中国四个生态区花生土壤中黄曲霉菌分布、产毒特征及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉毒素污染是制约我国花生产业发展的重要限制因子。黄曲霉毒素主要是黄曲霉菌和寄生曲霉菌的次级代谢产物,具有高致癌性和高毒性。花生作为地上开花地下结果的作物,很容易受到土壤中黄曲霉菌的侵染,研究表明土壤是花生黄曲霉菌的主要来源,花生荚果中的黄曲霉菌与土壤中的黄曲霉菌有直接联系,因此本文首次对四个生态区同时也是四大花生主产区(东南沿海、长江流域、黄河流域和东北地区)的花生土壤中黄曲霉菌分布和产毒特征进行系统研究,揭示花生土壤中黄曲霉菌的分布和产毒规律,探讨其与生态环境的关系;研究四个生态区黄曲霉菌的遗传多样性,掌握黄曲霉菌的遗传变异情况,揭示遗传变异与地理来源的关系,为花生黄曲霉毒素污染的综合防治提供理论依据和技术支持。主要研究结论如下:
     1.筛选出适宜黄曲霉菌分离的培养基。通过比较7种常用于霉菌分离的培养基对10个土壤样品的黄曲霉菌分离效果,发现7种培养基对黄曲霉菌培养效果差别很大,培养效果最好的是DG18,培养的黄曲霉数是PDA的7.3倍。同时DG18能很好的抑制毛霉的生长,与DRBC培养基相比,能抑制81%的毛霉菌生长。DG18培养基能最大限度的保证黄曲霉的生长分离,同时也能更好的抑制毛霉的生长,因此选择DG18培养基作为黄曲霉菌分离培养基。
     2.分离出324株黄曲霉菌和20株寄生曲霉菌。对东南沿海、长江流域、黄河流域和东北地区的20个采样地600份花生土壤样品进行黄曲霉菌的分离纯化,共分离出344株黄曲霉毒素产生菌,其中黄曲霉菌为324株,寄生曲霉菌为20株。黄曲霉菌所占比例为94.2%,寄生曲霉菌为5.8%。
     3.掌握了中国花生土壤中黄曲霉菌在四个生态区的分布特征。黄曲霉菌的分布呈现明显的地域特征,不同生态区土壤中黄曲霉菌的菌落数和检出率均存在显著差异。数量最多、分布最广泛的为长江流域(菌落数为1039.3cfu·g~(-1)土壤,检出率为80.7%);其次是东南沿海,再次是黄河流域,最少的为东北地区(菌落数只有2.4cfu·g~(-1)土壤,检出率仅为6.6%)。土壤中黄曲霉菌的菌落数与平均气温成正相关,检出率与平均气温成极显著的正相关,且检出率与经度成极显著的负相关。中国花生土壤中NS型菌株所占的比例(41.59%)>L型菌株(31.75%)>S型菌株(26.67%)。
     4.掌握了中国花生土壤中黄曲霉菌在四个生态区的产毒特征。对分离的344个菌株通过液体发酵,用HPLC法测定发酵液中AFB1的量,研究菌株的产毒量。中国花生土壤中黄曲霉菌产毒菌所占的比例为69.19%,不产毒菌所占的比例为30.81%。研究表明黄曲霉菌的产毒能力存在明显的地域特征。四个生态区菌株平均产毒量差异很大,最高的是东南沿海地区(平均产毒量为5836ng·mL~(-1)),其次是黄河流域(其平均产毒量为5453ng·mL~(-1)),再次是东北地区(1886ng·mL~(-1)),最小的为长江流域(平均产毒量为1566ng·mL~(-1))。不同产毒能力的菌株所占的比例在四个生态区间均存在显著性差异。四个生态区中,东南沿海高产毒菌(>1000ng·mL~(-1))所占的比例最高,为55.4%,其次是黄河流域为31.8%,最少的是长江流域为10.2%。东南沿海高产毒菌所占的比例是长江流域的5.4倍。不产毒菌中长江流域所占比例最高为40.2%,其次是东北地区为36.4%,最少的东南沿海为15.7%。
     5.评估了四个生态区花生受黄曲霉毒素污染的潜在风险。四个生态区每克土壤中产AFB1的量也存在显著差异,最多的为长江流域,为1627544ng·mL~(-1);其次为东南沿海,每克土壤中黄曲霉产AFB1的量为1117594ng·mL~(-1);然后是黄河流域,每克土壤中黄曲霉产AFB1的量为18602ng·mL~(-1);数量最少的是东北地区,每克土壤中AFB1的量为4478ng·mL~(-1)。长江流域每克土壤中的潜在产毒量是东北地区的363倍。因此可以看出花生黄曲霉毒素的污染潜在风险最大的地区为长江流域,其次是东南沿海,最小的生态区为东北地区。
     6.构建了ISSR标记用于黄曲霉菌遗传多样性的方法。建立并优化了黄曲霉菌ISSR-PCR的体系。在100个ISSR引物中,通过系统的引物筛选(初筛和精筛),确定引物UBC809、UBC817、UBC834、UBC895和UBC899作为黄曲霉菌ISSR遗传多样性分析的引物。对供试的菌株进行ISSR聚类分析,菌株的遗传相似系数为0.59-0.90。表明ISSR标记在黄曲霉菌遗传多样性研究上是一个十分有效的方法。
     7.掌握了中国花生土壤中黄曲霉菌在四个生态区的遗传多样性。对分离自四个生态区的343株黄曲霉菌株进行基于ISSR的遗传多样性研究,聚类分析表明黄曲霉菌ISSR群与地理来源密切相关。供试菌株划分成四个大的类群,东北地区的菌株全部在类群Ⅰ中,黄河流域的菌株全部在类群Ⅳ中,长江流域88.9%的株菌存在于类群Ⅱ中,东南沿海除8株菌外,其他均存在于类群Ⅲ中。因此来自于四个生态区的菌株,除极少部分菌株在ISSR类群上有交叉外,四个生态区的菌株均分布在不同的类群中。黄曲霉的ISSR群与黄曲霉的产毒情况和菌核类型没有明显的相关性。
Aflatoxin contamination is an important limiting factor for the growth of China's peanutindustry. Aflatoxins are the secondary metabolites formed mainly from the Aspergillus flavus andA. parasiticus. Soil is the main source of inoculum for A. flavus and since peanut developunderground, pods are in direct contact with the soil fungal populations. The study was firstly,systematically researched on the distribution and production of aflatoxin of A. flavus in soils ofpeanut fields in four agroecological zones (Southeast coast、Yangtze River Basin、Yellow RiverBasin and Northeast area) of China and revealed the distribution and aflatoxin production of A.flavus. And the genetic diversity of A. flavus from the four agroecological zones was studied inorder to grasp genetic variation and it revealed the relationship of genetic variation and geographicorigin. The study could provide a theoretical basis and technical support for the prevention ofaflatoxin contamination in peanut.
