小鼠肝脏中丝氨酸、苏氨酸和赖氨酸乙酰化修饰的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质中氨基酸的乙酰化修饰是一种可逆的在真核细胞和原核细胞中都能发生的翻译后修饰形式,参与调控多种生物学过程,如DNA-蛋白质相互作用、蛋白质-蛋白质相互作用、基因转录、蛋白质的稳定性、细胞的迁移和分化等。自1968年Vidali发现了第一个乙酰化蛋白质以来,科学家对氨基酸的乙酰化修饰进行了大量的研究,研究重点主要集中于赖氨酸残基的乙酰化修饰,已经发现了300多个赖氨酸乙酰化修饰蛋白质,然而,相比生物体内的蛋白质而言,发现的乙酰化蛋白质仍然只是冰山一角,赖氨酸乙酰化底物的缺乏已经成了研究赖氨酸乙酰化修饰的瓶颈,限制了与赖氨酸乙酰化修饰相关的生物学功能的研究。近年来,蛋白质组学的方法已被作为一种高通量的有效的方法用于研究蛋白质及其翻译后修饰形式。用HPLC分离免疫亲和纯化得到乙酰化蛋白质或肽段,然后用MS/MS进行鉴定,是一个理想的研究赖氨酸乙酰化修饰的方法。
     除了赖氨酸残基的乙酰化修饰,2006年Orth等人在研究耶尔森菌属中的细菌毒力因子YopJ(Yersinia species effector protein)时,发现YopJ是一种乙酰基转移酶,能够使mitogen-activated protein kinase kinases(MAPKK)中的丝氨酸和苏氨酸残基发生乙酰化修饰。发生乙酰化修饰的丝氨酸和苏氨酸残基位于MAPKK的活性链上,这两个位点发生乙酰化修饰后,同样的位点上便不能发生磷酸化修饰,从而无法激活mitogen-activated protein kinase(MAPK)信号通路,抑制免疫应答。因此,丝氨酸和苏氨酸残基的乙酰化修饰具有重要的生物学功能。目前研究丝氨酸和苏氨酸乙酰化修饰的方法有限,由于难以得到丝氨酸、苏氨酸乙酰化修饰的抗体,运用免疫亲和纯化技术预先分离和富集丝氨酸和苏氨酸乙酰化蛋白或肽段的方法暂时难以实现。
     针对目前乙酰化修饰研究的现状及存在的问题,本论文从蛋白质组学的角度对小鼠肝脏中的丝氨酸、苏氨酸和赖氨酸乙酰化修饰蛋白质进行了研究,共包括以下四部分内容:
     第一章前言部分概述了目前蛋白质组学和翻译后修饰蛋白质组学的研究现状,尤其对蛋白质乙酰化修饰的研究进展做了很好的综述,说明了本论文的选题目的及意义。
     第二章运用shotgun技术对小鼠肝脏中的丝氨酸和苏氨酸残基的乙酰化修饰蛋白质进行分析,这是首次运用蛋白质组学的方法对丝氨酸和苏氨酸残基的乙酰化修饰进行分析。共在60个乙酰化蛋白质中鉴定到63个乙酰化位点,其中包括丝氨酸乙酰化修饰蛋白质30个,共33个位点;苏氨酸乙酰化蛋白质22个,共22个位点。这些丝氨酸和苏氨酸乙酰化蛋白质均为首次发现可以发生丝氨酸和苏氨酸残基的乙酰化修饰。借助生物信息学工具对这些乙酰化修饰蛋白质进行功能分析、氨基酸序列进行分析等。挑选具有重要生物学功能的乙酰化蛋白质进行克隆表达,证明丝氨酸、苏氨酸的乙酰化修饰在生物体内的存在。我们的发现表明与赖氨酸残基的乙酰化修饰一样,丝氨酸和苏氨酸残基的乙酰化修饰可能是小鼠肝脏中广泛存在的翻译后修饰形式,具有潜在的重要的生物学功能。
     第三章运用免疫亲和纯化技术结合nano-HPLC/MS/MS技术,对小鼠肝脏中的赖氨酸残基乙酰化修饰肽段进行富集、鉴定,并对鉴定到的赖氨酸乙酰化修饰蛋白质进行了功能分析、氨基酸序列分析。共在20个赖氨酸乙酰化修饰蛋白质中鉴定到21个赖氨酸乙酰化修饰位点,其中12个蛋白质和16个位点为首次被鉴定到可以发生乙酰化修饰。另外,发现了三个能够发生乙酰化修饰的乙酰基转移酶,对于进一步研究赖氨酸的乙酰化修饰在多种细胞过程中的生物学功能有重要意义。
     第四章是全文总结和展望。总结了主要研究结论,提出了进一步研究设想。
Acetylation of proteins on lysine is a reversible post-translational modification with important significance in cells.This modification plays a vital role in the regulation of many cellular processes including,but not limited to,DNA-protein interactions,protein-protein interactions,transcription,protein stability,migration and differentiation.The functional importance of acetylation has been described in many reports.However,the unwitnessed and unspecified substrate of lysine acetylation has become a major bottleneck and thus blocked the development of the functional studies in biology processes associated with lysine acetylation.Proteomics approach could offer a high-throughput and efficient tool to explore the global profile of proteins and their posttranslational modifications,including lysine acetylation.Isolation the proteins and/or peptides with lysine acetylation by HPLC followed by MS/MS is a novel strategy for identification of acetylated sites.
     More recently,it was demonstrated that YopJ,a bacterial effector from Yersinia, could acetylate serine and threonine residues.YopJ acts as an acetyltransferase using acetyl-coenzyme(CoA) to modify the critical serine and threonine residues in the activation loop of MAPKK6,thereby blocking phosphorylation.The acetylation of MAPKK6 directly competes with the process of phosphorylation,preventing activation of the modified protein.Therefore,acetylation can compete with phosphorylation at the same residues,leading to alternate regulation of signaling pathways.
     This dissertation consists of 4 parts and the contents are summarized as follows:
