用户名: 密码: 验证码:
有限条件下单帧光谱影像三维重构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一项重要基础数据,数字地面模型广泛应用于测绘、农林业、工程设计等国民经济各个领域。摄影测量是目前获取数字地面模型的最主要方法,它基于特征匹配原理,通过寻找立体像对上的同名像点以获取视差信息。然而,在一些表面光滑或缺乏纹理的区域,如沙漠、水域、山区等,摄影测量方法无法快速有效地提取特征点、特征边缘及纹理特征,其精度受到较大影响。另外,受多云、多雾、光照不足等天气条件限制,一些地区可能无法获取同一时间的高分辨率立体像对,此时摄影测量方法的应用受到极大地限制。
     较之于立体像对,单幅高分辨率遥感图像更易获取。若能基于单幅图像较精确的提取地表三维,辅以有限个数的地面控制点,插值生成高分辨率的数字地面模型,则能克服立体像对在上述条件下的限制。明暗恢复形状(Shape from Shading,简称SFS)理论作为计算机视觉领域的一个重要课题,旨在从单张影像上获取物体表面的形状信息,是重建三维表面的重要工具,在单幅遥感影像三维重建方面极具潜力。本文在有限的地面控制点条件下,将SFS理论引入地学研究,利用该理论对单幅影像进行三维重建,获取关于地表坡度坡向等辅助信息,用以对控制点格网进行插值,最终得到更高分辨率的地面三维格网,实现在稀疏控制点条件下的地形表面三维重建。本文所发展的方法顾及了地形格网内部地表真实变化趋势,能对无法获取立体像对的地区进行三维重建,克服了立体像对的技术限制,对于快速获取大范围地区的高分辨率数字地面模型具有重要意义。
     针对SFS理论中的反射率同一性假设问题、立体匹配方法失效区域的三维重建问题、以及立体匹配中由缺乏纹理特征和透视收缩导致的误匹配问题,本文主要研究工作及创新点如下:
     (1)解决朗伯体表面假设下SFS理论中反射率同一性假设限制:详述了朗伯体表面下的SFS理论,并对该问题的两类主要解算方法:最小化方法和传播方法进行了详细的研究。针对朗伯体SFS问题中物体反射率同一性假设的限制,提出了结合本征图像理论建立多尺度下的朗伯体表面II-SFS重建方法,通过图像分解减小由物体表面反射率变化导致的SFS重建误差。实验表明该方法可有效解决朗伯体SFS理论中反射率同一性假设的限制,大大提高SFS算法三维重建精度。
     (2)建立非朗伯体反射表面快速三维重建方法:详细研究了基于Oren-Nayar模型和Phong模型的三维重建算法,将相关反射图方程写为Hamilton-Jacobi方程(简称H-J方程)的形式,利用Lax-Friedrichs函数对该方程进行离散化,采用高阶快速扫描法(High Order Fast Sweeping method,简称HO-FSM方法)求解得到地表法向量的估计值。
     (3)利用SFS理论针对立体匹配方法失效的区域三维重建:提出了基于Oren-Nayar反射模型的有限条件下各向异性表面三维重建的NSDMI(?)里论框架,本文首先根据不同地表覆盖类型对影像进行分类,估算每种地物类别的反射率值,再将相关反射图方程写为H-J方程的形式,采用HO-FSM方法求解得到地表法向量的估计值,最后利用最小二乘法对控制点格网进行内插。实验表明该方法可解决立体匹配失效区域无法重建三维的问题,在有限个地面控制点条件下可得到较高精度的地面三维模型。
     (4)讨论未知光照条件下影像光源参数估计问题:本文总结了在光源方向和反射率值未知时的经典盲估算算法,以及基于样本学习的光源、反射率、形状联合估计算法。最后采用合成影像和真实遥感影像作为实验图像,对三种经典盲估算方法进行实验分析,表明Zheng方法对于合成影像的光源估算精度最高。
     (5)提出立体像对与SFS相结合的SFS-SDI-SR重建模型:在分析了立体像对与SFS的优缺点的基础上,探讨了如何将两者有效结合的研究思路,并给出了基于立体像对和明暗恢复形状相结合的三维重建的理论框架。首先对左右片提取特征点并进行特征匹配:采用FSM-SFS方法对特征点区域进行三维恢复,将恢复得到的表面形状作为新的相似似性测度;其次对不同像素点进行三维重建:特征匹配方法仅匹配可靠的点,非特征点采用SFS方法恢复高度;最后将不同区域的重建结果相结合得到整个观测区域的三维模型。对月球三线阵影像进行实验,结果表明本文方法相较于单一立体匹配和SFS方法可获得更高分辨率的表面三维信息,克服基于图像亮度信息的匹配方法中存在的不足,在光滑的和纹理特征不丰富的区域也能得到较好的重建结果。总而言之,本文首先解决了当前SFS理论中本身存在的反射率同一性假设带来的问题;再针对立体匹配方法失效的区域,利用有限个数地而控制点和单张遥感影像SFS三维重建结果建立数字地面模型;最后为解决立体匹配中由缺乏纹理特征和透视收缩导致的误匹配问题,建立立体像对与SFS相结合的三维重建框架,建立高度相似性测度,得到更高分辨率的数字地面模型。本文的研究显著减小了SFS理论对真实影像三维重建的误差,极大提高基于特征点的立体匹配精度,解决了立体匹配失效区域三维重建困难的问题,并推动了SFS理论在地学研究中的应用。
Digital Terrain Model (DTM in short), as an important data, is widely used in mapping, agriculture, forestry, industrial and other applicable filed. Photogrammetry is the main method to generate the DTM, which is based on the principle of feature extraction and feature matching. It is aim to find the pairs of matched points and get the parallax information. However, in some areas seriously lack of texture, such as deserts, waters, mountains and so on, it is unable to quickly and efficiently extract the feature points and edges, under this condition, the matching accuracy will be declined. Meanwhile, some areas often fail to obtain stereo image pairs of high spatial resolution due to the bad weather such as cloud and fog, so terrain reconstruction can't be done by stereo method.