     The results are listed as follows:
     1. Screened the suitable medium for the isolation of A. flavus. Seven agar media used to isolatemildew were compared for utility in isolating fungi in the A. flavus from soils of peanut fields.The seven agar media were Dicloran18%glycerol medium、High salt Czapek medium、Patatodextrose agar medium、Modified rose Bengal agar medium、YES medium、Bengal medium、Dicloran Bengal agar medium. The results showed that there was a big difference in seven mediain isolating A. flavus. DG18was the most useful for studying the population biology of this groupbecause it permitted both identification of the greatest number of A. flavus group strains andgrowth of the fewest competing fungi. DG-18supported about7.3times more A. flavus coloniesthan the PDA while reducing the number of mucorales colonies by81%than the DRBC. So DG18should be the most useful for studies on the population biology of the A. flavus group.
     2. Isolated324strains of A. flavus and20strains of Aspergillus parasiticus.344strains ofaflatoxin producing Aspergillus species were isolated from600soil samples of20peanut fields infour agroecological zones.323(94.2%) were A. flavus and20(5.8%) were A. parasiticus. Inpeanut soil population of aflatoxin producing Aspergillus species, A. flavus was found to be thedominant species.
     3. Mastered the distribution of A. flavus in soils of peanut fields in four agroecologicalzones of China. The distribution of A. flavus isolates significantly varied among the districts andagroecological zones of China. The largest number and the most widely distribution of A. flavuswas Yangtze River Basin (the densities of A. flavus in soils was1039.3cfu·g~(-1) and the positiverate of A. flavus in soils was80.7%). The second was Southeast coast, and the third was YellowRiver Basin. The last was Northeast area (The densities of A. flavus in soils was only2.4cfu·g~(-1)and the positive rate was6.6%). The positive rate of A. flavus in soils and the temperature had thenotable positive correlation. There was the notable positive correlation between the densities of A.flavus in soils and the temperature. And the densities of A. flavus and the longitude had negative correlation. The A. flavus NS-strain was the most commonly isolated member of A. flavus(41.59%) across the four examined agroecological zones, and the second was A. flavus S-strain.The last was L-strain.
     4. Mastered the aflatoxin production of A. flavus in soils of peanut fields in fouragroecological zones of China. The aflatoxin producing ability was quantified for343isolatedstrains by liquid fermentation with HPLC.69.19%of the tested isolates were toxigenic A. flavusand the percent of atoxigenic A. flavus was30.81%. The aflatoxin producing potential of A. flavusisolates significantly varied among the districts and agroecological zones of China. A. flavusisolate of the Southeast coast zones had the largest aflatoxin producing potential (averagedaflatoxin production was5836ng·mL~(-1)), the second was Yellow River Basin, the third wasNortheast area and the last was Yangtze River Basin. Incidence of toxigenic A. flavusisolates(>1000ng·mL~(-1)) was largest in the Southeast area (54.4%), the second was Yellow RiverBasin,(31.8%), the last was Yangtze River Basin (10.2%).The distribution of the toxigenic andatoxigenic A. flavus isolates varied among the districts and agroecological zones of China.Incidence of atoxigenic A. flavus isolates was largest in the Yangtze River Basin (40.2%), thesecond was Northeast area (36.4%). The last was Southeast coast zones (15.7%).
     5. Estimated the risk of aflatoxin contamination of peanut. Yangtze River Basin had thelargest aflatoxin producing potential in1g soils (1627544ng·mL~(-1)in1g soils), the second wasNortheast area (1117594ng·mL~(-1)), the third was Yellow River Basin (18602ng·mL~(-1)). The lastwas Northeast area (4478ng·mL~(-1)). So highest risk of aflatoxin contamination of peanut was inYangtze River Basin, the lowest was Northeast area.
     6. Established ISSR-PCR method for genetic diversity of A. flavus. The optimal reactionsystem of ISSR-PCR amplification was optimized. Of the100primers, the primers UBC834,UBC809, UBC817, UBC895, and UBC899were selected for for genetic diversity of A. flavus.The range of genetic similarity coefficients was from0.59to0.90. The study showed that theISSR technology is an effective molecular approach for studying diversity of A. flavus.
     7. Mastered the genetic diversity of A. flavus in soils of peanut fields in four agroecologicalzones of China. The genetic diversity of343A. flavus isolates was researched with ISSR. Thecluster analysis showed that the ISSR groups were closely related with geography origin. Theisolates were classified into four large groups. All the strains of Northeast area were in group Ⅰ,and all the strains Yellow River Basin were in group IV.88.9%strains of Yangtze River Basinwere in group Ⅱ. All the strains of Yellow River Basin excepted for8strains were in group Ⅲ.The ISSR groups were not notable correlation with sclerotia character and aflatoxin production.
