]. Huang H H, Yan B. In situ sol-gel synthesis of uminescence Gd_2SiO_5: Tb~(3+) nanophosphorsderived from assembling hybrid precursors. Inorg Chem Comm, 2004, 7 (4): 595-597
    
    [160]. Dhanaraj J, Geethlakshmi M, Jagannathan R, et al. Eu~(3+) doped yttrium oxysulfide nanocrystals-crystallite size and luminescence reansition(s). Chem Phy Lett. 2004, 387 (1-3): 23-28
    
    [161]. Tissue B M, Yuan H B. Structure, particle size, and annealing of gas phase-condensed Eu~(3+):Y_2O_3 nanophosphors. J of Solid State Chem, 2003, 171 (1-2): 12-18
    
    [1].严瑞煊,陈振兴,宋宗文.水溶性高分子.北京:化学工业出版社,1998.
    
    [2].刘颖隆.聚乙烯醇、维纶工业数据手册.重庆:中国化纤工业协会,1998.
    
    [3].汪福粼,苏文瑞.聚乙烯醇及其纤维工业的现状与发展前景.合成纤维工业,2000,23 (3):6-11
    
    [4]. Tanaka T, Suzuki M, Kulanuki N. Properties of silk fibroin/ poly(vinyl alcohol) blend solution and peculiar structure found in heterogeneous blend films. Polym. Int, 1997, 42 (1): 107-111
    
    [5]. Tsukada, Masuhiro, Freddi. Structure and compatibility of poly (vinyl alcohol)-silk fibroin (PVA/SF) blend films. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32 (2): 243-248
    
    [6]. Bing Liu, Guo-Cong Guo, Jin-Shun Huang. Four triazole-bridging coordination polymers containing (m-phenol)-l,2,4-triazole: Syntheses, structures and properties of fluorescence and magnetism. J. Solid. State .Chem, 2006, 179 (10): 3136-3144
    
    [7]. Miwako Mizoguchi, Nobuhiro Ohta. Fluorescence of an electron donor-acceptor system in a polymer film under the simultaneous application of electric field and magnetic field. Chemi.Phy. Lett, 2003, 372 (1-2): 66-72
    
    [8].Wolff N E, Pressley R J. Maser optical action in Eu~(3+) containing organic matrix. Appl. Phy. Lett, 1963,2(8): 152-154.
    
    [9].刘育,唐世华,张宁.水溶性杯芳烃-铽(Ⅲ)-聚乙烯醇胶膜的荧光特性,稀土,2003,24 (6):1-4
    
    [10].钟敏,韩高荣.ZnS/PVA纳米复合薄膜的制备与表征.真空科学与技术,2004,24, 393-396
    
    [11]. Gibson G K J, Packham D I. Chelating polymers derived from poly(vinyl alcohol) andcellulose. J Appl Chem, 1966, 16:50-53
    
    [12]. Song L, Gijlswijk RPM, Young I T, Tanke-Cytometry H J. Influence of fluorochromelabeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry. 1997, 27(3): 213-223
    
    [13]. Molynenx P. Water-soluble synthetic polymers, CRC Press Inc, 1984 (1,2)
    
    [14]. Wu Jia-Xiang. Water-soluble polymers, Chemical Industry Press, 1997: 586-611
    
    [15]. Wu J X. Water-Soluble Polymers. Beijing: Chemcal Industry Press. 1997: 586-611
    
    [16]. Cao S G, Shi Y Q, Chen G W. Properties and pervaporation characteristics ofchitosan-poly(N-vinyl-2-pyrrolidone) blend membranes for MeOH-MTBE, J. App. Polym. Sci,1999,74(6): 1452-1458
    
    [17]. Otsuka H., Ring T A, Li J T, et al. Simultaneous adsorption of poly(Vinylpyrrolidone) andanionic hydrocarbon/fluorocarbon surfactant from their binary mixtures on polystyrene latex. J.Phys. Chem. B, 1999, 103 (36): 7665-7670
    
    [18]. Takano M, Ogata K, Kaw auhi S, et al. Ion-specific swelling behavior ofpoly(N-vinyl-2-pyrro!idone) gel: Correlations with water hydrogen bond and non-freezable water.Polym Gels Networks, 1998, 6 (3-4): 217-232
    
    [19]. Tanaka N, Takemura M, Konno T, et al. Pressure effect on the chain shrinkage ofpoly(vinylpyrrolidone) Induced by complexation with a hydrophobic compound in aqueoussolution. Macromolecules, 1998, 31 (25): 8840-8844
    