     Since single remote sensing image is more accessible compared with stereo pairs, if we can acquire the terrain details from single image and consider it as the auxiliary data in surface reconstruction; it is possible to generate an accurate dense surface model by using sparse ground control points with the help of the single imagery. Shape from Shading technology (we can call it SFS in short), is aim to obtain surface shape information from a single image, which is based on the inverse process of the physical imaging. It is an important tool for3D surface reconstruction and very potential in terrain surface reconstruction of a single remote sensing image. In this paper, SFS is introduced in geoscientific research. Interpolating the surface model according to the information about the surface details recovered from SFS, can not only generate the DTM for the areas where the stereo image pairs can't be obtained, but also take the real trend of the internal surface of the grid into account. It is of great significance for quickly creating surface model for wide areas. The main works of this paper are as follows:
     (1) Solving the limitation of the reflectance in SFS theory under Lambertain surface assumption:described the Lambertian SFS theory and the two main types of solution method:minimization and propagating method. To solve the limitation in SFS theory that reflection should be a constant in the image, a reconstruction method combined the Intrinsic Image theory and SFS theory was proposed. The reconstruction error caused by surface reflectance variation was reduced by image decomposition. Experiments performed on synthetic images show that the intrinsic image decomposition can effectively separate the image reflectance component from the original image and improve the accuracy of the SFS algorithm.
     (2) Establishing the non-Lambertian surface fast reconstruction method:gave a detailed study of the Oren-Nayar model and the Phong model based3D reconstruction algorithm, rewrote the reflection map equation in the form of the Hamilton-Jacobi equation (referred to as H-J equation), then used the Lax-Friedrichs Hamiltonian in the equation discretization, finally utilized the high-ordered fast sweeping method (referred to as HO-FSM method) for estimating the surface normal vectors.
     (3) Reconstructing the area where stereo matching method fails to work:Based on the Oren-Nayar reflectance model, a theoretical framework of anisotropic surface reconstruction under the limited condition was proposed. First of all, supervised classification was performed, and the reflectance for each land cover type was estimated; then the reflection map equation was written as the H-J equation, and HO-FSM method was used for solving it; Finally, the least squares was utilized to interpolate the grid of control points.
     (4) Discussing the important parameters estimation problems in the SFS theory. This paper reviewed the approach how to estimate the illumination direction using image reflection equation. Then three classic methods were compared and analyzed in both synthetic and real image experiments.