引文
1.段会军,张彩英,李喜焕,等.基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价[J].菌物学报,2008,27(2):267~276.
    2.邓辉,黄晓燕.ISSRPCR技术在植物种间和种下关系中的应用[J].种子,2006,25(4):55~57.
    3.丁小霞.中国产后花生黄曲霉毒素污染与风险评估方法研究[丁小霞博士毕业论文].2011,北京:中国农业科学院.
    4.高秀芬,荫士安,计融.中国部分地区花生中4种黄曲霉毒素污染调查[J].中国公共卫生,2011,27(5):541~542.
    5.高秀芬,计融,李燕俊,等.北京市城区粮油食品黄曲霉毒素B1污染调查[J].卫生研究,2007,36(2):237.
    6.黄光文,陈觉梁,王伟成,等.利用ISSR标记鉴别水稻品种的初步研究[J].玉米科学,2007,15(6):16~18.
    7.黄湘东,龙朝阳,梁春穗,等.广东省市售大米、花生及其制品中黄曲霉毒素污染水平调查[J].华南预防医学,2007,33(3):62~63.
    8.何正文,刘运生,陈立华,等.正交设计直观分析法优化PCR条件[J].湖南医科大学学报,1998,23(4):403~404.
    9.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1~10.
    10.居乃虎.黄曲霉毒素[M].北京:轻工业出版社,1980,76~86.
    11.贾少锋,段霞瑜,周益林,等.小麦白粉菌ISSR分子标记体系构建及其分离菌株的多样性分析[J].植物保护学报,2007,34(5):493~499.
    12.姜占发.棉花大丽轮枝菌基因组ISSR分子指纹分析[姜占发硕士毕业论文].河北农业大学,2002.
    13.刘付香,李少雄,王文皓等,广东花生产区土壤黄曲霉产毒菌落分布初步研究[J],花生学报,2010,39(4):23~26.
    14.李洪,李爱军,董红芬,等.黄曲霉毒素的发生危害与防控方法.玉米科学,2004(专刊),12:88~90.
    15.李可峰,韩太利,董贵俊,等.用形态与分子标记研究石刁柏种质资源遗传多样性[J].植物遗传资源学报,2006,7(1):59~65.
    16.李挺丹,彭世文,王宗华,等.应用ISSR~PCR分析福建水稻纹枯菌的遗传多样性[J].植物病理学报,2010,40(2):186~194.
    17.李海连.茄子黄萎病病菌鉴定及其ISSR分子指纹分析[D].南京:南京农业大学博士论文,2003.
    18.李竟雄,宋同明.植物细胞遗传学[M].北京:科学出版社,1997.
    19.李懋学.植物染色体研究技术[M].哈尔滨:东北林业大学出版社,1991,252~254.
    20.李莹,文景芝,刘春来.大豆疫霉ISSR-PCR反应体系的建立[J].东北农业大学学报,2005,36(2):153~155.
    21.李蕊倩,何瑞,张跃兵,等.镰刀菌ISSR标记体系的建立及遗传多样性分析[J].中国农业科学,2009,42(9):3139~3146.
    22.罗文永,胡骏,李小方,微卫星序列及其应用[J].遗传,2003:615~619.
    23.刘艳梅,朱建兰,杨航宇.曲霉基因组DNA提取方法研究[J].西北农业学报,2009,18(2):55~58.
    24.李柱刚,崔崇士,马荣才,等.遗传标记在植物上的发展与应用[J].东北农业大学学报,2001,32(4):313~319.
    25.梁炫强,潘瑞炽,宾金华.花生收获前黄曲霉侵染因素研究[J].中国油料作物学报,2000,22(4):67~69.
    26.毛岚,宋培玲,杨家荣.陕西棉花黄萎病菌致病力分化及其遗传多样性[J].植物保护学报,2009,1:55~61.
    27.马忠华,蒋金花,尹蕾艳,尹燕妮.一种不产黄曲霉毒素的黄曲霉菌株及其用途.专利CN101363006B[P],2010年.
    28.秦文彦.潜藏性产黄曲霉毒素真菌的多重PCR检测体系构建及真菌DNA提取技术的改进[秦文彦硕士毕业论文呢].杭州:浙江大学,2007.
    29.沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5~7.
    30.宋培玲,杨家荣,毛岚.正交设计优化棉花黄萎病菌ISSR-CR反应体系[J].西北农业学报,2009,18(1):194~197.
    31.孙秀山,单世华,王传堂,等.山东花生黄曲霉毒素污染情况调查初报[J].山东农业科学,2006,5:57~58.
    32.童健.突发事件公共卫生学[M].2005,苏州:苏州大学出版社.
    33.田兴军.生物多样性及其保护生物学[M].北京:化学工业出版社,2005,6~13,243~245.
    34.王君,刘秀梅。部分市售食品中总黄曲霉毒素污染的检测结果[J].中华预防医学杂志,2006,40(1):33~37.
    35.汪卫星,李春艳,向素琼,等.番木瓜四倍体与二倍体的核型分析45s rDNA-FISH研究[J].园艺学报,2007,34(2):345~348.
    36.王子迎,王源超,张正光.中国和美国大豆疫霉群体遗传结构的ISSR分析[J].生物多样性2007,15(3):215–223.
    37.徐华妹,孙桂菊,王少康,等.市售花生、玉米中黄曲霉毒素与伏马菌素污染水平调查[J].环境与职业医学,2006,23(3):217~219.
    38.熊立仲,王石平,刘克德,等。微卫星和AFLP标记在水稻分子标记连锁图上的分布[J],植物学报,1998,40(7):605~614
    39.熊友明.去除食品中黄曲留毒素的方法[J].武汉粮食工业学院学报,1992,2:55~58.