     In the first chapter,a review of proteomic study and post-translational proteomic study was summarized,specially,in the separation and identification of acetylated proteins and peptides.Furthermore,the aims and significance of this dissertation were presented.
     In the second chapter,the excellent strategy combining shotgun technology and nano-HPLC/MS/MS analysis was used to discover acetylation of serine and threonine in mouse livers for the first time.Consequently,63 acetylation sites from 60 proteins from mouse livers were identified by the proteomics survey.Of these,33 serine-acetylated sites from 30 proteins and 22 threonine-acetylated sites from 22 proteins have not been previously described.These observations imply that the acetylation of serine and threonine residues may be widespread in mouse livers and play a potential role in altering the course of signaling pathways.
     In the third chapter,by combining the method of immunoaffinity purification of lysine-acetylated peptides with nano-HPLC/MS/MS analysis,we detected lysine-acetylated proteins in mouse livers.Total of 20 lysine-acetylated proteins including 21 lysine-acetylated sites have been identified.Among these,12 lysine-acetylated proteins and 16 lysine-acetylated sites have never been reported elsewhere.
     In the last chapter,a summary was made and a prospect was presented.
引文
1.马歌丽.蛋白质组研究的进展.郑州轻工业学院学报(自然科学版)16,7-10(2001).
    2.Velculescu,V.E.,Zhang,L.,Vogelstein,B.& Kinzler,K.W.Serial analysis of gene expression.Science 270,484-7(1995).
    3.Schena,M.,Shalon,D.,Davis,R.W.& Brown,P.O.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science 270,467-70(1995).
    4.胡志远.万晶宏.王利红等.蛋白质组研究中双向聚丙烯酰胺凝胶电泳图谱的计算机分析.军事医学科学院院刊 22,301-304(1998).
    5.胡志远.贺福初.蛋白质组研究进展.生物化学与生物物理进展 26,202-205(1999).
    6.Wasinger,V.C.et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium.Electrophoresis 16,1090-4(1995).
    7.俞利荣.曾嵘.夏其昌.蛋白质组研究技术及其进展.生命的化学 18,4-9(1998).
    8.李伯良.李林.吴家睿.功能蛋白质组学.生物工程进展 19,15-16(1999).
    9.李宁.许红韬.蛋白质组研究的现状与展望.生物技术通讯 11,281-285(2000).
    10.Figeys,D.et al.Electrophoresis combined with novel mass spectrometry techniques:powerful tools for the analysis of proteins and proteomes.Electrophoresis 19,1811-8(1998).
    11.Abbott,A.A post-genomic challenge:learning to read patterns of protein synthesis.Nature 402,715-20(1999).
    12.Wilkins,M.R.,Gasteiger,E.,Sanchez,J.C.,Bairoch,A.& Hochstrasser,D.F.wo-dimensional gel electrophoresis for proteome projects:the effects of protein hydrophobicity and copy number.Electrophoresis 19,1501-5(1998).
    13.王志珍.邹承鲁.后基因组——蛋白质组研究.生物化学与生物物理进展30,534-539(1998).
    14.Opiteck,G.J.,Ramirez,S.M.,Jorgenson,J.W.& Moseley,M.A.,3rd.Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping.Anal Biochem 258,349-61(1998).
    15.Peck,K.,Stryer,L.,Glazer,A.N.& Mathies,R.A.Single-molecule fluorescence detection:autocorrelation criterion and experimental realization with phycoerythrin.Proc Natl Acad Sci U S A 86,4087-91(1989).
    16.Jorgenson,J.W.& Lukacs,K.D.Capillary zone electrophoresis.Science 222,266-72(1983).
    17.Rohde,E.,Tomlinson,A.J.,Johnson,D.H.& Naylor,S.Comparison of protein mixtures in aqueous humor by membrane preconcentration-capillary electrophoresis-mass spectrometry.Electrophoresis 19,2361-70(1998).
    18.Fenn,J.B.,Mann,M.,Meng,C.K.,Wong,S.F.& Whitehouse,C.M.Electrospray ionization for mass spectrometry of large biomolecules.Science 246, 64-71 (1989).
    
