西南地区悬钩子属植物分子系统学研究及其与栽培品种的遗传差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬钩子(Rubus L.)隶属于蔷薇科(Rosaceae),全世界有悬钩子属植物750~1000种,中国有201种,98变种,分布遍及全国27个省区,尤以西南地区最为丰富。西南地区是中国悬钩子属植物的现代分布中心与多样性中心,不仅悬钩子属植物种类繁多,而且类型多样,兼有从草本到木本的一系列类群。但是,西南地区的悬钩子资源还未能得到很好的开发利用,其主要原因之一是对该地区悬钩子属植物的亲缘关系和系统发育还缺乏系统而深入的研究。本研究在综合分析已有悬钩子属植物系统学研究成果的基础上,依托国家自然科学基金项目“西南地区树莓植物遗传多样性研究与特异资源的筛选”建立的资源库,运用现代分子生物学技术,采用序列分析方法从核-质基因组入手开展西南地区悬钩子属植物的分子系统学研究,以期为该属植物的系统分类及资源鉴定积累一定的分子证据。同时采用分子标记方法对17个国外引进树莓品种与12个优良野生种质进行遗传差异分析,从而为种质资源的合理利用提供一定的参考。主要结果如下:
     1、对悬钩子属植物14个亚组的34个种(或变种)进行ITS序列测定结果表明:(1)34份材料的ITS(包括ITS1,5.8S和ITS2)序列长度范围为627~632bp,GC含量平均为55.7%。从ITS1和ITS2的长度变异来看,ITS1长度范围为254~260 bp,稍大于ITS2(208~211bp)。以路边青属Geum和蔷薇属Rosa为外类群,比对排序后ITS全长为639个位点,其中变异位点为120个,信息位点为83个,分别占18.8%和13.0%。(2)基于测定的34条ITS序列结合外类群构建的严格一致树表明木莓组与空心莓组的分化十分明显,属于木莓组的材料单独聚为一类,而空心莓组被划分为5类。就各组内部而言,各材料并没有完全按照亚组的划分聚类,而是相互交叉。其中柔毛叶亚组与绒毛叶亚组出现交叉聚类的现象较多,说明这两个组进化关系很近。但是,绒毛叶亚组的椭圆悬钩子并没有与其变种栽秧泡首先聚类,而是与分属于不同亚组的红毛悬钩子(柔毛叶亚组)以非常高的支持率(100%)聚在一起。(3)将测定的34份样品序列与从GenBank中下载的分属于5个组的10条序列进行比较分析,结果表明木莓组与刺毛莓组的关系较近,空心莓组与匍匐莓组的石生悬钩子关系较近,而单性莓组的兴安悬钩子与其余供试样品的关系均较远,且处于树的基部,推测该组植物具有不同的进化方式。对以上结果结合形态学、细胞学方面的资料进行了讨论。
     2、对悬钩子属植物13个亚组33份材料进行了trnL-trnF序列测定,结果表明:(1)33份材料trnL-trnF序列长度变化较大,从954bp(大红泡)到998 bp(栽秧泡),相差44bp,GC含量平均为34%。以Geum和Rosa作为外类群,比对排序后trnL-trnF全长为1121个位点,其中变异位点为191个,信息位点为57个,分别占17.0%和5.1%。(2)基于测定的33条trnL-trnF序列结合外类群构建了严格一致树,结果表明以trnL-trnF序列为基础构建的严格一致树与以ITS序列为基础构建的严格一致树的拓扑结构很相似,仍然是属于木莓组的材料单独聚为一类,而空心莓组被划分为5类,只是各小组成员稍有变化。(3)将测定的33份样品的trnL-trnF序列与从GenBank中下载的分属于4个组的10条序列进行比较分析,结果表明木莓组与刺毛莓组的所有供试材料及矮生莓组的部分材料聚为一大类,空心莓组被划分为4类。另外,匍匐莓组的凉山悬钩子、石生悬钩子以及矮生莓组的匍匐悬钩子与木莓组的关系也较近,它们与木莓组聚在一起的支持率为66%。(4)将ITS序列与trnL-trnF序列均具备的所有样品的两种序列进行拼接,采用最大简约法构建了严格一致树。结果表明采用两种序列拼接后构建的严格一致树与单独用ITS序列或trnL-trnF序列构建的严格一致树相似度很高,均是木莓组单独聚类,空心莓组被划分为不同的组,且都以很高的支持率(100%)将椭圆悬钩子与红毛悬钩子聚在一起,说明悬钩子属植物核质进化的同步性。对以上结果结合形态学、细胞学方面的资料进行了讨论。
     3、采用ISSR分子标记技术对17个国外引进树莓栽培品种及12个悬钩子属植物优良野生种质进行了遗传差异分析。首先采用正交设计对ISSR反应条件进行了优化,优化后的体系为25μl反应体系中含有1×PCR Buffer,2mmol/L MgCl_2,1.5U Taq酶,0.2μmol/L primer,0.4 mmol/L dNTP和20ng DNA。从60条引物中筛选出10条扩增效果好的引物,共产生285条带,其中多态性带278条,占97.5%。各引物扩增的条带数在21~37条不等,平均每个引物扩增出的条带数为28.5条。聚类分析表明,空心莓组材料与树莓种群(Raspberry)品种的遗传关系较近,而木莓组材料与其它供试材料的遗传关系较远,ISSR标记对各大组和种群的划分与形态学分类基本一致。