    40.徐志.我国部分麦区小麦白粉菌群体遗传多样性分析[徐志硕士毕业论文].福州:福建农林大学,2010.
    41.严华军,吴乃虎.DNA分子标记技术及其在植物遗传多样性研究中的应用[J].生命科学,1996,8(3):32~36.
    42.尹志新.我国棉花黄枯萎病菌遗传多样性分析[尹志新硕士毕业论文].北京:中国农业科学
    43.朱海荣,段霞瑜,周益林,等.小麦白粉病菌基因组DNA的微量提取及ISSR~PCR反应体系的优化[J].植物保护,2010,36(3):125~129.
    44.张荷.中国香蕉枯萎病原菌的的遗传多样性研究[张荷硕士毕业论文].海口:海南大学,2011.
    45.中华人民共和国国家标准GB/T4789.16-2003,常见产毒霉菌的鉴定.
    46.臧秀旺,张新友,汤丰收,等.河南省黄曲霉毒素污染研究初报[J].河南农业科学,2008,12:59~60.
    47.周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005,56~57.
    48.朱玉贤,李毅.现代分子生物学[M].高等教育出版社,2002.
    49. Abbas, H. K., Weaver, M. A., Zablotowicz, R. M., et al. Relationships between aflatoxin productionand sclerotia formation among isolates of Aspergillus section Flavi from the Mississippi Delta[J].European Journal of Plant Pathology,2005,112:283-287.
    50.. Alexandre L., Edison L.D., Paolo Z., et al. Genetic diversity of environmental Aspergillus flavusstrains in the state of Sao Paulo, Brazil by random amplified polymorphic DNA[J].Mem InstOswaldo Cruz, Rio de Janeiro,2007,102(6):687-692.
    51. Angle, J. S., Dunn, K. A.&Wagner, G. H. Effect of cultural practiceson the soil populations ofAspergillus flavus and Aspergillus parasiticus [J]. Soil Science Society of America Journal,1982,46:301-304
    52. Anon. Cornmission Regulation (EC) No.1525/98. Official Journal of the European Communities,1998,201:43-46.
    53. Atehnkeng, J., Ojiambo, P. S., Donner, M., et al. Distribution and toxigenicity of Aspergillus speciesisolated from maize kernels from three agro-ecological zones in Nigeria [J]. International Journal ofFood Microbiology,2008,122:74-84.
    54. Azumi, M. Yamamoto, N. AFLP analysis oftype strains and laboratory and industrial strains ofSaccharomyces senJu stricto and its application to phonetic clustering [J]. Yeast,200l, l8:l145-ll54.
    55. Baird, R.E., Trigiano, R.N., Windham, G., et al. Comparison of aflatoxigenic and nonaflatoxigenicisolates of Aspergillus flavus using DNA amplification fingerprinting techniques [J].Mycopathologia,2006,161:93-99.
    56. Barros, G.G., Chiotta, M.L., Reynoso, M.M., et al. Molecular characterization of Aspergillus sectionFlavi isolates collected from peanut fields in Argentina using AFLPs[J].J. Appl. Microbiol,2007,103,900-909.
    57. Barror, G. G. Genetic diversity within Aspergillus flavus strains isolated from peanut-cropped soilsin Argrntina [J]. Soil Biology and Biochemistry,2006,38:145-152.
    58. Barror G.G, Torres A, Chulze S. Aspergillus flavus population isolated from soil of Argentina’speanut-growing region. Sclerotia production and toxigenic profile [J]. Journal of the Science ofFood and Agriculture,2005,85:2349-2353.
    59. Batista, P.P., Santos, J.F., Oliveira, N.T., et al. Genetic characterization of Brazilian strains ofAspergillus flavus using DNA markers [J]. Genet. Mol. Res.,2008,7(3):706-717.
    60. Bayman, P., and Cotty, P. J. Vegetative compatibility and genetic diversity in Aspergillus flavuspopulation of a single field [J]. Canadian Journal of Botany,1991,69:1707-1711.
    61. Bayraktar H.,Dolar F S and Maden S. Use of RAPD and ISSR Marker in Detection of Isolates onChickpea in Turkey [J]. Journal ofPhytopathology,2008,156(3):146-154.
    62. Baysal, O., Siragusa, M., Zengin S et al. SaevaM and Teixeirada [J]. Silva Biology,2002,13(4):272-276。
    63. Blair, M. W., Panaud, O., McCouch, S. R. inter-simple sequence repeat (ISSR) amplificationforanalysis of microsatellit motif frequence and fingerprinting in rice [J]. Theoretical and AppliedGenetics,1999,98:780-792.
    64. Blount W.P., J. Br.Turkey “X” disease [J]. Turk Fed,1961.9:52-5.
    65. Horn, B. W., Dorner, J. W. Regional Differences in Production of Aflatoxin B1and CAST [J].Mycotoxin economic and health risks. Council for Agriculture Seience and Technoloy,1989:116.
    66. Chen, Y.Y., Zhou, R.C., Lin, X.D., et al. ISSR analysis of genetic diversity in sacred lotus cultivars[J]. Aquat. Bot.,2008,89:311-316.
    67. Chu F.S., Fan T.S.L., Zhang J.S., et al. Improved enzyme linked immunosorhent assay for aflatoxinin agricultural commodities [J]. JAOAC Int,1987,70(5):854-857
    68. Cotty, P. J. Comparison of four media for the isolation of Aspergillus flavus group fungi [J].Mycopathologia,1994,125:157-162.
    69. Cotty, P. J. Variability within Aspergillus flavus populations influence aflatoxin contamination [J].Proc Beltwide Cotton Production Con,1991,345.
    70. Cotty P.J. and Cardwell KF. Divergence of West African and North American communities ofAspergillus section Flavi [J]. Appl Environ Microbiol,1999,65:2264-2266.