    19. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299-301 (1988).
    
    20. 程国栋,龚明月.蛋白质组研究进展.黄山学院学报6,106-108(2004).
    
    21. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255-61 (2003).
    
    22. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? . Embo J 19, 1176-9 (2000).
    
    23. Haigis, M. C. & Guarente, L. P. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev 20, 2913-21 (2006).
    
    24. Hake, S. B., Xiao, A. & Allis, C. D. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer 96 Suppl, R31-9 (2007).
    
    25. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu Rev Biochem 73, 417-35 (2004).
    
    26. Carrozza, M. J., Utley, R. T., Workman, J. L. & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet 19, 321-9 (2003).
    
    27. McKinsey, T. A. & Olson, E. N. Cardiac histone acetylation-therapeutic opportunities abound. Trends Genet 20, 206-13 (2004).
    
    28. Yang, X. J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32, 959-76 (2004).
    
    29. Bunkenborg, J., Pilch, B. J., Podtelejnikov, A. V. & Wisniewski, J. R. Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 4, 454-65 (2004).
    
    30. Kristiansen, T. Z. et al. A proteomic analysis of human bile. Mol Cell Proteomics 3, 715-28 (2004).
    
    31. Liu, T. et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4, 2070-80 (2005).
    
    32. Cao, J. et al. Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomics approach. J Proteome Res 8, 662-72 (2009).
    
    33. Khidekel, N., Ficarro, S. B., Peters, E. C. & Hsieh-Wilson, L. C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A 101,13132-7 (2004).
    
    34. Vosseller, K. et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 5, 923-34 (2006).
    
    35. Beausoleil, S. A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5 (2004).
    
    36. Ballif, B. A., Villen, J., Beausoleil, S. A., Schwartz, D. & Gygi, S. P. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 3,1093-101 (2004).
    
    37. Moser, K. & White, F. M. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res 5, 98-104 (2006).
    38. Yamagata, A. et al. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics 2, 1267-76 (2002).
    
    39. DeGiorgis, J. A. et al. Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4, 306-15 (2005).
    
    40. Vidali, G., Gershey, E. L. & Allfrey, V. G. Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. J Biol Chem 243, 6361-6 (1968).
    
    41. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 (1997).
    
    42. Kirkpatrick, D. S., Denison, C. & Gygi, S. P. Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7, 750-7 (2005).
    
    43. Kaiser, P. & Huang, L. Global approaches to understanding ubiquitination. Genome Biol 6, 233 (2005).
    
    44. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21, 921-6 (2003).
    
    45. Kirkpatrick, D. S., Weldon, S. F., Tsaprailis, G., Liebler, D. C. & Gandolfi, A. J. Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics 5, 2104-11 (2005).
    
    46. Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T. & Deshaies, R. J. Analysis of polyubiquitin conjugates reveals that the RpnlO substrate receptor contributes to the turnover of multiple proteasome targets. Mol Cell Proteomics 4, 741-51 (2005).
    