The genus Rubus belongs to the family Rosaceae and comprises 750~1000 species in the world,of which 201 species and 98 varieties have been found in China.Considered to be the major center of distribution and diversity of Rubus,Southwest China is exceptionally abundant in Rubus species,varieties and genotypes,from herbaceous plants to woody plants.However,the germplasm resources in this region were little-known and had not to be utilized,for the most important reason was that there was almost no deep study on them.Therefore,it is quite necessary to study the phylogeny and genetic diversity of Rubus distributed in this region,which will be beneficial to further utilization effectively. In this study,more than 30 species collected in Southwest China and 17 cultivars introduced from foreign countries were used as materials.The phylogenetic relationships of wild materials were revealed using sequencing techniques in nrDNA and cpDNA,and the genetic diversity between excellent wild germplasm and introduced cultivars were analyzed using molecular markers.The main results were as follow:
     1.The internal transcribed spacer(ITS) regions of nuclear ribosomal DNA(including ITS1,5.8S rRNA and ITS2) of 34 species or accessions from Sect.Malachobatus and Sect. ldaeobatus,representing 14 subsections of Rubus were sequenced.The results showed:(1) Length variation for the entire ITS region ranged from 627 to 632 bp.The ITS1 region (254-260bp) was longer than ITS2(207-211 bp),and the GC content of ITS1(55.09%) was slightly lower than ITS2(57.29%).(2) Together with the ITS sequences Rosa and Geum downloaded from GenBank as outgroups,the phylogenetic relationships within and between the 34 Rubus species were explored by employing maximum parsimony analysis using PAUP software.The length of complete ITS region was 639 sites after alignment, with 120 variable sites and 83 parsimony informative sites.The ITS-based tree inferred that Sect.Malachobatus was well-supported monophyletic group,and Sect.Idaeobatus was polyphyletic with five lineages.R.ellipticus and its variety species R.ellipticus var. obcordatus clustered separately.However,R.pinfaensis(Subsect.Pungentes) and R. ellipticus(Subsect.Stimulantes) formed into one group.(3) Ten sequences of other 5 sections of Rubus were downloaded from GenBank as comparison.The results showed that Sect.Malachobatus plus Sect.Dalibardastrum formed a strongly supported monophyletic group.Sect.Idaeobatus and Sect.Cylactis had close relationship.Sect.Chamaemorus had relatively far relationship with other sections,for it located at the basal clade of the ITS tree.The phylogenetic relationship of the materials were discussed according to the ITS data combining with their morphological characteristics and chromosome numbers.