    [20]. Guner A. Effects of inorganic salts on the spectral behavior of poly(N-vinyl-2-pyrrolidone)in aqueous solutions. J. App. Polym. Sci, 2000, 75(11): 1434-1439
    
    [21].孙文秀,刘学新.聚乙烯吡咯烷酮中纳米邻苯二甲酸铽络合物的不寻找荧光特性.老谱学与光谱分析,2001,21(2):204-207
    
    [22].陈旭东,王新波.聚乙烯吡咯烷酮水溶液荧光光谱特性的研究.中山大学学报(自然科学版),2004,43(3):54-57
    
    [23]. Okamoto Y, Uera Y, Nagata I, et al. Rare earth metal containing polymers. 3. Characterization of ion-containing polymer structures using rare earth metal fluorescence probes. Macromolecules, 1981, 14(1): 17-22
    
    [24]. Okamoto Y, Uera Y, Nagata I, et al. Rare earth metal-containing polymers. 4. Energy transfer from uranyl to europium ions in ionomers. Macromolecules, 1981, 14 (3): 807-809
    
    [25]. Banks E, Okamoto Y,Synthrsis and characterization of rara earth metal containing polymers I. Fluorescent properties of ionomers containing Dy~(3+), Er~(3+), Eu~(3+)and Sm~(3+). J Appl Polym Sci, 1980, 25 (3): 359-368
    
    [26].赵莹,杨丽敏,张莉等.含三价铕荧光络合物与聚甲基丙烯酸甲酯的发光材料.高分子学报,2000,4,393-396
    
    [27].孙婷,王耀祥,黄昌清等.Eu~(3+)配合物掺杂聚合物的制备与光谱性能研究.光子学报,2006,35(11):1721-1724
    
    [28].Celso de Mello Donega, Severino A Junior, Gilbreto F de Sa. Europium(Ⅲ) mixed complexes with β-diketones and o-phenanthroline-N-oxidea s promising light-conversion molecular devices. Chem Commun, 1996, 1199-1200
    
    [29].刘庆普.聚丙烯酰胺及其衍生物的应用.石油化工,1991,20(5):345-352
    
    [30].秦丽娟,陈夫山.有机高分子絮凝剂的研究进展及发展趋势.上海造纸35(1):41-43
    
    [31]. Baljit Singh, Chauhan G S, Sharma D K, Nirmala Chauhan. The release dynamics ofsalicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide basedhydrogels (Ⅱ). Carbohydr. Polym, 2007,67 (4): 559-565
    
    [32]. Hasine Kagoz, Saadet Ozgumu, Murat Orbay. Preparation of modified polyacrylamidehydrogels and application in removal of Cu(Ⅱ) ion. Polymer, 2001,42 (18): 7497-7502
    
    [33]. Dean Li, Shiping Zhu, Robert H. Pelton. Preparation and characterization of graftcopolymers of polyacrylamide and polyethylenimine. Euro. Polym. J, 1998, 34 (8): 1199-1205
    
    [34]. Xia Y Q, Guo T Y, Song M D, Zhang B H, Zhang B L. Hemoglobin recognition byimprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide andchitosan. Biomacromolecules, 2005, 6 (5): 2601-2606
    
    [35]. Baljit Singh, Chauhan G S, Kumar S, Nirmala Chauhan. Synthesis, characterization andswelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use indrug delivery (I). Carbohydr. Polym, 2007, 67 (2): 190-200
    
    [36]. Kumaresh S Soppimath, Anandrao R Kulkarni, Tejraj M. Aminabhavi. Chemically modifiedpolyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug deliverysystems: preparation and characterization. J Contro. Release, 2001, 75 (3): 331-345
    
    [37]. Li-Li Shen, Xue-Jun Cao. Synthesis of thermo-sensitive polyacrylamide derivatives foraffinity precipitation and its application in purification of lysozyme. Biochem. Engin. J, 2007, 33(1): 66-71
    
    [38]. Inman J K, Dintzis H M. Derivatization of cross-linked polyacrylamide beads. Controlledintroduction of functional groups for the preparation of special-purpose, biochemical adsorbents.Biochemistry, 1969, 8 (10): 4074-4082
    
    [39]. Richa R, Gysel H, Schneider J. Mobility of fluorescent polyacrylamide derivatives in water-acetone mixtures. Macromolecules, 1987, 20 (6): 1407-1411
    
    [40]. Yasunori Nishijima, Akio Teramoto, Mashide Yamamoto, Shozaburo Hiratsuka. Studies of micro-brownian motion of a polymer chain by the fluorescence polarization method. I. Fluorescent conjugates of polyacrylamide. J Polym Sci Part B: Polym Phy, 1967, 5 (1): 23-35
    
    [41].何照范,熊绿芸,王绍美.植物淀粉及其利用.贵阳:贵州人民出版社,1990.
    