     (5) Giving a combination framework for stereo and SFS algorithm on the basis of the advantages and disadvantages for each one:Firstly the FSM-SFS algorithm was implemented for the feature region reconstruction, and the results were used to form a new depth similarity measurement; then only the stable and reliable points were regarded as the matching points, and other points were reconstructed by SFS algorithm; Finally the results for all the surface points were combined to generate the3D model. The reconstruction experiment was implemented based on the three-line array moon images and the results show that the proposed method could give more accurate result than stereo and SFS each of themselves.
     In summary, this paper first solved the inherent problems in the current SFS theory, proposed solutions to improve the accuracy of SFS algorithm; then, in the area where stereo matching method fails to work, an DTM generation algorithm using single remote sensing imagery and certain ground control points was proposed; finally, when the stereo pairs are available, the SFS theory and stereo method was combined to improve the accuracy of stereo matching, so the DTM with higher resolution could be generated.
引文
[1]Ikeuchi K, Horn B K P. Numerical shape from shading and occluding boundaries[J]. Artificial intelligence.1981,17(1):141-184.
    [2]Horn B.K.P., Brooks M.J. The variational approach to shape from shading[J]. Computer Graphic Image Processing.1986,33:174-208.
    [3]Zhang R, Tsai P S, Cryer J E, et al. Shape-from-shading:a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(8):690-706.
    [4]Oren M, Nayar S K. Generalization of the Lambertian model and implications for machine vision[J]. International Journal of Computer Vision.1995,14(3):227-251.
    [5]Wolff L B, Nayar S K, Oren M. Improved diffuse reflection models for computer vision[J]. International Journal of Computer Vision,1998,30(1):55-71.
    [6]Phong B.T. Illumination for computer-generated pictures. Communications of the ACM.1975, 18(6):311-317
    [7]Cook R L, Torrance K E. A reflectance model for computer graphics[J]. ACM Transactions on Graphics (TOG).1982,1(1):7-24.
    [8]Goral C M, Torrance K E, Greenberg D P, et al. Modeling the interaction of light between diffuse surfaces[C]. ACM SIGGRAPH Computer Graphics. ACM,1984,18(3):213-222.
    [9]Frankot R.T., Chellappa R. A Method for Enforcing Integrability in Shape from Shading Algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1988,10: 439-451,1988.
    [10]Malik J, Maydan D. Recovering three-dimensional shape from a single image of curved objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1989,11(6): 555-566.
    [11]Vega O E, Yang Y H. Shading logic:A heuristic approach to recover shape from shading[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1993,15(6):592-597.
    [12]Lee K M, Kuo C C J. Shape from shading with a linear triangular element surface model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1993,15(8):815-822.
    [13]Rouy E, Tourin A. A viscosity solutions approach to shape-from-shading[J]. SLAM Journal on Numerical Analysis.1992,29(3):867-884.
    [14]Dupuis P, Oliensis J. Direct method for reconstructing shape from shading[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings CVPR'92. IEEE,1992:453-458.
    [15]Bichsel M, Pentland A P. A simple algorithm for shape from shading[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR'92. IEEE, 1992:459-465.
    [16]Kimmel R, Bruckstein A M. Tracking level sets by level sets:a method for solving the shape from shading problem[J]. Computer Vision and Image Understanding.1995,62(1):47-58.
    [17]Pentland A P. Local shading analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1984,2:170-187.
    [18]Lee C H, Rosenfeld A. Improved methods of estimating shape from shading using the light source coordinate system[J], Artificial Intelligence.1985,26(2):125-143.
    [19]Pentland A. Shape Information From Shading:A Theory About Human Perception[C]. Second International Conference on Computer Vision. IEEE,1988:404-413.
    [20]Tsai P S., Shah M. Shape from shading using linear approximation[J]. Image and Vision Computing,1994,12(8):487-498.
    [21]Courteille F, Crouzil A, Durou J D, et al. Towards shape from shading under realistic photographic conditions[C]. Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004. IEEE,2004,2:277-280.
    [22]Prados E, Faugeras O, Rouy E. Shape from shading and viscosity solutions[M]. Computer Vision—ECCV 2002. Springer Berlin Heidelberg,2002:790-804.
    [23]Prados E, Faugeras O. Perspective Shape from Shading" and viscosity solutions[C]. Proceedings on 9th IEEE International Conference in Computer Vision. IEEE,2003, Ⅱ: 826-831.
    [24]Prados E, Camilli F, Faugeras O. A unifying and rigorous shape from shading method adapted to realistic data and applications[J]. Journal of Mathematical Imaging and Vision.2006, 25(3):307-328..