     2.The trnL-trnF region of 33 species or accessions from Sect.Malachobatus and Sect. Idaeobatus,representing 13 subsections of Rubus were sequenced.The results showed:(1) Length variation for the entire trnL-trnF region ranged from 954 to 998 bp.The mean GC content was 34%.(2) Together with the trnL-trnF sequences Rosa and Geum downloaded from GenBank as outgroups,the phylogenetic relationships within and between the 33 Rubus species were explored by employing maximum parsimony analysis using PAUP software.The length oftrnL-trnF was 1121 sites after alignment,with 191 variable sites and 57 parsimony informative sites.The topological structure of trnL-trnF-based tree was very similar to ITS-based tree.It also supported that Sect.Malachobatus formed a monophyletic group and Sect.Idaeobatus was polyphyletic with five lineages,although some species had different position on the tree.(3) Ten sequences of 4 sections of Rubus were downloaded from GenBank as comparison.The results showed that Sect. Malachobatus plus Sect.Dalibardastrum and some species of Sect.Chamaebatus formed a strongly supported monophyletic group.Sect.Cylactis had parallel relationship with Sect. Malachobatus.(4) We combined ITS and trnL-trnF together to constructed a parsimony tree.It showed that the topological structure of ITS+trnL-trnF-based tree was very similar to the tree based on ITS data or trnL-trnF data separately.The phylogenetic relationships of the materials were discussed according to their morphological characteristics and chromosome numbers.
     3.Total 29 samples including 17 bramble cultivars introduced abroad and 12 wild excellent Rubus germplasm resources were analyzed by using inter-simple sequence repeat (ISSR).The results showed:(1) By orthogonal design,the satisfactory ISSR reaction system was established,i.e.a total volume of 25μl system,it contained 1×PCR Buffer, 2mmol/L Mg~(2+),1.5U Taq DNA polymerase,0.2μmol/L primer,0.4 mmol/L dNTP and 20ng DNA template.(2) Of the 60 primers screened,10 primers exhibited sufficient polymorphic band patterns.A total of 285 ISSR bands were generated by 10 selected primers,among which 278 bands were polymorphic.The average number of band patterns observed per primer was 28.5 with a range from 21 to 37.The results showed that the genetic relationship between Sect.ldaeobatus and Raspberry cultivars was close,and Sect. Malachobatus had relatively far relationship with other materials.The cluster analysis results were consisted with the morphological classification.
引文
1.保曙琳,丁小余,常俊,沈洁,唐风.2004.长江中下游地区菱属植物的DNA分子鉴别.中草药,2004,35(8):926-930
    2.卞贵建,路艳,周庆阳.2007.用于RAPD分析的树莓基因组总DNA提取初报.广东农业科学,3:36-38
    3.陈贵虎,胡平正.2002.南方红树莓新品种‘仙女红'选育简报.山西果树,(3):7-8
    4.代红艳,张志宏,周传生,李贺,郭修武.2007.山楂ISSR分析体系的建立和优化.果树学报,24(3):313-318
    5.邓明琴,景士西,洪建源.1989.草莓、悬钩子、穗醋栗和醋栗育种进展.北京:农业出版社,75
    6.丁建,董晓莉,郑晓琴,李明章,汤浩茹.2006.一种简便高效提取猕猴桃DNA的方法.资源开发与市场,22(5):401-404
    7.傅承新,沈朝栋,黄爱君.1995.浙江悬钩子属植物的综合研究—资源调查、引种及开发利用前景.浙江农业大学学报,21(4):393-397
    8.甘玲.2006.梨离体保存材料遗传差异的分子检测,雅安:四川农业大学硕士学位论文
    9.顾姻,李维林,王传永,於虹,施宗明,彭隆金.2000.云南悬钩子种质资源考察.武汉植物学研究,18(1):49-55
    10.顾姻,王传永.1996.悬钩子种质评价标准.植物资源与环境,5(4):42-47
    11.顾姻.1992.悬钩子属植物资源及其利用.植物资源与环境,1(2):50-60
    12.桂明珠,胡宝忠.2002.小浆果栽培生物学.北京:中国农业出版社:48-72
    13.郭军战,陈铁山,彭少兵.2004.岭山区黄果悬钩子种质资源分析与评价.西北林学院学报,19(2):41-43
    14.洪德元.1990.植物细胞分类学.北京:科学出版社
    15.侯鑫,刘俊娥,赵一之,赵利清.2006.基于ITS序列和trnL-F序列探讨小叶锦鸡儿、中间锦鸡儿和柠条锦鸡儿的种间关系.植物分类学报,44(2):126-134
    16.黄金霞,瞿礼嘉,杨继,银好,顾红雅.CHS基因起源初探及其在被子植物中的进化分析.植物学报,2004,46:10-19.