    [42].邓宇.淀粉化学品及其应用.北京:化学工业出版社.2002
    
    [43]. Lelou V M, Colonna P, Ring S G. a -Amylase Adsorption on starch crystallites. BiotechnolBioeng, 1991, 38 (2): 127-134
    
    [44]. Anne Imberty, Serge Perez. A revisit to the three-dimensional structure of P-type starch.Biopolymers, 1988, 27 (8): 1205-1221
    
    [45]. Elsenhaber F, Schulz W. Monte carlo simulation of the hydration shell of double-helicalamylose:a left-handed antiparallel double helix fits best into liquid water structure, Biopolymers, 192,32(12): 1643-1664
    
    [46]. Mervyn J M, Victor J M, Paul D O. The roles of amylase and amylopectin in the gelationandretrogradation of starch, Carbohydr Res, 1985, 135 (2): 271-281
    
    [47]. Ling Chen, Xiaoxi Li, Lin Li, Siyuan Guo. Acetylated starch-based biodegradeable materialswith potential biomedical applications as drug delivery systems. Curr Appl. Phy, 2007, 7(supplement 1): e90-e93
    
    [48]. Steve Jobling. Improving starch for food and industrial applications. Curr. Opin.in Plant.Biology, 2004, 7 (2): 210-218
    
    [49]. Elvira C, Mano J F, San Roman J, Reis R L. Starch-based biodegradable hydrogels withpotential biomedical applications as drug delivery systems. Biomaterials, 2002, 23 (9): 1955-1966
    
    [50]. Andrzej P, Stanislawa K K, Fiedorowicz M. Dihydrazone of dialdehyde starch and its metalcomplexes. Carbohydr Polym. 2004, 56 (2): 187-193.
    
    [51]. Liu P, Su ZX. Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butylacrylate from starch granules. Carbohydr Polym. 2005, 62 (2): 159-163.
    
    [52].童林荟.环糊精化学-基础与应用.北京:科学出版社,2001
    
    [53]. Cramer F, Saenger W, Spatz H C, Inclusion compounds. XIX.~(1a) the formation of inclusion??compounds of a-cyclodextrin in aqueous solutions, thermodynamics and kinetics. J.Am.Chem.Soc,1967,89(1), 14-20
    
    [54]. Maafi M, Laassis B, Aaron J J, Mahedero M C, Munozde A, La Pena, Salias F.Photochemically induced fluorescence investigation of a β-cyclodextrin: Azure A inclusioncomplex and determination of analytical parameters. J Inclusion Phenomena and MolrcularRecognition in Chemistry, 1995, 22, 235-247
    
    [55]. Ueno A, Takahashi K, Osa T, One host-two guests complexation between and sodiumα-naphthylacetate as shown by excimer fluorescence. Chem Commun, 1980, 19, 921-922
    
    [56]. a). Ueno A, Tomita Y, Osa T, Promoted binding ability of γ-cycolodextrin appended by aspace-regulating naphthalene moiety. Chem.Commun, 1983, 17, 976-977
    
    b). Ueno A, Moriwaki F, Tomita Y, Osa T. Fluorescence quenching in host-guestcomplexes of modified γ-cyclodextrin. Chem.Lett, 1985,4, 493-496
    
    c). Ueno A, Moriwaki F, Osa T, Hamada F, Murai K, Fluorescence and circular dichroismstudies on host-guest complexation of γ-cyclodextrin bearing two 2-naphthyl moieties.Bull Chem Soc Jpn, 1986, 59 (2), 465-470
    
    d). Moriwaki F, Osa T, et al. Excimer formation in inclusion complexes of modifiedcyclodextrins. Tereahedron, 1987, 43 (7), 1571-1578
    
    e). Ueno A, Moriwaki F, Osa T, Murai K, Association, photodimerization, and induced-fittypes of host-guest complexation of anthracene-appended. gamma.-cyclodextrinderivatives. J.Am. Chem.Soc, 1988,110 (13): 4323-4328
    