    71. Cotty, P.J. Effect of atoxigenic strains of Aspergillus flavus on aflatoxin contamination ofdeveloping cottonseed [J]. Plant Disease,1990,74:233-235.
    72. Cotty, P.J. Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic oncotton [J]. Phytopathology,1989,79:808-814.
    73. Cotty, P.J. Aflatoxin and sclerotial production by Aspergillus flavus, Influence of pH [J].Phytopathology,1988,88:1250-1253.
    74. Croft J.H., Kevel F., et al. Molecular and phenotypic characterization of mitochondrial DNApolymerphisms [J]. Antomie Van Leeuwenhoek,1997,72(4):33-347.
    75. Delmotte. F., Bucheli. E., Shykoff, J. A. Host and parasite population structures in a naturalplantpathogen system [J].Heridity,1999,82:300-308.
    76. David, M. Geiser, J. W., Dorner, et al, The Phylogenetics of Mycotoxin and Sclerotium Productionin Aspergillus flavus and Aspergillus oryzae[J]. Fungal Genetics and Biology,2000,31:169-179.
    77. David, M.G., Johni, P., Joe, W. D. Cryptic speciation and recombination in the aflatoxin-producingfungus Aspergillus flavus [J]. Proc. Natl. Acad. Sci.1998,95:388-393.
    78. Devi, U.K., Reineke, A., Maheswara, R.U. C.et al. AFLP and single strand conformationpolymorphism studies of recombination in the entomopathogenic fungus Nomuraea rileyi [J].Mycol Res.2007,3:716-725.
    79. Diener, U.L. Preharvest aflatoxin contamination of peanuts, corn and cottonseed, a review [J].Biodeterioration Research,1989,2:217-224.
    80. Dinolfo M.I., Stenglein S.A., Moreno Mv., et al. ISSR markers detect high genetic variation amongFusarium poae isolates from Argentina and England [J]. European Journal of Plant Pathology,2010,127(4):483-491.
    81. Dorner J. W., Cole R. J., Blankenship P.D. Use of a biocompetitive agent to control prehavestaflatoxin in drought stressed peanuts[J].Food Prot,1992,(55):888-892.
    82. Dorner J.W., Cole R.J. Effect of application of nontoxigenic strains of Aspergillus flavus and A.parasiticus on subsequentaflatoxin contamination of peanuts in storage [J]. Stored Products Res,2002,38:329-339.
    83. Dorner J.W. Management and prevention of mycotoxins in peanuts [J]. Food Addit Contam,2008,25(2):203-208
    84. Egel, D. S., Cotty, P. J., Elias, K. S. Relationships among isolates of Aspergillus section Flavi thatvary in aflatoxin production. Phytopathology,1994,84:906-912.
    85. Egel D.S. and Cotty P.J., Relationships among strains in the Aspergillus flavus group which differ intoxin production, morphology and vegetative compatibility group, in Aflatoxin EliminationWorkshop [M]. Robens J.F. Agricultural Research Service, Beltsville, MD,1992,27.
    86. Ehrlich K.C., Kobbeman K., Beverly G. Aflatoxin-producing Aspergillus species from Thailand [J].International Journal of Food Microbiology,2007,114:153-159.
    87. Elangovan, M., Raia, R., Dholakiaa, B.B., et al. Molecular genetic mapping of quantitative trait lociassociated with loaf volume in hexaploid wheat (Triticum aestivum)[J]. J. Cereal. Sci,2008,47:587-598.
    88. Fernandez, M.E., Figueiras A.M., Benito C. The use of ISSR and RAPD markers for detecting DNApolymorphism, genotype identification and genetic diversity among barley cultivars with knownorigin [J]. Theoretical and Applied Genetics,2002,104:845-851.
    89. Forster H., Oudemans P., Coffy M.D.M. Itochondrial and nuclear DNA diversity within sixspecies of Phytophthora [J]. Experimental Mycology,1990,14:18-31.
    90. Garber, R.K., Cotty, P.J. Formation of sclerotia and aflatoxins in developing cotton bells infected bythe S strain of Aspergillus flavus and potential for biocontrol with an atoxigenic strain [J].Phytopathology,1997,87:940–945.
    91. Gilbeit J.E., Levis R.V., Willanson M.J., et al. Developing a apporiate strategy to assess geneticvariability in plat germplasm collections [J]. Theoretical and Applied Genetics,1999,98:1125-1131.
    92. Giorni, P., Magan, N., Pietri, A., et al. Studies on Aspergillus section Flavi isolated from maize inNorthern Italy [J]. International Journal of Food Microbiology,2007,113:330-338.
    93. Griffin G.J., Smith E.P., Robinson T.J. Population patterns of Aspergillus flavus group and A. nigergroup in field soils [J].Soil Biology&Biochemistry,2001,33:253-257.
    94. Grubisha, L. C., and Cotty, P. J. Genetic isolation among sympatric vegetative compatibility groupsof the aflatoxin producing fungus Aspergillus flavus [J]. Molecular Ecology,2010,19:269-280.
    95. Gupta P.K., Balyan I.S., Sharma P.C., et al. Microsatellite in plants: a new class of molecularmarkers [J]. Current Science,1996,70:45-541.
    96. Gupta, M., Chyi, Y. S., Romero, J., Amplification of DNA markers from evolutionarilydiversegenomes using single primers of simple sequence repeats [J]. Theor Appl Genet.1994,89(7/8),998–1006.
    97. Henry S.H., Bosch F.X., Bowers J.C. Aflatoxin and food safety [J]. Kluwer Academic/PlenumPublishers,2002,229-233.
    98. Hesseltine C.W., Shotwell O.L., Smith M.L., et al. Production of various aflatoxins by strains ofAspergillus flavus series, in Proceedings of the First US–Japan Conference on ToxicMicroorganisms [M]. Herzberg M.Government Printing Office, Washington, D.C.,1970:202-210.