    17.黎孟枫,金冬雁,李晨,杨新科,侯云德.1992.聚合酶链式反应原理和方法.中华实验和临床病毒学杂志,6(2):210-212
    18.李春奇,叶永忠,王志强,高磊,高致明.1995.河南野生悬钩子属植物资源.果树科学,12(4):258-261
    19.李春香,陆树刚.2006.鳞毛蕨科植物的系统发育:叶绿体rbcL序列的证据.植物分类学报,44(5):503-515
    20.李春香,杨群.2002.PCR产物直接测序还是克隆测序?—密叶杉属rDNA ITS序列的测定方法.植物学通报,19(6):698-704
    21.李维林,贺善安,顾姻,舒璞,濮祖茂.2001.中国悬钩子属花粉形态观察.植物分类学报,39(3):234-247
    22.李维林,贺善安.2001.悬钩子属部分类群的分类订正.植物学研究,21:346-249
    23.李学营,彭建营,白瑞霞.2005.基于核rDNA的ITS序列在种子植物系统发育研究中的应用.西北植物学报,255(4):829-834
    24.李志真,谢一青,黄儒珠,黄勇,陈杰.不同保存方法对光皮桦总DNA提取效果的影响.分子植物育种,2006,4(1):131-134
    25.林盛华,张冰冰,方成泉,林凤起,蒲富慎.1994.中国树莓属8个种染色体数目与核型.园艺学报,21(4):313-319
    26.刘海广,张志东,李亚东,吴林,文连奎,刘洪章.2005.树莓新品种‘红宝达'.园艺学报,32(6):1160
    27.刘海河,侯喜林,张彦萍.2004.西瓜ISSR—PCR体系的正交优化研究果树学报,21(6):615-617.
    28.刘明珍,周忠泽,邱英雄,孙伟,董翔.2007.分子证据支持蓝药蓼和大铜钱叶蓼归入冰岛蓼属.植物分类学报,45(2):227-233
    29.陆玲娣.1983.我国悬钩子属植物的研究.植物分类学报,21(1):13-25
    30.栾文举,焦健.1996.甘肃省悬钩子属植物资源分布及其开发前景初探.自然资源学报,11(1):41-48
    31.栾文举,肖雯,焦健.1996.甘肃省悬钩子属植物优良种类的营养评价及利用途径.甘肃科学学报,8(1):51-55
    32.马月萍,陈凡,戴思兰.2005.植物LEAFY同源基因的研究进展.植物学通报,22(5):605-613
    33.彭建营,束怀瑞,彭士琪.2000.一种适合枣和酸枣基因组DNA的提取方法.河北农业大学学报,23(4):46-48
    34.曲泽洲,孙云蔚.1990.果树种类论.北京:农业出版社,1990,153-160.
    35.阮成江,何祯祥,周长芳.植物分子生态学.北京:化学工业出版社,2005:146
    36.沈洁,丁小余,张卫明,保曙琳,常俊,唐风.2004.花椒cpDNA trnL-F间隔区序列的特征及其在混淆品鉴别中的应用.中国野生植物资源,23(3):29-32
    37.石开明,彭昌操,彭振坤,罗正荣.2002.DNA序列在植物系统进化研究中的应用,湖北民族学院学报(自然科学版),20(4):5-10
    38.孙长清,邵小明,王黎明,祝天才,邹国辉.2004.悬钩子属植物的开发利用概述.广西植物,24(6):578-582
    39.谭睿,马得泉,丁毅.2005.中国西藏近缘野生大麦5S rDNA NIS序列分析.遗传学报,32(10):1094-1100
    40.田家祥.2002.第三代新兴水果—树莓.农村实用技术,9:30-31
    41.汪小全,洪德元.1997.植物分子系统学近五年的研究进展概况.植物分类学报,35(5): 465-480
    42.王富荣,佟兆国,章镇,陈清华,姜立杰,赵剑波.2006.野生桃幼叶DNA提取方法的改良研究.江苏农业科学,5:66-69
    43.王建波,张文驹,陈家宽.1999.核rDNA的ITS序列在被子植物系统与进化研究中的应用.植物分类学报,37(2):407-416
    44.王金玲,瞿礼嘉,陈军,顾红雅,陈章良.2000.CHS基因外显子2的进化规律及其用于植物分子系统学研究的可行性.科学通报.45(9):942-950
    45.王进,何桥,欧毅,粱国鲁,何波,郭启高,向素琼.2008.李种质资源ISSR鉴定及亲缘关系分析.果树学报,25(2):182-187.