    47. Tagwerker, C. et al. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5, 737-48 (2006).
    
    48. Ong, S. E., Mittler, G. & Mann, M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1,119-26 (2004).
    
    49. Iwabata, H., Yoshida, M. & Komatsu, Y. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics 5, 4653-64 (2005).
    
    50. MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci U S A 99, 7900-5 (2002).
    
    51. Ghezzi, P. & Bonetto, V. Redox proteomics: identification of oxidatively modified proteins. Proteomics 3,1145-53 (2003).
    
    52. Aulak, K. S. et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci U S A 98,12056-61 (2001).
    
    53. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3,193-7 (2001).
    
    54. Rhee, K. Y., Erdjument-Bromage, H., Tempst, P. & Nathan, C. F. S-nitroso
    ??proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci U S A 102, 467-72 (2005).
    
    55. Hao, G., Derakhshan, B., Shi, L., Campagne, F. & Gross, S. S. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci U S A 103, 1012-7 (2006).
    
    56. Yano, H., Wong, J. H., Lee, Y. M., Cho, M. J. & Buchanan, B. B. A strategy for the identification of proteins targeted by thioredoxin. Proc Natl Acad Sci U S A 98, 4794-9 (2001).
    
    57. Le Moan, N., Clement, G., Le Maout, S., Tacnet, F. & Toledano, M. B. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281, 10420-30 (2006).
    
    58. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 101, 12479-84 (2004).
    
    59. Hang, H. C, Yu, C, Kato, D. L. & Bertozzi, C. R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci U S A 100,14846-51 (2003).
    
    60. 李虹,谢鹭.预测和鉴定蛋白质翻译后修饰的生物信息方法. Progress in Modern Biomedicine 8, 1729-1734 (2008).
    
    61. Seo, J. & Lee, K. J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37, 35.44 (2004).
    
    62. Jensen, O. N. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8, 33-41 (2004).
    
    63. Appel, R. D. & Bairoch, A. Post-translational modifications: a challenge for proteomics and bioinformatics. Proteomics 4,1525-6 (2004).
    
    64. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23, 607-18 (2006).
    
    65. Zhang, J. et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8, 215-25 (2009).
    
    66. Shadforth, I., Crowther, D. & Bessant, C. Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 5, 4082-95 (2005).
    
    67. Jimmy K. Eng, A. L. M., John R. Yates III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5, 976-989 (1994).
    
    68. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-67 (1999).
    
    69. Craig, R. & Beavis, R. C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20,1466-7 (2004).
    70. Ma, B. et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17, 2337-42 (2003).
    
    71. Standing, K. G. Peptide and protein de novo sequencing by mass spectrometry. Curr Opin Struct Biol 13, 595-601 (2003).
    
    72. Yang, F. et al. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 5, 1252-60 (2006).
    
    73. Pappin, D. J., Hojrup, P. & Bleasby, A. J. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3, 327-32 (1993).
    
    74. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-48 (2006).
    
    75. Balmer, Y., Vensel, W. H., DuPont, F. M., Buchanan, B. B. & Hurkman, W. J. Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot 57, 1591-602 (2006).
    
    76. Tanner, S. et al. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77, 4626-39 (2005).
    
    77. Tsur, D., Tanner, S., Zandi, E., Bafna, V. & Pevzner, P. A. Identification of post-translational modifications by blind search of mass spectra. Nat Biotechnol 23, 1562-7 (2005).
    
    78. Mann, M. & Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390-9 (1994).
    
    79. Liebler, D. C, Hansen, B. T., Davey, S. W., Tiscareno, L. & Mason, D. E. Peptide sequence motif analysis of tandem MS data with the SALSA algorithm. Anal Chem 74, 203-10 (2002).
    
    80. Mackey, A. J., Haystead, T. A. & Pearson, W. R. Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics 1,139-47 (2002).
    
    81. Anderson, D. C, Li, W., Payan, D. G. & Noble, W. S. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores. J Proteome Res 2,137-46 (2003).
    
    82. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285-92 (2006).
    
    83. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74, 5383-92 (2002).
    
    84. Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646-58 (2003).
    
    85. Qian, W. J. et al. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. J Proteome Res 4, 53-62 (2005).
    
    86. Yan, W. et al. A dataset of human liver proteins identified by protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry. Mol Cell Proteomics 3, 1039-41 (2004).
    