    99. Horn B.W. and Dorner J.W., Soil population of Aspergillus species from section Flavi along atransect through peanut-growing regions of the United States [J]. Mycologia1998,90:767-776.
    100. Horn, B. W. and Greene, R. L. Vegetative compatibility within populations of Aspergillus flavus, A.parasiticus, and A. tamarri from a peanut field [J]. Mycologia1995,87:324-332.
    101. Horn, B. W. Ecology and population biology of aflatoxigenic fungi in soil [J]. Toxin Reviews.Journal of Toxicology,2003,22:351-379.
    102. Horn B.W., Greene R.L. and Dorner J.W. Effect of corn and peanut cultivation on soil populationsof Aspergillus flavus and Aspergillus parasiticus in southwestern Georgia [J]. Appl EnvironMicrobiol,1995,61:2472-2475.
    103. Horn, B.W., Dorner, J.W. Regional differences in production of aflatoxin B1and cyclopiazonicacid by soil isolates of Aspergillus flavus along a transect within the United States[J]. Applied andEnvironmental Microbiology,1999,65:1444-1449.
    104. Huang, J. C., Sun, M. Genetic diversity and relationships of sweetpotato and its wild relatives inIpomoea series Batatas (Convolvlaceae) as revealed by ISSR and restriction analysis of chloroplastDNA[J]. Theor Appl Genet.2000,100:1050-1060.
    105. IARC-WHO. Some naturally occurring substances:Food items and constituents,heterocyclicaromatic amines,and myeotoxirts[J]. IARC Monographs on the Evaluation of Carcinogenic RiskstoHumans, Lyon France,1993,56:245-362.
    106. IPCS. Food additives series, safety evaluation of certain food additives and contaminants [J]. IPCS,WHO Aflatoxins, Geneva.2000,40:361-468.
    107. János, V., Krisztina, R., Sándor, K., et al. Diversity of polyketide synthase gene sequences inAspergillus species [J]. Res. Microbiology.2003.154,593-600.
    108. Jia, X.D., Wang, T., Zhai, M., Li Y.R., Guo, Z.R. Genetic diversity and identification of ChineseGrown Pecan using ISSR and SSR markers [J]. Molecules,2011,16,10078-10092.
    109. Joe, W., Dorner., Richard, J., Cole., Paul D. Effect of Inculum Rate of Biological Control Agentson Preharvest Aflatoxin Contamination of Peanuts [J]. Biological Control,1998,12:171-176.
    110. Joseph A., Peter S. Ojiambo, Matthias Donner et al. Distribution and toxigenicity of Aspergillusspecies isolated from maize kernels from three agro-ecological zones in Nigeria [J]. InternationalJournal of Food Microbiology,2008,122:74-84.
    111. Joffe, A.Z. Aflatoxin produced by1626isolates of Aspergillus flavus from Groundnut kernels andsoils in Israel [J]. Nature,1969,221/492.
    112. Kawasaki, T. Fujita, M. Shibata, T. Genetic and chemical diversity of Eleutherococcus senticosusand molecular identification of Siberian ginseng by PCR-RFLP analysis based on chloroplast trnkintron sequence [J]. Food Chem.2011,129:1844-1850.
    113. Kenneth C. Ehrlich, Kerri Kobbeman, Beverly G. Montalbano., Aflatoxin-producing Aspergillusspecies from Thailand [J]. International Journal of Food Microbiology,2007,114:153-159.
    114. Klich M.A. and Pitt J.I., Differentiation of Aspergillus flavus and Asparasiticus and other closelyrelated species [J]. Trans Br Mycol Soc,1988,91:99-108.
    115. K.R.N.Reddy., Ch. Surendhar Reddy, P. Nataraj Kumar, C. S., et al.Genetic variability of aflatoxinB1producing Aspergillus flavus trains isolated from discolored rice grains[J]. World J. MicrobiolBiotechnol,2009,25:33-39.
    116. Kurtzman C.P., Horn B.W. and Hesseltine C.W., Aspergillusnomius, a new aflatoxin producingspecies related to Aspergillusflavus and Aspergillus tamarii. Antonie van Leeuwenhoek,1987,53:148-157.
    117. Lewin R. Limits to DNA fingerprinting [J].Science,1989,243:2549-2551.
    118. Li, C.Y., Li, J. B., Liu, L., et al. Comparison of microsatellite in the genome of twophytopathogenic fungi, Fusarium graminearum and Magnaporthe grisea [J]. Acta phytophylaicasinica.2005,33(3),251-255.
    119. Liu. W.D., Li, H.J., Bao, X.B., et al. Genetic Differentiation between Natural and Hatchery Stocksof Japanese Scallop (Mizuhopecten yessoensis) as Revealed by AFLP Analysis[J]. Int. J. Mol. Sci.2010,11:3933-3941.
    120. Liu, H., Yan, G., Shan, F.,et al.Karyotypes inLeucadendron (Proteaceae): evidence of theprimitiveness of the genus[J].Bot J. Linn Soc,2006,151:387-394.
    121. Li, R.Q., He. R., Zhang, Y.B., et al. Establishment of ISSR Reaction System of Fusarium and ItsAnalysis of Genetic Diversity [J]. Scientia Agricultura Sinica.2009,42(9),3139-3146.
    122. Loeffler, W.F., Morden, C.W. Genetic diversity and biogeography of the Hawaiian cordage plant,olona (Toucharida latifolia:Urticaceae), based on RAPD markers[J]. Biochem Syst and Ecol.2003,31:1323–1335.
    123. Lourenco A., Durigon E.L., Zanotto P., et al. Genetic diversity of environmental Aspergillus flavusstrains in the state of Sao Paulo, Brazil by random amplified polymorphic DNA [J]. Mem InstOswaldo Cruz, Rio de Janeiro,2007,102(6),687-692.