    46.王俊鸿,李芳东,杜兰英,傅大立.美国黑莓的主要品种与栽培技术.经济林研究,2000,18(2):5-7
    47.王玲玲,叶青雷,王学英.2008.采用改良CTAB法提取柞树(Quercus L.)基因组DNA.蚕业科学,34(3):494-496
    48.王艇,苏应娟,朱建明.叶绿体rbcL基因序列在植物系统学研究中的应用.武汉植物学研究,1999,17(增刊):8-14
    49.王小蓉,汤浩茹,邓群仙.2006.中国树莓属植物多样性及品种选育研究进展.园艺学报,33(1):181-187
    50.王小蓉,汤浩茹,段娟,李玲.2008.中国悬钩子属空心莓组与木莓组28个种和变种的核型比较研究.植物分类学报,46(4):505-515
    51.王小蓉,汤浩茹,付华清,罗娅,邓群仙,董晓莉,李玲,段娟.2008.西南地区10种野生树莓的染色体数与核型研究.园艺学报,35(2):343-350
    52.王小蓉,汤浩茹,黄力,贺宗珍,董晓莉,付华清,邓群仙.2007.树莓部分野生种及栽培品种花粉亚显微形态的比较.园艺学报,34(6):1395-1401
    53.王心宇,陈佩度,亓增军,张政值,马正强.2001.ISSR标记在小麦指纹图谱分析中的应用研究初探.农业生物技术学报,2001,9(3):261-263
    54.王亚玲,李勇,张寿洲,余兴生.2006.用matK序列分析探讨木兰属植物的系统发育关系.植物分类学报,44(2):135-147
    55.王彦辉,张清华.2003.树莓优良品种与栽培技术.北京:金盾出版社:pp.1-55
    56.王莹,赵华斌,郝家胜.2005.分子系统学的理论、方法及展望.安徽师范大学学报(自然科学版),(28):84-88
    57.王兆林,张德明,张国洪.2003.树莓新品种—螺山仙子.北京农业,(12):21
    58.吴林,刘海广,张志东,李亚东,宫国辉,刘洪章.2005.树莓新品种‘红宝珠'.园艺学报,32(5):967
    59.吴林,张志东,李亚东,刘洪章,陈慧部,郝瑞.2002.树莓优良品种—红宝玉.园艺学报,29(3):291
    60.吴小丽,王述彬,曹碚生,刘金兵,潘宝贵.2007.辣椒ISSR-PCR体系优化.江西农业大 学学报,29(2):288-291
    61.徐坚,王燕,宋立君,陈先知,柳李旺.2008.温州盘菜地方品种鉴定与指纹图谱的分子标记分析.分子植物育种,2008,6(5):899-904
    62.徐玉秀,王友升,王贵禧.2003.树莓的利用研究及其在我国的发展前景.经济林研究,2(1):64-66
    63.轩淑欣,申书兴,赵建军,张成合,陈雪平,郄丽娟.2007.25S rDNA和5S rDNA在大白菜中期染色体上的FISH定位.中国农业科学,40(4):782-787
    64.姚振生,杨武亮.1995.江西省悬钩子属药用植物及利用建议冲药材,18(11):551-554
    65.俞德浚,陆玲娣,谷粹芝,关克俭,李朝銮.1985.中国植物志(第37卷).北京:科学出版社:10-218
    66.俞德浚.1979.中国果树分类学.北京:中国农业出版社:209-220
    67.袁菊红,孙视,彭峰,冯煦,郑玉红,夏冰.2008.石蒜属叶绿体trnL-F序列的变异与系统聚类分析.中国中药杂志,33(13):1523-1527
    68.张文蘅,陈之端,陈虎彪,汤彦承.2001.从叶绿体DNA trnL-trnF序列论双参属的归属问题.植物分类学报,394(4):337-344
    69.张文驹.1998.应用rDNA的ITS区探讨多倍体小麦的基因组起源.武汉:武汉大学博士学位论文
    70.张志勇,俞志雄.2003.江西悬钩子属的分类和地理分布.热带亚热带植物学报,11(1):27-33
    71.赵卫国,张志芳.2002.桑树tmL-trnF基因间隔区序列的特点及分析.蚕业科学,28:83-86
    72.赵玥,赵文军,朱水芳,吕国忠.2005.核rDNA ITS序列在植物种质资源鉴定中的应用.辽宁农业科学,(5):26-28
    73.浙江省农科院信息中心.2002.树莓研究取得重大突破.浙江农业科学,(6):310
    74.郑德龙,李爱民,宋诗斌,艾军,吴艳华.2000.树莓新品种—丰满红.中国果树,(2):7-8
    75.郑景生,吕蓓.2003.PCR技术及实用方法.分子植物育种,1(3):381-394
    76.周延清.2005.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社:pp.143-156
    77.朱元娣,李光晨,李春雨,董利民,王涛.2003.苹果柱型基因的ISSR分子标记研究.园艺学报,30(5):505-510
    78.Adachi J,Hasegawa M.MOLPHY version 2.3:programs for molecular phylogenetics based on maximum likelihood.Computer Science Monographs,28:1-150
    79.Ainouche M L,Bayer R J.1997.On the origins of the tetraploid Bromus species(section Bromus,Poaceae):insights from internal transcribed spacer sequences of nuclear ribosomal DNA.Genome 40(5):730-743