    [57].花蓓,刁国旺.二苯甲酰甲烷-邻菲罗啉-铕-铽-β-环糊精体系的荧光特性.扬州大学学报(自然科学版).2003,69(4):28-30
    
    [58].王磊,韩本政,桑立红,程秀民,仇峰.诺氟沙星-铽荧光体系的研究及分析应用.中国医药工业杂志,2000,31(11):508-510
    
    [59].杨军,徐怡庄,翁诗甫,叶放,高宏成,吴瑾光.镧系离子(Eu~(3+),Tb~(3+))氧氟沙星配合物的合成和光谱表征.光谱学与光谱分析,2002,22(5):741-744
    
    [60].张铁莉,吴燕等,铽-氟罗沙星配合物光化学荧光增强研究,中国稀土学报, 2000,18(4):297-300
    
    [61]. Wang Y S, Feng L, Jiang C Q. Fluorimetric study of the interaction between human serum??albumin and quinolones-terbium complex and its application. Spectrochimica Acta Part A, 2005, 61,2909-2914
    
    [62]. Miao Y H, Liu J K, et al. Determination of adenosine disodium triphosphate(ATP) using norfloxacin-Tb~(3+) as fluorescence probe by spectrofluorimetry. J of Luminescence, 2006, 116,67-72
    
    [63].郭根和,潘葳,苏德森,陈涵贞.离子对高效液相色谱法同时测定鱼类中四种喹诺酮类约物的残留.色谱.2005,4(23):401-403
    
    [64].陈红,郑典慧.紫外分光光度法测定诺氟沙星的含量.台州学院学报.2004,3(26):64-65
    
    [65].林杰,饶泽萍,何玉珍等.方波极谱法测定诺氟沙星胶囊的含量.中国医院药学杂志,2000,20(3):141-142
    
    [66].许莉,黄祖云,陈震华.荧光分光光度法测定兽药中诺氟沙星.分析科学学报.1995,3(11):72-74
    
    [67].吴月萍,王浩,郝玉霞,谢亚芝.荧光分光光度法测定血清中诺氟沙星浓度.中国医院药学杂志,1994,1(14):21-23
    
    [68].王磊,韩本政,桑立红,程秀民,仇峰.诺氟沙星-铽荧光体系的研究及分析应用.中国医药工业杂志,2000,31(11):508-510
    
    [1].严瑞煊,陈振兴,宋宗文.水溶性高分子.北京:化学工业出版社,1998.
    
    [2].曹优明,郑仕远.丙烯酸夜光涂料的研究.涂料工业,2003,33(6):1-2
    
    [3].曹优明,郑仕远.有机硅改性丙烯酸树脂荧光涂料的研究.新型建筑材料,2004,10,15-17
    
    [4].雷武,平春霞,王风贺.含荧光基团的丙烯酸-丙烯酰胺共聚物的合成.石油化工,2006,35(2):145-150
    
    [5].王洪祚,李志安,宋桂珍等.不同合成方法对稀土离聚体荧光性质影响.高分子材料科学与工程,1994,10(3):27-30
    
    [6]. Okamoto Y, Banks E, et al. Synthesis, characterization, and applications of polymers containing lanthanide metals. J Macromolecules Sci Chem, 1987 (24): 455-477
    
    [7].唐洁渊,章文贡.聚丙烯酸-铕-二苯甲酰甲烷配合物及其荧光性质的研究.高分子学报,2001,1(4):480-484
    
    [8].章文贡,林美娟,汪联辉.Tbβ_2AA与甲基丙烯酸甲酯共聚物的荧光性研究.功能高分子学报,2002,3,201-305
    
    [9]. Du C X, Xu Yan, Ma L, et al. Synthesis and fluorescent properties of europium-polymercomplexes containing naphthoate ligand. J of Alloys and Compounds, 1998, 265 (1-2): 81-86
    
    [10]. Wang L H , Wang W, Zhang W G, et al. Synthesis and luminescence properties of novelEu-containing copolymers consisting of Eu(Ⅲ)-acrylate-p-diketonate complex, monomer andmethyl methacrylate. Chem. Mater. 2000, 12 (8), 2212-2218
    
    [11]. Georges J. Lanthanide-sensitized luminescence and applications to the determination oforganic analytes. Analyst, 1993, 118, 1481-1486
    
    [12]. Kirby A F, Richardson F S, Detailed analysis of the optical absorption and emissionspectra of europium(3+) in the trigonal (C3) Eu(DBM)_3. H_2O system. J.Phys.Chem. 1983, 87(14): 2544-2556
    
