浙江省天台县下陈—王长墓萤石矿田控矿构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下陈—王长墓萤石矿田位于浙东南震旦纪—古生代隆起带(华夏古陆)上,属浅层低温热液充填型脉状矿床,控矿构造为断裂构造。
     运动地壳上任何一个地质体或矿体,与它们相关的建造与构造环境都是相互制约、相互依存、共同发展的关系,对于它们的研究应该是建立在一个动态的时、空演变基础之上的。本论文即在收集、整理前人资料的基础上,通过细致的野外地质调查,收集到大量的地质信息,运用以上指导思想分析和总结成矿规律和控矿断裂构造时、空演变与矿体时、空演变的关系,取得以下的主要认识:
     (1)下陈—王长墓萤石矿田所在的天台盆地为形成于晚白垩世的继承—过渡型盆地,属构造火山盆地,是浙东南震旦纪—古生代隆起带(华夏古陆)上萤石矿成矿非常有利的盆地类型。
     (2)下陈—王长墓萤石矿田控矿断裂是多期构造运动叠加的结果,其力学性质经历了扭—压—压扭的过程,且在特定的边界条件下形成现今的控矿构造格局。
     (3)下陈—王长墓萤石矿田矿后构造活动明显,矿带(体)的连续性遭到了一定程度的破坏作用。
     (4)下陈—王长墓萤石矿田各矿带(体)以及围岩蚀变的空间展布严格受构造控制,在纵向(走向)、横向和垂向上具有明显的分带规律。
     (5)通过综合分析对矿田资源特征进行了简单的评价。
The Xiachen-Wangchangmu fluorite ore field locates in the Sinian Period-Paleozoic uplift zone in the southeast of Zhejiang Province. It is a superficial layer epithermal filling deposit and its ore-controlling structure are rift structure. The build and structure environment, which is related of any geologic or ore body of the living crust, is mutual restraint, interdependent and common development. The study of them should be based on dynamic space development. This thesis analysed and summarized the law of mineralizing and the the space development relationship between ore-controlling structure and ore bodies by collecting and sorting out the previous information, gathering a great deal of geologic information by elaborative field work and using guiding ideology mentioned above. There are the main conclusions:
     (1) The Xiachen-Wangchangmu fluorite ore field belongs to the Tiantai basin. It is a successive-transitional basin, which is one kind of tectonic volcanic basin.
     (2) The ore-controlling structure of the Xiachen-Wangchangmu fluorite ore field experienced multiple tectonic movements. Its mechanical proerty experienced the process of shear-compression-compression and scissor. The current ore-controlling structure is formed under the specific boundary conditions.
     (3) The post-mineralization tectonic action of the Xiachen-Wangchangmu fluorite ore field is evident and the succession of the ore belt(ore body) suffer from damage in a certain extent
     (4) The spatial arrangement of every ore belt(every ore body) and wall rock alteration of the Xiachen-Wangchangmu fluorite ore field is strictly controlled by structure. So it has evident zoning laws whether in longitudinal(strike),transverse or vertical.
     (5) This thesis evaluate the characters of the Xiachen-Wangchangmu fluorite ore field resources using comprehensive analysis.
引文
[1] mg.中国萤石矿资源状况与分布[C/OL]. 2009. http://www.ky580.com/2009/05/08/0945123270.html.
    [2]潘忠华,范德廉. 1996.川东南脉状萤石—重晶石矿床同位素地球化学[J].岩石学报12(1):127-136.
    [3]杨子荣,刘敬党,孙祥,等. 2008.阜新萤石成矿区稀土元素地球化学特征及指示意义[J].现代地质,22(5):751-756.
    [4] Joaquin R, Stephen E.K, Lois M.J. 1985. Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from the Sierra Madre Occidental, Mexico:possible exploration significance. Econ.Geol. 80:33-42.
    [5] P.Moller, P.P.Parekh, H.J.Schneider. 1976. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis. Mineral Deposita(Berl). 11:111-116.
    [6]覃海灿,张小文,傅杨荣,等. 2005.海南什统萤石矿床地质特征[J].矿产与地质,19(4):398-402.
    [7]曹俊臣. 1995.华南低温热液脉状萤石矿床稀土元素地球化学特征[J].地球化学,24(3):225-234.
    [8] Wayne E.H., Irving F. 1963. Composition of fluid inclusions, cave-in-rock fluorite district, Illinois, and upper Mississippi valley Zinc-Lead district. Econ.Geol. 58:886-911.