    124. Luo R.H., Zhao Z.X., Zhou X.Y., et al. Risk factors for primary liver carcinoma in Chineseproulation[J]. World J Gastroenterol,2005,11(28):4431-4434.
    125. Mehl, H. L. and Cotty, P. J.2010. Variation in competitive ability among isolates of Aspergillusflavus from different vegetative compatibility groups during infection [J]. Phytopathology100:150-159.
    126. Meng, X. Q., Chen, W.D. Applications of AFLP and ISSR techniques in detecting genetic diversityin the soybean brown stem rot pathogen Phialophora gregata [J]. Mycol. Res.105(8):936-940(August2001).
    127. Menzies, J.G., Bakkeren G., Matheson F. Use of inter-simple sequence repeats and amplifiedfragment length polymorphisms to analyze gentle relationships among small grain infecting speciesof Ustilago[J].Ecology and Population Biology,2003,23(2):167-175.
    128. Montiel, D., Dickinson, M.J., Lee, H. A., et al.2003.Genetic differentiation of the Aspergillussection Flavi complexing AFLP fingerprints [J]. Mycol. Res.107,1427-1434
    129. Moody, S.F., Tyler, B.M. Use of nuclear DNA restriction fragment length polymorphisms toanalyze the diversity of the Aspergillus flavus group [J]. Appl Environ Microbiol1990,56:2441-2452.
    130. Moreno, S., Martin J.P., Ortiz J.M. Inter-simple sequence repeat PCR for characterization ofclosely related grape vine gemplasm [J]. Euphytica,1998,101:117-125.
    131. NED C., Kaemmer, D. Kahl, G., et al. Polymorphic microsatellites markers for the bananapathogen Mycosphaerella fijiensis [J]. Molecular Ecology,1999,8(3):522-525.
    132. Orum, T. V., Bigelow, D. M., Nelson, M. R., et al. Spatial and temporal patterns of Aspergillusflavus strain composition and propagule density in Yuma County, Arizona, soils [J]. Plant Disease,1997,81:911-916.
    133. Owen P.G., Pei, M,. Karp A., et al. Isolation and characterization of Microsatellites loci in thewheat pathogen Mycosphaerella graminicola [J].Molecular Ecology,1998,17:1611-1612.
    134. Parkin D.M., Populations of Acarus siro L. Revealed by Inter Simple Sequence Repeats (ISSR)[J].Procedia Environ Sci.2001,8,707-714.
    135. Patricia, R. D., Chirlei, G.B., Vanessa, K.C., et al. RAPD analyses of recombination processes inthe entomopathogenic fungus Beauveria bassiana [J]. Mycol. Res.2003.107(9):1069-1074.
    136. Peter, M. R., Felix, R., Rainer, A. Genetic Diversity among isolates of Aspergillus fumigates inpatients with cystic fibrosis [J]. Zentralbl Bakteriol,1997,285:450-455.
    137. Peter J.Cotty. Afatoxin-producing potential of communities of Aspergillus section Flavi fromcotton producing areas in the United States [J]. Mycol.Res.1997,101(6):698-704.
    138. Pildain M.B., Vaamonde G., Cabral D.. Analysis of population structure of Aspergillus flavus frompeanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production [J].International Journal of Food Microbiology,2004,93:31-40.
    139. Polignano G.B.,Alba E.,Uggenti P.,et al.Geographical patterns of variation in Bari faba beangermplasm collection[J].Genet Resour CropEvol,1999,46:183-192.
    140. Ptttchara P.P., Oslborn T.C.,Willam P.H. et al. Genetic analysis and identification of arnplifiedfragment length polymorpIism market linded to the gene of Leptophaerla naculara,phynopatho,1998,88,1068-1072
    141. Ramon Jaime Garcia, Peter J. Cotty. Crop rotation and soil temperature influence the communitystructure of Aspergillus flavus in soi[J]l. Soil Biology&Biochemistry,2010,42:1842-1847.
    142. Razzaghi-Abyaneh, M., Shams-Ghahfarokhi, M., Allameh, A., et al,. A survey on distribution ofAspergillus section flavi in corn field soils in Iran: population patterns based on aflatoxins,cyclopiazonic acid and sclerotia production. Mycopathologia2006,161:183-192.
    143. Reddy, M.P., Sarla, N., Siddiq, E.A., Inter-simple sequence repeat (ISSR) polymorphism and itsapplication in plant breeding [J]. Euphytica,2002,128,9-17.
    144. Reddy K.R.N, Surendhar Ch.,Reddy P., Kumar N. Genetic variability of aflatoxin BlproducingAspergillus flavus strains isolated from discolored rice grains [J]. World J. Microbiol Biotechnol,2009,25:33-39.
    145. Rodringues, K. F., Sieber, T.N., Gunig, C. R., Holdenrieder, O. Characterization of Guignardiamangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications andITS1-5.8S-ITS2sequences [J]. Mycol. Res.2004,108(1),45-52.
    146. Rodrigues, P., Santos, C, A. Venancio, A., Lima, N. Species identification of Aspergillus sectionFlavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, andmolecular approaches [J]. J. Appl. Microbiol,2011,111;877-892.
    147. Roebuck B.D., Maxuitenko Y.Y. Biochemical mechanisms and biological implications of thetoxicity of aflatoxins as related to aflatoxin carcinogenesis. The toxicology of aflatoxins: humanhealth, veternary and agricultural significance[M]. Eaton D.L., Groopman J.D., eds. San Diego,C.A.: Academic Press.1994:27-41.
    148. Rodio A.P.,Santalla M.,Ron A.M. D.,et al.A core collection of common bean from the Iberianpeninsula[J].Euphytica,2003,131:165-175.