    [13]. Matthews K D, Bailey-Folkes S A, Kahwa I. Luminescence dynamics and carbon-13NMRcharacteristics of dinuclear complexes exhibiting coupled lanthanide(Ⅲ) cation pairs. J.Phys.Chem.1992, 96 (17): 7021-7027
    
    [14]. Latva M, Takalo H, Simberg K, Kankare J. Enhanced Eu~(Ⅲ)ion luminescence and efficientenergy transfer between lanthanide chetales within the polymeric structure in aqueous solutions.J.Chem.SocPerkin Trans.2, 1995, 5, 995-999
    
    [15]. Du C X, Ma L, Xu Yan, et al. Synthesis and photophysical characterization of terbium-polymer complexes containing salicylate ligand. Eurpolym J, 1998, 34 (1): 23-29
    
    [16].孙世菊,滕枫,徐征.聚乙烯基咔唑与Alq_3混合薄膜的发光性能与能量传递过程.物理学报,2004,53(11):3934-3939
    
    [17].张立功,蒋大鹏,范翊.聚乙烯基咔唑与8-羟基喳啉铝混合体系的荧光衰减.发光学报,2002,23(2):162-165
    
    [18]. Lamansky S, Raymond C K, Nugent M, et al. Molecularly doped polymer light emittingdiodes utiziling phosphorescent Pt (Ⅲ)and Ir (Ⅲ) dopants. Organic Electronics, 2001, 2 (1):53-62
    
    [19]. Kido J, Hayase H, Hongawa K, et al. Bright red light-emitting organic electroluminescentdevices having a europium complex as an emitter. Appl Phys Lett, 1994, 65 (17), 2124-2126
    
    [20]. Kido J, Ikeda W, Kimura M, Nagai K. White-light-emitting organic electroluminescentdevice using lanthanide complexes. Jpn J Appl Phys, 1996, 35: L394-L396
    
    [21]. Justel T, Nikol H, Ronda C. New development in the field of luminescent materials for lightand displays. Angew Chem, Int Ed. 1998, 37 (22): 3084-3103
    
    [22]. Kido J, Nagai K, Okamoto Y. Organic electroluminescent devices using lanthanidecomplexes. J Alloys Comp. 1993, 192 (1-2): 30-33.
    
    [23]. Dong J F, Yang S Y, Xu Z, Liu S M, et al. Influence of poly (N-vinylcarbazole) onluminescent characteristics of lanthanide chelates. Journal of Optoelectronics Laser. 2001 (5),480-483
    
    [24].凌启淡,杨慕杰,章文贡等.含稀土铕络合物的三元共聚物的光电性质.高分子学报,2005,5,698-703
    
    [25].张妍斐,徐征,吕玉光等.一种新型稀土配合物Eu(TTA)_2(N-HPA)Phen的发光特性研究.中国稀土学报,2006,24(6):656-660
    
    [26].刘峻峰,滕枫,徐征等.一种新型稀土配合物Tb(m-benzoicacid)_3的发光特性的研究.光谱学与光谱分析,2004,24(5):519-523
    
    [27].王勇,赵谡玲,徐征等.稀土配合物有机电致发光器件中电致激基复合物发光性质的研究.中国稀土学报,2006,24(5):540-543
    
    [28].王勇,赵谡玲,徐征等.稀土配合物红色有机电致发光器件的研究.光学与光电技术,??2006, 4 (5): 92-94
    
    [29]. Burroughes, J H, Bradley D D C, Brown A R. Light-emitting diodes based on conjugated polymers. Nature. 1990, 347, 539-541
    
    [30]. Segura J L. The chemistry of electroluminescent organic materials. Acta Polym. 1998, 49, 319-344.
    
    [31]. Friend R H, Gymer R W, Holmes A B. Electroluminescence in conjugated polymers. Nature. 1999,397, 121-128.
    
    [32]. Burn P L, Holmes A B, Kraft A, Bradley D D C, et al. Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. Nature. 1992, 356,47-49.
    
    [33]. Hou Q, Xu Y S, Yang W, Yuan M, et al. Novel red-emitting fluorine-based copolymer. J. Chem Mater. 2002, 12, 2887-2892.
    
    [34]. Huang J, Niu Y H, Yang W, et al. Novel electroluminescent polymers derived from carbazole and benzothiadiazole. Macromolecules, 2002, 35 (16): 6080-6082
    
    [35]. Huang J, Xu Y S, Hou Q, et al. Novel electroluminescent polymers derived from carbazole and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole. Macromol Rapid Commun, 2002, 23 (12): 709-712
    
    [36]. Yu G, Liu Y Q, Wu X, Zhu D B. Soluble europium complexes for light-emitting diodes. Chem. Mater. 2000, 12 (9): 2537-2541
    
    [37]. Justin T K R, Lin J T. Light-emitting carbazole derivatives: potential electroluminescent materials. J Am Chem Soc. 2001, 123 (38): 9404-9411.
    