    80.Alice L A,Campbell C S.1999.Phylogeny ofRubus(Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences.American Journal of Botany,86:81-97.
    81.Alice L A,Sutherland B L,Dodson T M.2008.Diversity and relationships of Bhutanese Rubus (Rosaceae). In, Ba(?)ados P and Dale A (eds.), Proceedings of the ninth international Rubus and Ribes symposium, Acta Horticulturae, 777: 63 - 69.
    82. Alverson W S, Whitlock B A, Nyffeler R, Bayer C, Baum D A. 1999. Phylogeny of the core Malvales: evidence from ndhF sequence data. Botanical Society of America, 86: 1474 -1486
    83. APG (Angiosperm Phylogeny Group) II. 2003. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141: 399 - 436.
    84. Baldwin B G .1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution. 1:3-16.
    85. Baldwin B G. Sanderson M J, Porter J M, Wojciechowski M F, Campbell C S, Donoghue M J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 247 - 277
    86. Becerra J X. 2003. Evolution of Mexican Bursera (Burseraceae) inferred from ITS, ETS, and 5S nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution, 26: 300 - 309
    87. Bena G, Jubier M F, Olivieri I, Lejeune B. 1998. Ribosomal external and internal transcribed spacers: combined use in the phylogenetic analysis of Medicago (Leguminosae). Journal of Molecular Evolution, 46: 299-306.
    88. Bortiri E, Oh S H, Gao F Y, Potter D. 2002. The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prumus (Rosaceae). American Journal of Botany, 89: 1697 -1708.
    89. Burger G, Gray M W, Lang B F. 2003. Mitochondrial genomes: anything goes. Geneties, 19: 709 -716
    90. Cavalli-Sforza L L, Edwards A W F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 32: 550 - 570.
    91. Chase M W, Soltis D E, Olmstead R G, Morgan D, Les D H, Mishler B D, Duvall M R, Price R A, Hills H G, Qiu Y L, Kron K A, Rettig J H, Conti E, Palmer J D, Manhart J R, Sytsma K J, Michaels 11 J, Kress W J, Karol K G, Clark W D, Hedren M, Gaut B S, Jansen R K, Kim K J, Wimpee C F, Smith J F, Furnier, G R, Strauss S H, Xiang Q Y, Plunkett G M, Solos P S, Swensen S M, Williams S E, Gadek P A, Quinn C J, Eguiarte L E, Golenberg E, Learn Jr G H, Graham S W, Barrett S C H, Dayanandan S, Albert V A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the pastid gene rbcL. Annals of the Missouri Botanical Garden,80: 528 - 580.