    [9]孙祥,杨子荣,王永春,等. 2009.辽西义县萤石矿床Sr同位素组成及成因.地质科技情报[J],28(1):82-86.
    [10]马文锐,吴克安. 2009.美国萤石开发利用情况.有机氟工业[J],2:48-50
    [11]许东青,聂凤军,江思宏,等. 2008.内蒙古敖包吐萤石矿床地质和地球化学特征.地球学报[J],29(4):440-450.
    [12] Marguerite Munoz, Adrian J.Boyce, Pierre Courjaule-Rade, etc. 1999. Continental basinal origin of ore fluids from southwestern Massif central fluorite veins(Albigeois, France): evidence from fluid inclusion and stable isotope analysis. Applied Geochemistry. 14:447-458.
    [13] E.Gonzalez-Partida, A. Carrillo-Chavez, J.O.W. Grimmer, etc. 2003. Fluorite deposits at Encantada-Buenavista, Mexico: products of Mississippi Valley type process. Ore Geology Reviews. 23:10-124.
    [14] N. Guilhaumou, N. Ellouz, T.M. Jaswal, etc. 2000. Genesis and evolution of hydrocarbons entrapped in the fluorite deposite deposite of Koh-i-Maran, (North Kirthar Range, Pakistan). Marine and Petroleum Geology. 17:1151-1164.
    [15]赵省民,聂凤军,江思宏,等. 2002.内蒙古东七一山萤石矿床的稀土元素地球化学特征及成因.矿床地质[J],21(3):311-316.
    [16]许成,黄智龙,漆亮,等. 2001.四川牦牛坪稀土矿床成矿流体来源与演化初探—萤石稀土地球化学的证据.地质与勘探[J],37(5):24-28.
    [17]许成,黄智龙,刘丛强,等. 2003.四川牦牛坪稀土矿床萤石Sr、Nd同位素对地幔成矿流体的指示意义.地球科学—中国地质大学学报[J],28(1):41-46.
    [18] David A.S. Palmer, Anthony E.Williams-Jones. 1996. Genesis of the carbonatite-hosted deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. 91:934-950.
    [19]牛贺才,陈繁荣,林茂青. 1996.岩浆成因重晶石、萤石的稀土元素地球化学特征.矿物学报[J],16(4):382-387.
    [20] David A.S. Palmer, Anthony E.Williams-Jones. 1996. Genesis of the carbonatite-hosted deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. 91:934-950.
    [21]孙祥,杨子荣,刘敬党,等. 2008.义县萤石矿床稀土元素地球化学特征及其指示意义.矿床地质[J],27(5):579-585.
    [22]郑大中,郑若锋. 2005.萤石成矿机制的探讨.四川地质学报[J],25(3):149-154.
    [23]夏学惠,韩豫川,连卫,等. 2009.浙江八面山萤石矿床稀土元素地球化学特征及成因探讨.化工矿产地质[J],31(4):193-200.
    [24] David A.S. Palmer, Anthony E.Williams-Jones. 1996. Genesis of the carbonatite-hosted deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. 91:934-950.
    [25]刘道荣,陈春发,王新利,等. 2009.浙江常山县蕉坑坞矿段17号萤石矿体控矿因素及成因探讨.地质与资源[J],18(3):177-182.
    [26] David A.S. Palmer, Anthony E.Williams-Jones. 1996. Genesis of the carbonatite-hosted deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. 91:934-950.
    [27]麻土华,朱兴盛,李长江. 2000.浙江萤石矿床的空间分布.矿床地质[J],19(3):281-288.
    [28]曹俊臣. 1997.中国萤石矿床稀土元素地球化学及萤石的矿物物理特征.地质与勘探[J] ,33(2):18-23.
    [29]李长江,蒋叙良. 1983.浙江萤石矿床的裂变径迹年龄测定及有关问题讨论.地质研究[J],2:13-19.
    [30]曹俊臣. 1987.中国萤石矿床分类及其成矿规律.地质与勘探[J],23(3):12-17.
    [31] David A.S. Palmer, Anthony E.Williams-Jones. 1996. Genesis of the carbonatite-hosted deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. 91:934-950.
    [32] M. Barbier, U. Masi, L. Tolomeo. 1977. Geochemical evidence on the origin of theepithermal fluorite deposit at Montedelle Fate near Cerveteri(Latium, Central Italy). Mineral Deposita(Berl.). 12:393-398.
    [33] Joaquin Ruiz, Stephen E. Kesler, Lois M. Jones, etc. 1980. Geology and geochemistry of the Las Cuevas fluorite deposit, San Luis Potosi, Mexico. Econ.Geol. 75:1200-1209.