    [25]Prados E, Camilli F, Faugeras O. A viscosity solution method for shape-from-shading without image boundary data[J]. ESAIM:Mathematical Modelling and Numerical Analysis. 2006,40(02):393-412.
    [26]Prados E, Jindal N, Soatto S. A non-local approach to shape from ambient shading[M]. Scale Space and Variational Methods in Computer Vision. Springer Berlin Heidelberg,2009: 696-708.
    [27]Vogel O, Breuβ M, Weickert J. A direct numerical approach to perspective shape-from-shading[C]. Proc Vision, Modeling, and Visualization Workshop 2007, Saarbr'ucken 2007 (H. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, eds.),ision, Modeling, and Visualization.2007:91-100.
    [28]Vogel O, Bruhn A, Weickert J, et al. Direct shape-from-shading with adaptive higher order regularisation[M]. Scale Space and Variational Methods in Computer Vision. Springer Berlin Heidelberg,2007:871-882.
    [29]Cristiani E, Falcone M. Fast semi-Lagrangian schemes for the eikonal equation and applications[J]. SIAM Journal on Numerical Analysis.2007,45(5):1979-2011.
    [30]Cristiani E, Falcone M, Seghini A. Numerical solution of the perspective Shape from Shading problem[J]. Proceedings of Control Systems:Theory, Numerics and Applications" PoS (CSTNA2005),2005,8.
    [31]Cristiani E, Falcone M, Seghini A. Some remarks on perspective shape-from-shading models[M]. Scale Space and Variational Methods in Computer Vision. Springer Berlin Heidelberg,2007:276-287.
    [32]Ahmed A H, Farag A A. A new formulation for shape from shading for non-lambertian surfaces[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE,2006,2:1817-1824.
    [33]Ahmed A H, Farag A A. Shape from shading under various imaging conditions[C]. IEEE Conference on.Computer Vision and Pattern Recognition, CVPR'07. IEEE,2007:1-8.
    [34]Bingham A W, Rees W G. Construction of a high-resolution DEM of an Arctic ice cap using shape-from-shading[J]. International Journal of Remote Sensing,1999,20(15-16):3231-3242.
    [35]Rajabi M A, Blais J A. Densification of digital terrain elevations using shape from shading with single satellite imagery[J]. Computational Science-ICCS 2001, Lecture Notes in Computer Science V. Alexandrov, J. Dongarra, B. Juliano et al., eds., pp.3-12:Springer Berlin /Heidelberg,2001.
    [36]Rajabi M A, Blais J A. Optimization of DTM interpolation using SFS with single satellite imagery[J]. The Journal of Supercomputing.2004,28(2):193-213.
    [37]Wohler C, Hafezi K. A general framework for three-dimensional surface reconstruction by self-consistent fusion of shading and shadow features[J]. Pattern Recognition,2005,38(7): 965-983.
    [38]Wenger S, Sellent A, Schutt O, et al. Image-based lunar surface reconstruction[J]. Pattern Recognition Lecture Notes in Computer Science.2009,5748:382-391.
    [39]O'Hara R, Barnes D. A new shape from shading technique with application to Mars Express HRSC images[J]. ISPRS Journal of Photogrammetry and Remote Sensing.2012,67:27-34.
    [40]Frankot R T, Chellappa R. Estimation of surface topography from SAR imagery using shape from shading techniques [J]. Artificial Intelligence,1990,43(3):271-310.
    [41]Bors A G, Hancock E R, Wilson R C. Terrain analysis using radar shape-from-shading[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2003,25(8):974-992.
    [42]Chen X, Wang C, Zhang H. DEM generation combining SAR polarimetry and Shape-from-Shading techniques[J]. Geoscience and Remote Sensing Letters, IEEE,2009,6(1): 28-32.
    [43]Wohler C, Grumpe A. Integrated DEM construction and calibration of hyperspectral imagery: a remote sensing perspective[M]. Innovations for Shape Analysis. Springer Berlin Heidelberg, 2013:467-492.
    [44]杨磊,韩九强.一种由明暗恢复形状的改进变分算法[J].西安交通大学学报.2008,42(4):418422.
    [45]王国珲,韩九强,贾洪海,等.一种从明暗恢复形状的快速黏性解算法[J].西安交通大学学报,2009,43(6):4347.