    92. Chaw S M, Walters T W, Chang C C, Hu S H, Chen S H. 2005. A phylogeny of cycads (Cycadales)inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution, 37: 214 - 234.
    93. Chaw S M, Zharkikh A, Sung H M, Lau T C, Li W H. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution, 14: 56 - 68
    94. Cipriani G., Bella R., Testolin R. 1996. Screening RAPD primers for molecular taxonomy and cultivar fingerprinting in the genus Actinidia. Euphytica, 90 (2): 169 - 174
    95. Clark J R.1999. The blackberry breeding program at the University of Arkansas: Thirty-plus years of progress and developments for the future. Acta Horticulturae, 505: 73 - 77.
    96. Clegg M T, Gant B S , Learn G H , Mortonet B R. 1994. Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA, 91: 6795- 6801.
    97. Clegg M T, Learn G H, Golenberg E M. 1991. Molecular evolution of chloroplast DNA. In: Selander, R. K., Clark, A. G. and Whittman, T. S. (eds). Evolution at the Molecular Level, Sinauer Associates, Sunderland, MA. pp. 135 - 149.
    98. Couch J A, Fritz P J. 1990. Isolation of DNA from plants high in polyphenolics. 8(1): 8 - 12
    99. Cronn R C, Small R L, Haselkorn T, Wendel J F. 2002. Rapid diversification of the, cotton genus (Gossypitum: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. American Journal of Botany, 89: 707 - 725
    100. Cronn R C, Zhao X P, Paterson A H, Wendell J F. 1996. Polymorphism and concerted evolution in a tandemly repeated genefamily: 5S ribosomal DNA in diploid and allopolyploid cottons. Journal of Molecular Evolution, 42: 685 - 705.
    101. Curtis S E, Clegg M T. 1984. Molecular evolution of chloroplast DNA sequences. Molecular Biology and Evolution, (1): 291 - 301.
    102. Dajoz I, Till-Bottraud I, Gouyon P-H. 1991. Evolution of Pollen Morphology.Science, 253: 66 - 68
    103. Darrow G M. 1967. The cultivated raspberry and blackberry in North America-Breeding and improvement. American Horticulture Magazine. 46: 202 - 218.
    104. Debnath S C. 2007. Inter simple sequence repeat (ISSR) markers and pedigree information to assess genetic diversity and relatedness within raspberry genotypes. International Journal of Fruit Science, 7 (4): 1-17
    105. Demesure B, Sodzi N, Petit R J. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 4:129 -131
    106. Downie S R, Katz-Downie D S. 1999. Phylogenetic analysis of chloroplast rpsl6 intron sequences reveals relationships within the woody southern African Apiaceae subfamily Apioideae. Canadian Journal of Botany, 77: 1120 - 1135.
    107. Doyle J J, Doyle J L .1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.
    108. Doyle J J, Kanazin V, Shoemake R C. 1996. Phylogenetic utility of histone H3 intron sequences in the perennial relatives of soybean (Glycine: Leguminosae).Molecular Phylogenetics and Evolution, 6:438 - 447.
    109. Duff R J, Nickrent D L. 1999. Phylogenetic relationships of land plants using mitochondria! small-subunit rDNA sequence. American Journal of Botany, 86: 372 - 386.
    110. Eck R V, Dayhoff M O. 1966. Atlas of protein sequence and structure. Silver Spring, Maryland.
    111. Felsenstein J. 1979. Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology, 28:49 - 62.
    112. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17: 368 - 376.