    [34]王成良,陈升立,张方君,等. 2003.黄沙腰萤石矿田成矿特征及找矿方向.资源调查与环境[J],24(4):267-274.
    [35] David A.S. Palmer, Anthony E.Williams-Jones. 1996. Genesis of the carbonatite-hosted deposit at Amba Dongar, India: evidence from fluid inclusions, stable isotopes, and whole rock-mineral geochemistry. 91:934-950.
    [36] M. Barbier, U. Masi, L. Tolomeo. 1977. Geochemical evidence on the origin of the epithermal fluorite deposit at Montedelle Fate near Cerveteri(Latium, Central Italy). Mineral Deposita(Berl.). 12:393-398.
    [37] Joaquin Ruiz, Stephen E. Kesler, Lois M. Jones, etc. 1980. Geology and geochemistry of the Las Cuevas fluorite deposit, San Luis Potosi, Mexico. Econ.Geol. 75:1200-1209.
    [38] Ali Haydar Gultekin, Yuksel Orgun, Fikret Suner. 2003. Geology, mineralogy and fluid inclusion data of the Kizilcaoren fluorite-barite-REE deposit, Eskisehir, Turkey. Journal of Asian Earth Sciences. 21:365-376.
    [39] D.J. Cherniak, X.Y. Zhang, N.K. Wayne, etc. 2001. Sr, Y, and REE diffusion in fluorite. Chemical Geology. 181:99-111.
    [40] Anthony E. Williams-Jones, Iain M. Samson, Gema R. Olivo. 2000. The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Econ.Geol. 95:327-342.
    [41] Virginia Sanchez, Esteve Cardellach, Merce Corbella, etc. 2010. Variability in fluid sources in the fluorite deposits from Asturias(N Spain): Further evidences from REE, radiogenic(Sr, Sm, Nd) and stable(S,C,O) isotope data. Ore Geology Reviews. 37:87-100.
    [42]徐旃章,吴志俊. 1991.浙江省萤石矿成矿规律与成矿预测[M].成都:四川科学技术出版社,1-89.
    [43]徐旃章,方乙,陈远巍. 2010.浙江省缙云县目标萤石矿带及其周边地区萤石矿时、空序列与评价[R].未出版,1-151.
    [44]朱安庆,张永山,陆祖达,等. 2002.浙江省金属非金属矿床成矿系列和成矿区带研究[M].浙江省国土资源厅,389-390.
    [45]俞国华. 1986.浙江省岩石地层[M].北京:中国地质大学出版社.
    [46]浙江省地矿局. 1989.中华人民共和国地质矿产部地质专报.一.地质第11号浙江省区域地质志[M].北京:地质出版社.
    [47]韩文彬,马承安,王玉荣,等. 1991.萤石矿床地质及地球化学特征-以浙江武义矿田为例[M].北京:地质出版社,1-186.
    [48]季克俭,吕凤翔. 2007.交代热液成矿学说—热液矿床成因的佐证[M].北京:地质出版社,171-173.
    [49]张理刚. 1985.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,54-120.
    [50]温春齐,多吉. 2009.矿床研究方法[M].成都:四川科学技术出版社,101-179.
    [51]徐旃章,张寿庭,沈军辉. 1999.浙江武义萤石矿田金(银)—萤石矿控矿构造型式[J].成都理工学院学报,26(2):107-112.
    [52]章永加. 1996.浙江武义盆地萤石矿成因分析[J].成都理工学院学报,23(4):46-49.
    [53]章永加. 1995.浙江武义白垩纪盆地萤石矿液运移趋势与规律.成都理工学院学报[J],22(3):86-90.
    [54]翟裕生,林新多. 1993.矿田构造学[M].北京:地质出版社, 2-144.
    [55]乐光禹,杜思清,黄继钧,等. 1996.构造复合联合原理—川黔构造组合叠加分析[M].成都科技大学出版社.
    [56]张寿庭,徐旃章. 1995.江武义剃刀畈萤石矿构造控矿特征与规律.成都理工学院学报[J],22(4):33-37.
    [57]翟裕生,林新多. 1993.矿田构造学[M].北京:地质出版社, 2-4.
    [58]巫建华,刘帅. 2009.大地构造学概论与中国大地构造学纲要[M].北京:地质出版社
    [59]袁见齐,朱上庆,翟裕生,等. 1985.矿床学[M].北京:地质出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700