    [38]. Lee J H, Park J W, Choi S K, Synthesis and electroluminescent property of a new conjugated polymer based on carbazole derivative: poly (3,6-N-2-ethylhexyl carbazolyl cyanoterephthalidene). Synth Met. 1997, 88 (1): 31-35
    
    [39]. Meng H, Chen Z K, Spectroscopic and electrochemical study of a novel blue electroluminescent p-n diblock conjugated copolymer. JPhys Chem B. 1999,103 (31): 6429-6433.
    
    [40]. Luo J, Qin J, Kang H, Ye, C. A postfunctionalization strategy to develop PVK-based nonlinear optical polymers with a high density of chromophores and improved processibility. Chem. Mater, 2001, 13(3): 927-931
    
    [41]. Kido J, Hongawa K, Okuyama K, et al. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl??Phys Lett. 1994, 64 (7): 815-817
    
    [42]. Zhang C, Seggern H V, Kraabel B, et al. Blue emission from polymer light-emitting diodes using non-conjugated polymer blends with air-stable electrodes. Synth Met. 1995, 72 (2): 185-188
    
    [43]. Thianche E, Sentein C, Lorin A, et al. Effect of coumarin on blue light-emitting diodes based on carbazol polymers. J Appl Phys. 1998,83 (8),4236-4241.
    
    [44].黄剑,牛于华,曹镛.新型以咔唑为主链的能量转移型发光聚合物.化学学报,2003,61(5):765-773
    
    [1]. Celso de Mello Donega, Severino A Junior, Gilbreto F de Sa. Europium (Ⅲ) mixed complexeswith β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices,Chem Commun, 1996, 1199-1200
    
    [2]. Weissman S I. Intramolecular energy transfer the fluorescence of complexes of europium . J.Chem. Phys. 1942, 10 (4): 214-217
    
    [3]. Forsberg J H. Gmelin Handbook of Inorganic Chemistry, Sc, Y, La-Lu Rare Earth Elements;springer-verlag: Berlin, 1981; system No.39, Vol. D3, pp 65-251
    
    [4]. Melby L R, Rose N J, Abramson E, Caris J C. Synthesis and fluorescence of some trivalentlanthanide complexes. J. Am. Chem.Soc. 1964, 86 (23): 5117-5125.
    
    [5]. Drake S R, Lyons A, Otway D J, Slwain AMZ, Williams D J. Lanthanide p-diketonateglyme complexes exhibiting unusual co-ordination modes. J. Chem. Soc, Dalton Trans. 1993, 15,2379-2386
    
    [6]. Wang C Y, Yang Z J, Li Y, Gong L W, Zhao G W. Preparation of thin films of ternarycomplex of europium with 2-thenoyltrifluoroacetone and o-phenanthroline. Phys.Status Solidi A,2002,191(1): 117-124
    
    [7]. Zhong G L, Kim K, Jin J I. Intermolecular energy transfer in photo- and electrolumin- escenceproperties of a europium(Ⅲ) complex dispersed in poly(vinylcarbazole). Synth. Met. 2002, 129 (2):193-198
    
    [8]. Adachi C, Baldo M A, Forrest S R. Electroluminescence mechanisms in organic light emittingdevices employing a europium chelate doped in a wide energy gap bipolar conducting host. J.Appl. Phys. 2000, 87 (11): 8049-8055
    
    [9]. Sano T, Fujita M, Fujii T, Hamada Y, Shibata K, Kuroki K. Novel europium complex forelectroluminescent devices with sharp red emission, Jpn. J. Appl. Phys. 1995, 34, 1883-1887
    
    [10].Li H H, Inoue S, Machida K, Adachi G. Preparation and luminescence properties of organicallymodified silicate composite phosphors doped with an europium(Ⅲ) β-diketonate complex. Chem.Mater. 1999, 11 (11): 3171-3176
    
    [11]. Bauer H J, Blanc J, Ross D L. Octacoordinate chelates of lanthanides, two series ofcompounds. J. Am. Chem. Soc. 1964, 86 (23): 5125-5131
    [12]. de Sa' G F, Malta O L, Donega C D, Simas A M, Longo R L, Santa-Cruz P A, da Silva E F. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev. 2000, 196 (1): 165-195
    