    [46]王国挥,韩九强,张新曼,等.一种新的基于从明暗恢复形状的月球表面三维形状恢复算法[J].宇航学报,2009,30(6):2265-2269
    [47]高月芳,罗飞,曹建忠.三维图像重构的参数估计与算法实现[J].计算机工程与应用,2007,43(5):60-62
    [48]王学梅,孙即祥.基于自适应Eikonal方程的改进透视SFS算法[J].中国图象图形学报,2010,15(5):770-774
    [49]马吉权,马培军,苏小红.基于镜面高光检测的明暗恢复形状新方法[J].电子学报,2010,38(5):1084-1088.
    [50]Tankus A, Sochen N, Yeshurun Y. Perspective shape-from-shading by fast marching[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society; 1999,2004,1:1-43.
    [51]Kimmel R, Bruckstein A M. Tracking level sets by level sets:a method for solving the shape from shading problem[J]. Computer Vision and Image Understanding,1995,62(1):47-58.
    [52]Lions P L, Rouy E, Tourin A. Shape-from-shading, viscosity solutions and edges[J]. Numerische Mathematik,1993,64(1):323-353.
    [53]J.-D. Durou, D. Piau, Ambiguous shape from shading with critical points, Journal of Mathematical Imaging and Vision 12 (2) (2000) 99-108.
    [54]老大中.变分法基础(第二版)[M].北京:国防工业出版社,2007:37
    [55]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2001
    [56]Conway E D, Hopf E. Hamilton's theory and generalized solutions of the Hamilton-Jacobi equation[J]. J.Math.Anal.Appl,1967,18:238-251
    [57]Rund H. The Hamilton-Jacobi Theory in the Calculus of Variations[M],Van Nostrand, Princeton,1966
    [58]Lax P D. Partial Differential Equations[M], Courant Institute, New York,1951
    [59]Crandall M G and Lions P L, Viscosity solutions of Hamilton-Jacobi equations[J], Trans. SMS.1983(277):1-42
    [60]Crandall M G, Lions P L, Two approximations of solutions of Hamilton-Jacobi equation[J]s, Math of Computation,1984(43):1-19
    [61]Crandall M G, Evans L C, Lions P L, some properties of viscosity solutions of Hamilton-Jacobi equations[J], Trans. AMS,1984(282):487-502
    [62]Lions L P, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London,1982.
    [63]Souganidis P E, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differ. Equa[J].1985(59):1-43
    [64]朱思美.非结构网格上解Hamilton-Jacobi方程的数值法研究[D].长沙:国防科学技术大学,2004
    [65]Crandall M G, Lions P L. Two approximations of solutions of Hamilton-Jacobi equations[J]. Math of Computation,1984,43:1-19.
    [66]Sethian J A. Level set methods and fast marching methods:evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science[M]. Cambridge university press,1999.
    [67]Kurganov A and Tadmor E, New High-resolution semi-discrete central schemes for Hamilton-Jacobi equations, J. Comput. Phys.2000(160):720-742
    [68]Osher S and Sethian. Fronts progating with curvature depentdent speed:Algorithms based on Hamilton-Jacobi equations. J. Comput.Phys.1988(79):12-49
    [69]Harten A, Preliminary results on the extension of ENO schemes to two dimensional problems, in Proceeding of the international conference on hyperbolic problems, Sait-Etienne, 1986
    [70]Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics,1987,71(2):231-303.
    [71]Casper J, Atkins H L. A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems[J]. Journal of Computational Physics,1993,106(1):62-76.
    [72]Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of computational physics,1994,115(1):200-212.
    [73]Jiang G S, Peng D. Weighted ENO schemes for Hamilton--Jacobi equations[J]. SIAM Journal on Scientific computing,2000,21(6):2126-2143.
    [74]Augoula S, Abgrall R. High order numerical discretization for Hamilton-Jacobi equations on triangular meshes [J], Journal of Scientific Computing,2000,15:197-229
    [75]Zhang Y T and Shu C W. High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes[J], SIAM J. Sci. Comput,2003,24:1005-1030
    [76]Falcone M. and R. Ferretti. Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods[J]. J. Comput. Phys.2002,175(2): 559-575.
    [77]Barrow H G, Tenenbaum J M. Computer Vision Systems[C]. Computer vision systems: papers from the Workshop on Computer Vision Systems, held at the University of Massachusetts, Amherst, Massachusetts, June 1-3,1977. Academic Pr,1978:3.