    87. Li, X. et al. Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res 6, 1190-7 (2007).
    
    88. Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594-8 (1998).
    
    89. Waltzer, L. & Bienz, M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521-5 (1998).
    
    90. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491-6 (1999).
    
    91. Chen, H., Lin, R. J., Xie, W., Wilpitz, D. & Evans, R. M. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675-86 (1999).
    
    92. Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu Rev Biochem 70, 81-120 (2001).
    
    93. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349-52 (1997).
    
    94. Ai, W., Zheng, H., Yang, X., Liu, Y. & Wang, T. C. Tip60 functions as a potential corepressor of KLF4 in regulation of HDC promoter activity. Nucleic Acids Res 35, 6137-49 (2007).
    
    95. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A 51, 786-94 (1964).
    
    96. Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. Embo J 19, 662-71 (2000).
    
    97. Takemura, R. et al. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J Cell Sci 103 ( Pt 4), 953-64 (1992).
    
    98. Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136, 551-64 (2009).
    
    99. Zhang, Q., Yao, H., Vo, N. & Goodman, R. H. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc Natl Acad Sci U S A 97, 14323-8 (2000).
    
    100. Iyer, N. G. et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci U S A 101, 7386-91 (2004).
    
    101. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 20, 5077-86 (2000).
    
    102. Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372-6 (2004).
    
    103. Bernardi, R. et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6, 665-72 (2004).
    104. Madison, D. L., Yaciuk, P., Kwok, R. P. & Lundblad, J. R. Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem 277, 38755-63 (2002).
    
    105. Boutillier, A. L., Trinh, E. & Loeffler, J. P. Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis. J Neurochem 84, 814-28 (2003).
    
    106. Marks, P. A., Richon, V. M. & Rifkind, R. A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92, 1210-6 (2000).
    
    107. Arts, J., de Schepper, S. & Van Emelen, K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem 10, 2343-50 (2003).
    
    108. Richon, V. M., Sandhoff, T. W., Rifkind, R. A. & Marks, P. A. Histone deacetylase inhibitor selectively induces p21WAFl expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97, 10014-9 (2000).
    
    109. Zhang, L. et al. Differential expression of histone post-translational modifications in acute myeloid and chronic lymphocytic leukemia determined by high-pressure liquid chromatography and mass spectrometry. J Am Soc Mass Spectrom 15, 77-86 (2004).
    
    110. Su, X. et al. Histone H4 acetylation dynamics determined by stable isotope labeling with amino acids in cell culture and mass spectrometry. Anal Biochem 363, 22-34 (2007).
    
    111. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? Embo J 19,1176-9(2000).
    
    112. Dormeyer, W., Ott, M. & Schnolzer, M. Probing lysine acetylation in proteins: strategies, limitations, and pitfalls of in vitro acetyltransferase assays. Mol Cell Proteomics 4,1226-39 (2005).
    
    113. Wu, H. Y., Huang, F. Y., Chang, Y. C, Hsieh, M. C. & Liao, P. C. Strategy for determination of in vitro protein acetylation sites by using isotope-labeled acetyl coenzyme A and liquid chromatography-mass spectrometry. Anal Chem 80, 6178-89 (2008).
    
    114. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312,1211-4 (2006).
    
    115. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J., Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44, 7342-72 (2005).
    
    116. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci U S A 103,18574-9 (2006).
    
    117. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363,15-23 (2005).
    
    118. Mukherjee, S., Hao, Y. H. & Orth, K. A newly discovered post-translational modification-the acetylation of serine and threonine residues. Trends Biochem Sci 32, 210-6 (2007).
    
    119. Yu, M., de Carvalho, L. P., Sun, G. & Blanchard, J. S. Activity-based substrate profiling for Gcn5-related N-acetyltransferases: the use of chloroacetyl-coenzyme A to identify protein substrates. J Am Chem Soc 128, 15356-7 (2006).
    
    120. Chen, Y., Kwon, S. W., Kim, S. C. & Zhao, Y. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J Proteome Res 4, 998-1005 (2005).
    
    121. Hunt, M. C, Solaas, K., Kase, B. F. & Alexson, S. E. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J Biol Chem 277, 1128-38 (2002).
    
    122. van Roermund, C. W. et al. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. Faseb J 22, 4201-8 (2008).
    
    123. Matic, I., Macek, B., Hilger, M., Walther, T. C. & Mann, M. Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 7, 4050-7 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700