    [13]. Batista H J, de Andrade A V M, Longo R L, Simas A M, de Sa' G F, Ito N K, Thompson L C. Synthesis, x-ray structure, spectroscopic characterization, and theoretical prediction of the structure and electronic spectrum of Eu(btfa)3-bipy and an assessment of the effect of fluorine as a β-diketone substituent on the ligand-metal energy transfer process. Inorg. Chem. 1998, 37 (14): 3542-3547
    
    [14]. Strek W, Sokolnicki J, Legendziewicz J, Maruszewski K, Reisfeld R, Pavich T. Optical properties of Eu(III) chelates trapped in silica gel glasses. Opt. Mater. 1999, 13(1): 41-48
    
    [15]. Yang C V, Srdanov V, Robinson M R, Bazan G C, Heeger A J. Orienting Eu(dnm)_3phen by tensile drawing in polyethylene: polarized Eu~(3+) emission. Adv. Mater. 2002, 14 (13-14): 980-983
    
    [16]. McGehee M D, Bergstedt T, Zhang C Saab A P, O'Regan M B, Bazan G C, Srdanov V I, Heeger A J. Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv. Mater. 1999, 11 (16): 1349- 1354
    
    [17]. Robinson M R, O'Regan M B, Bazan G C. Synthesis, morphology and optoelectronicproperties of tris[ 1 -(N-ethylcarbazoly 1)-1 -(3β,5β-hexyloxybenzoyl)methane](phenanthroline) europium, robinson, Chem. Commun. 2000, 1645-1646
    
    [18]. Haas Y, Stein G. Pathways of radiative and radiationless transitions in europium(III) solutions. The role of high energy vibrations. J. Phys. Chem. 1971,75 (24): 3677-3681
    
    [19]. Stein G, Wurzberg E. Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions . J. Chem. Phys. 1975, 62 (1): 208-213
    
    [20]. Kido J, Nagai K, Ohashi Y. Electroluminescence in a terbium complex. Chem. Lett. 1990, 4, 657-660
    
    [21].Kido J, Okamoto Y. Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 2002, 102 (6): 2357-2368
    
    [22]. Borzechowska M, Trush V, Turowska-Tyrk I, Amirkhanov W, Legendziewicz, J. Spectroscopic and magnetic studies of mixed lanthanide complexes: LnL_3 -α,α' Dipy in solution
    
    ??and in solid. J. Alloys Compd. 2002, 341 (1-2): 98-106
    
    [23]. Kozanecki, A.; Sealy, B. J.; Homewood, K. Excitation of Er~(3+) emission in Er, Yb codopedthin silica films. J. Alloys Compd. 2000, 300, 61-64
    
    [24]. Viana B, Koslova N, Aschehoug, P, Sanchez C. Optical properties of neodymium anddysprosium doped hybrid siloxane-oxide coatings. J. Mater. Chem. 1995, 5, 719- 724
    
    [25]. Strek W, Pawlik E, Deren P, Bednarkiewicz A, Wojcik J, Gaishun V E, Malashkevich G I.Optical properties of Nd~(3+)-doped silica fibers obtained by sol-gel method. J. Alloys Compd. 2000,300, 459-463
    
    [26]. Kuriki K, Koike Y, Okamoto Y. Plastic optical fiber lasers and amplifiers containinglanthanide complexes. Chem. Rev. 2002, 102 (6): 2347-2356
    
    [27]. Wolff N E, Pressley R J. Optical maser action in an Eu~(3+) -containing organic matrix Appl.Phys. Lett. 1963, 2 (8): 152-154
    
    [28].Tanner P A, Yan B, Zhang H J. Preparation and luminescence properties of sol-gel hybridmaterials incorporated with europium complexes. J. Mater. Sci. 2000, 35 (17): 4325-4328
    
    [29]. Bekiari V, Pistolis G, Lianos P. Intensely luminescent materials obtained by combininglanthanide ions, 2,2'-bipyridine, and poly(ethylene glycol) in various fluid or solid environments.Chem. Mater. 1999, 11 (11): 3189-3195
    
    [30]. Matthews L R, Kobbe E T. Luminescence behavior of europium complexes in sol-gelderived host materials. Chem. Mater. 1993, 5 (12): 1697-1700
    
    [31]. Costa V C, Vasconcelos W L, Bray K L. Preparation and optical characterization oforganoeuropium-doped silica gels. J. Sol-Gel Sci. Technol. 1998, 13,605-609
    