    [78]E.H. Land and J.J. McCann. Lightness and Retinex Theory[J]. J. Optical Soc. Am.,1971,61:1-11.
    [79]Y. Achdou, M. Falcone. A semi-Lagrangian scheme for mean curvature motion with nonlineaer Neumann conditions.Interface and Free Boundaries[J].2012,14(4):455-485
    [80]Enright D, Losasso F, Fedkiw R. A fast and accurate semi-Lagrangian particle level set method[J]. Computers & structures,2005,83(6):479-490.
    [81]Sethian J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences,1996,93(4):1591-1595.
    [82]Sethian J A, Vladimirsky A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes[J]. Proceedings of the National Academy of Sciences,2000, 97(11):5699-5703.
    [83]Prados E, Soatto S. Fast marching method for generic shape from shading[M]. Variational, Geometric, and Level Set Methods in Computer Vision. Springer Berlin Heidelberg,2005: 320-331.
    [84]Tsai Y H R, Cheng L T, Osher S, et al. Fast sweeping algorithms for a class of Hamilton--Jacobi equations[J]. SIAM journal on numerical analysis,2003,41(2):673-694.
    [85]Zhao H. A fast sweeping method for eikonal equations[J]. Mathematics of computation, 2005,74(250):603-627.
    [86]Kao C Y, Osher S, Tsai Y H. Fast Sweeping Methods for Static Hamilton--Jacobi Equations[J]. SIAM journal on numerical analysis,2005,42(6):2612-2632.
    [87]Zhang Y T, Zhao H K, Qian J. High order fast sweeping methods for static Hamilton-Jacobi equations[J]. Journal of Scientific Computing,2006,29(1):25-56.
    [88]Kimmel R, Sethian J.A. Optimal algorithm for shape from shading and path planning[J]. J. Math. Imaging Vision,2001,14:237-244.
    [89]Prados E, Faugeras O. Unifying approaches and removing unrealistic assumptions in shape from shading:Mathematics can help[M]. Computer Vision-ECCV 2004. Springer Berlin Heidelberg,2004:141-154.
    [90]Durou J D, Falcone M, Sagona M. Numerical methods for shape-from-shading:A new survey with benchmarks[J]. Computer Vision and Image Understanding,2008,109(1):22-43.
    [91]Breuβ M, Cristiani E, Durou J D, et al. Numerical algorithms for perspective shape from shading[J]. Kybernetika,2010,46(2):207-225.
    [92]Shen L, Tan P, Lin S. Intrinsic image decomposition with non-local texture cues[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE,2008:1-7.
    [93]Farid H, Adelson E H.. Separating reflections from images by use of independent components analysis[J]. Journal of the optical society of america,1999,16(9):2136-2145.
    [94]R. Szeliksi, S. Avidan, and P. Anandan. Layer extraction from multiple images containing reflections and transparency. In Proceedings IEEE CVPR,2000.
    [95]Weiss Y. Deriving intrinsic images from image sequences[C]. Proceedings on Eighth IEEE International Conference on.Computer Vision, ICCV 2001. IEEE,2001,2:68-75.
    [96]Finlayson G D, Drew M S, Lu C. Intrinsic images by entropy minimization[M]. Computer Vision-ECCV 2004. Springer Berlin Heidelberg,2004:582-595..
    [97]Tappen, Marshall F., William T. Freeman, and Edward H. Adelson. "Recovering intrinsic images from a single image." Pattern Analysis and Machine Intelligence, IEEE Transactions on 27.9 (2005):1459-1472.
    [98]Worthington P L, Hancock E R. New constraints on data-closeness and needle map consistency for shape-from-shading[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(12):1250-1267.
    [99]Yuen S Y, Tsui Y Y, Chow C K. A fast marching formulation of perspective shape from shading under frontal illumination[J]. Pattern Recognition Letters,2007,28(7):806-824.
    [100]Wolff L B, Nayar S K, Oren M. Improved diffuse reflection models for computer vision[J]. International Journal of Computer Vision,1998,30(1):55-71.
    [101]Dana K J, Van Ginneken B, Nayar S K, et al. Reflectance and texture of real-world surfaces[J]. ACM Transactions on Graphics (TOG),1999,18(1):1-34.
    [102]Ragheb H, Hancock E R. Surface radiance correction for shape from shading[J]. Pattern Recognition,2005,38(10):1574-1595.