    149. Rodrigues, P., Soares, C., Kozakiewicz, Z., et al. Identification and characterization of Aspergillusflavus and aflatoxins. Communicating Current Research and Educational Topics and Trends inApplied Microbiology [J]. Mendez-Vilas, A.,2007,527-534.
    150. Romas, A. J., Hernandoz E. Prevention of aflatoxicosis in farm animals By means of hydratesodium calcium aluminosilicate addition to feedstuffs: A View [J]. Anim Feed SciTechnol,1997,65:11-16.
    151. Ruas, P.M., Ruas, C.F., Rampim, L., et al. Genetic relationship in Coffea species and parentagedetermination of inter specific hybrids using ISSR (Inter-Simple Sequence Repeat) markers[J]. Gen.Mol. Bio.2003,26,319-327.
    152. Saito M., Tsuruta O., Siriacha P., et al. Distribution and aflatoxin productivity of the atypicalstrains of Aspergillus flavus isolated from soils in Thailand [J]. Proc Jpn Assoc Mycotoxicol,1986,24:41-46.
    153. Schroeder, H.W., Boller, R.A. Afatoxin production by species and strains of the Aspergillus favusgroup isolated from field crops [J]. Applied Microbiology,1973,25:885-889.
    154. Shearer, J.F., Sweets, L.E., Baker, N.K., et al. A study of Aspergillus Flavus Aspergillus Parasiticusin Iowa crop fieldsd1988–1990[J]. Plant Disease,1992,76,19-22.
    155. Singh, S., Panda, M. K., Nayak, S. Evaluation of genetic diversity in turmeric (Curcuma longa L.)using RAPD and ISSR markers [J]. Ind Crop Prod,2012,37:284-291.
    156. Terashima K., Matsumoto T., Hasebe K., et al. Genetic diversity and straintyping in cultivatedstrains of Lentinula edode (the shii-take mushroom)in Japan by AFLP analysis[J]. MycologcalResearch,2002, l06(1):34-39.
    157. Tran-Dinh, N., Pitt, J.I., Carter, D.A. Molecular genotype analysis of natural toxigenic andnontoxigenic isolates of Aspergillus flavus and A. parasiticus [J]. Mycol. Res,1999,103:1485-1490.
    158. Truckses M.W., Dombrink, M.A., Tournas W.H., et al. Occurrence of aflatoxins and fumonisins inlncaparina form Guatemala [J]. Food Addi Contam,2002,19(7):671-675.
    159. Tsumura Y., Ohba K., Strauss S.H. Diversity and inheritance of intersimple sequencepolymorphisms in Douglas-fir (Pseudotauga menziesii) and Sugi (Cryptomeria japonica)[J].Theoretical and Applied Genetics,1996,92:40-45.
    160. Tuna M.,Vogel K.P.,Gill K.S.,et al. C-banding analyses of Bromus inermisgenomes[J].CropSci,2004,44:31-37.
    161. Vaamonde G., Patriarca A., Fernandez Pinto V., Comerio R., and Degrossi C. Variability ofaflatoxin and cyclopiazonic acid production by Aspergillus section Flavi from different substrates inArgentina [J]. International Journal of Food Microbiology,2003.88:79-84.
    162. Velappamn, Sondrass JL. Rapid identification of path genoic bacteria by single enzyme amplifiedfragment length polymorphism analysis[J].Diagnostic Microbiology and Infections Disease,2001,77-83
    163. Woloshuk C.P., Cavaletto J.R., Cleveland T.E.,1997. Inducers of Aflatoxin Biosynthesis fromColonized Maize Kernels Are Generated by an Amylase Activity from Aspergfllus flavus [J].Phytopathol,87:164-169.
    164. Yang W.P., Oliveira A.C., Godwin I., et al. Comparison of DNA marker technologies incharacterizing plant genome diversity: variability in Chinese sorghums [J]. Crop Sci,1996,36:1669-1676.
    165. Yao, Q.L., Yang, K., Pan G. G., et al. Genetic Diversity of Maize (Zea mays L.) Landraces fromSouthwest China Based on SSR Data [J]. J. Genet and Genomics,2007,34(9):851-860.
    166. Yin, J., T. Lou, T., Yan, L., et al. Molecular characterization of toxigenic and atoxigenic Aspergillusflavus isolates, collected from peanut fields in China [J]. J Appl Microbiol,2009.107,1857-1865.
    167. Yu Z.D., Liu X.Y., Cao, Z. M. ISSR Marker and ITS Sequence Study of MelampsoraLarici-populina [J]. Agricultural Sciences in China.,20065(11),847-854.
    168. Zhao W.G., Zhou Z.H., Miao X.X., et al. Genetic relatedness among cultivated and wild mulberry(Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China.Can.J.Plant Sci.2006,86,251-257.
    169. Zhu, S., Bai, Y.J., Oya, M., et al. Genetic and chemical diversity of Eleutherococcus senticosus andmolecular identification of Siberian ginseng by PCR-RFLP analysis based on chloroplast trnk intronsequence. Food Chem,2011,129,1844-1850.
    170. Zhou, S. G,, Simth, D. R., Stanosz, G. R. Differentiation of Botryosphaeria species and relatedanamorphic fungi using Inter Simple or Short Senquence Repeat (ISSR) fingerprinting [R].CPSJoint Meeting2000.
    171. Zietkiewiez, E., Rafalski, A., Labuda, D. Genome finger printing by simple sequence repeat (SSR),anchored polymerase Chain reaction amplification. Genomies,1994,20:176-183
    172. Zizumbo,V. D., Fernandez,B. M.,Torres,H.N.,et al. Morphological variation of fruitin Mexicanpopulations of CocosnuciferaL.(Arecaceae) underin situandex situconditions[J]. Genetic ResourCrop Evol,2005,52:421-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700