    [32]. Klonkowski A M, Lis S, Pietraszkiewicz M, Hnatejko Z, Czarnobaj K, Elbanowski M.Luminescence properties of materials with Eu(Ⅲ) complexes: role of ligand, coligand, anion, andmatrix. Chem. Mater. 2003, 15 (3): 656-663
    
    [33]. Li H R, Fu L S, Lin J, Zhang H J. Luminescence properties of transparent hybrid thin filmcovalently linked with lanthanide complexes. Thin Solid Films 2002, 416 (1-2): 197-200
    
    [34]. Du C X, Ma L, Xu Y, Li W L. Synthesis and fluorescent properties of europium-polymercomplexes containing naphthoate and 1, 10-phenanthroline ligands . J. Appl. Polym. Sci. 1997, 66(7): 1405-1410
    
    [35]. Strek W, Legendziewicz J, Lukowiak E, Maruszewski K, Sokolnicki J, Boiko A A,Borzechowska M. Optical properties of Pr~(3+) doped silica gel glasses obtained by sol-gel method.Spectrochim. Acta, Part A 1998, 54 (13): 2215-2221
    
    [36]. Wang L H, Wang W, Zhang W G, Kang E T, et al. Synthesis and luminescence properties ofnovel Eu-containing copolymers consisting of Eu(Ⅲ)-acrylate-diketonate complex monomers andmethyl methacrylate. Chem. Mater. 2000, 12 (8), 2212-2218
    
    [37]. Costa V C, Vasconcelos W L, Bray K L. Preparation and optical characterization oforganoeuropium-doped silica gels. J. Sol-Gel Sci. Technol. 1998, 13,605-609
    
    [38].Philip L, Eline R, Koen B, et al. Study of the luminescence of tris (2-thenoyltri.uoroacetonato)lanthanide (Ⅲ) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gelglasses. Journal of Luminescence, 2005, 114, 77-84
    
    [39]. Ueba Y, Banks E, Okamoto Y. Investigation on the synthesis and characterization of rareearth metal-containing polymers. Ⅱ. Fluorescence properties of Eu~(3+)-polymer complexescontaining p-diketone ligand. J. Appl. Polym. Sci. 1980, 25 (9): 2007-2017
    
    [40]. Xu J, Huang X H, Zhou N L, Zhang JS, et al. Synthesis, XPS and fluorescence properties ofEu complex with polydimethylsiloxane. Materials Letters. 2004, 58: 1938-1942
    
    [41]. Lin S, Feuerstein R J, Mickelson A. A study of neodymium-chelate-doped optical polymerwaveguides. J. Appl. Phys. 1996, 79 (6): 2868-2874
    
    [42]. Binnemans K, Gorller-Walrand C. Lanthanide-containing liquid crystals and surfactants.Chem. Rev. 2002, 102 (6): 2303-2346
    
    [43]. Van Deun R, Moors D, De Fre' B, Binnemans K. Near-infrared photoluminescence oflanthanide-doped liquid crystals, J. Mater. Chem.2003, 13, 1520-1522
    
    [44]. Kerry P M, Li X P, Zeev R. Fiber-optic oxygen sensor based on the fluorescence quenchingof tris (5-acrylamido-1,10-phenanthroline) ruthenium chloride. Analytica Chimica Acta, 1998, 361,73-83
    
    [45]. Kristoffer T, Varum K M. Preparation and characterisation of fluorescent chitosans using9-anthraldehyde as fluorophore. Carbohydr. Res, 2001, 336 (4): 291-296
    
    [46].赵藻藩,周性尧,张悟铭,赵文宽.仪器分析.北京:高等教育出版社,1997
    
    [47]. Wilde G, Gorier G P, Willnecker R, Fecht H J. Calorimetric, thermomechanical, and??rheological characterizations of bulk glass-forming Pd_(40)Ni_(40)P_(20). J Appl Phys, 2000, 87 (3):1141-1152
    
    [48].Machado J C, Silva G G, Soares L S. Positron annihilation and differential scanningcalorimetry investigations in poly(methylmethacrylate)/low molecular weight poly(ethylene oxide)polymer blends. J Polym Sci Part B: Polym Phys, 2000, 38 (8): 1045-1052
    
    [49].Clarck J N, Higgins J S, Kim C K, Paul D R. Re-examination of poly(methyl methacrylate)/poly(epichlorohydrin) blends by small angle neutron scattering and differential scanningcalorimetry. Polymer, 1992, 33 (15): 3137-3144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700