    [103]Vogel O, Breuβ M, Weickert J. Perspective shape from shading with non-Lambertian reflectance[M]. Pattern Recognition. Springer Berlin Heidelberg,2008:517-526.
    [104]Vogel O, Breuβ M, Leichtweis T, et al. Fast shape from shading for Phong-type surfaces[M]. Scale Space and Variational Methods in Computer Vision. Springer Berlin Heidelberg,2009: 733-744.
    [105]Vogel O, Valgaerts L, Breuβ M, et al. Making shape from shading work for real-world images[M]. Pattern Recognition. Springer Berlin Heidelberg,2009:191-200.
    [106]Arai K, Barakbah A R. Hierarchical K-means:an algorithm for centroids initialization for K-means[J]. Reports of the Faculty of Science and Engineering,2007,36(1):25-31.
    [107]Giachetti A, Asuni N. Fast artifacts-free image interpolation[C]. Proceedings of the British Machine Vision Conference.2008:123-132.
    [108]Pentland A P. Finding the illuminant direction[J]. JOSA,1982,72(4):448-455.
    [109]Lee C H, Rosenfeld A. Improved methods of estimating shape from shading using the light source coordinate system[J]. artificial Intelligence,1985,26(2):125-143.
    [110]Zheng Q, Chellappa R. Estimation of illuminant direction, albedo, and shape from shading[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR'91. IEEE,1991:540-545.
    [111]Chow C K, Yuen S Y. A solution to illumination direction estimation of a shaded image: Genetic algorithm[J]. Image and Vision Computing,2010,28(12):1717-1730.
    [112]Barron J T, Malik J. High-frequency shape and albedo from shading using natural image statistics[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR'2011 IEEE,2011:2521-2528.
    [113]Barron J T, Malik J. Shape, albedo, and illumination from a single image of an unknown object[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR'2012. IEEE, 2012:334-341.
    [114]Barron J T, Malik J. Color constancy, intrinsic images, and shape estimation[M]. Computer Vision-ECCV 2012. Springer Berlin Heidelberg,2012:57-70.
    [115]Shen L, Yeo C. Intrinsic images decomposition using a local and global sparse representation of reflectance[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR'2011, IEEE,2011:697-704.
    [116]Kolmogorov V, Zabih R. Multi-camera scene reconstruction via graph cuts[J]. Lecture Notes in Computer Science,2002,2352:82-96.
    [117]Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(7),1-14.
    [118]Cryer J E, Tsai P S, Shah M. Integration of shape from shading and stereo[J]. Pattern Recognition,1995,28(7),1033-1043.
    [119]Frankot R. T, Chellappa R.. A method for enforcing integrability in shape from shading algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(4): 439-451.
    [120]Samaras D, Metaxas D, Fua P, et al. Variable albedo surface reconstruction from stereo and shape from shading[C]. IEEE conference on computer vision and pattern recognition,CVPR'2000, IEEE,2000,1:480-487.
    [121]Jin H., Cremers D, Yezzi A J, et al. Shedding light on stereoscopic segmentation[C]. In Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR'2004, IEEE,2004,1:36-42.
    [122]Jin H, Cremers D, Wang D,et al.3-d reconstruction of shaded objects from multiple images under unknown illumination[J]. International Journal of Computer Vision,2008,76:245-256.
    [123]Haines T, Wilson R C. Combining shape-from-shading and stereo using Gaussian-Markov random fields[C].19th International Conference on Pattern Recognition, ICPR 2008. IEEE, 2008:1-4.
    [124]Wu C, Narasimhan S G, Jaramaz B. A multi-image shape-from-shading framework for near-lighting perspective endoscopes[J]. International journal of computer vision,2010, 86(2-3):211-228.
    [125]Chow C K, Yuen S Y. Recovering shape by shading and stereo under lambertian shading model[J]. International journal of computer vision,2009,85(1):58-100.
    [126]柯红军.基于SFS算法与单幅遥感影像的DEM数据加密研究[D].南京:河海大学,2006.
    [127]Chen Z, Sun T. DEM densification using SFS with single multi-spectral satellite image[C], Proceedings of SPIE-The International Society for Optial Engineering, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII,2011, v8174
    [128]Chen Z, Qin Q, Lin L, et. DEM Densification using Perspective Shape from Shading through Multi-Spectral Imagery[J], IEEE Geoscience and Remote Sensing Letters,2013, 10(1):145-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700