    113. Finn C E, Moore P P, Kempler C. 2008. Raspberry cultivars: What's new? What's succeeding? Where are the breeding programs headed? Acta Horticulturae, 777:33 - 40
    114. Finn C, Ballington J R, Swartz H. 2002. Use of 58 Rubus species in five North American breeding programmes - breeders notes. Acta Horticulturae, 585: 113-119
    115. Fitch W M, Margoliash E. 1967. Construction of phylogenetic trees. Science, 155: 279-284.
    116. Focke W O. 1910. Species Ruborum, part I. Bibliotheca Botanic: Abhandlungen aus dem Gesammtgebiete der Botanik, 17 (72): 1 -120
    117. Focke WO. 1911. Species Ruborum, part II. Bibliotheca Botanic: Abhandlungen aus dem Gesammtgebiete der Botanik, 17(72): 121-223
    118. Focke WO. 1914. Species Ruborum, part III. Bibliotheca Botanic: Abhandlungen aus dem Gesammtgebiete der Botanik, 19(83): 224-498
    119. Fujisawa M, Yamagata H, Kamiya K, Nakamura M, Saji S, Kanamori H, Wu J Z, Matsumoto T, Sasaki T. 2006. Sequence comparison of distal and proximal ribosomal DNA arrays in rice (Oryza sativa L.) chromosome 9S and analysis of their flanking regions . Theoretical and Applied Genetics, 113:419-428
    120. Funt R C, Ellis M A, Williams R, Twarogowski W J, Overmyer R L, Bartels S, Schneider H, Bartholomew H, Nameth S T. 1999. Brambles-Production Management and Marketing, Bulletin 782-99. Chapter 3 Selection and Care of Plants. http://ohioline.osu.edu/b782/
    121. Gu Y, Sun Z J, Cai J H, Huang Y S, He S A. 1989. Introduction and utilization of small fruits in China with special reference to Rubus species. Acta Horticulturae, 262: 47 - 55
    122. Gu Y, Zhao C M, Jin W, Li W L .1993. Evaluation of Rubus germplasm resources in China. Acta Horticulturae, 352:317-312
    123. Guo Y L, Ge S. 2005. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial,and nuclear genomes. American Journal of Botany, 92: 1548 - 1558.
    124. Gustafsson A .1943. The genesis of the European blackberry flora. Lunds Universitets Arsskrift, 39: 1 -200
    125. Hall, H K. 1990. Blackberry breeding. In: J. Janick (Ed.), Plant Breeding Reviews, Vol. 8, pp. 249-312. Timber Press, Portland, Ore.
    126. Hennig W. 1996. Phylogenitic systematic. University of Illinois Press, Urbana.
    
    127. Hsiao C, Chatterton N J, Asay K H, Jensen K B. 1994.Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome, 37 (1): 112 - 120
    
    128. Huber K T, Watson E E, Hendy M D.2001.An algorithm for constructing local regions in a phylogenetic network. Molecular Phylogenetics and Evolution, 19: 1 - 8.
    
    129. Hufford L, McMahon M M, Sherwood A M, Reeves G, Chase M W. 2003. The major Glades of Loasaceae: phylogenetic analysis using the plastid matK and trnL-trnF regions. American Journal of Botany, 90: 1215 - 1228
    
    130. Imanishi H, Nakahara K, Tsuyuzaki H. Genetic relationships among native and introduced Rubus Species in Japan based on rbcL sequence. Acta Horticulturae, 2008, 769: 195-199
    
    131.Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation Escherichia coli with plasmids, Gene, 96: 23 - 28
    132. Jennings D J. 1985. Breeding for spinelessness in blackberries and blackberry-raspberry hybrids: A review. Acta Horticulturae, 183: 59 - 66
    133.Judd W S, Campbell C S, Kellogg E A, Stevens P F, Donoghue M J. 2002. Plant Systematics-Phylogenetic approach (second edition). Sinauer Associates, Sunderland,Massachusetts, pp. 576
    
    134. Kellogg E A, Appels R. 1995. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics, 140: 325 - 343
    135. Kellogg E A. Bennetzen J L. 2004. The evolution of nuclear genome structure in seed plants. American Journal of Botany, 91: 1709 - 1725.
    136. Kimura T, Iketani H, Kotobuki K, Matsuta N, Ban Y Hayashi T, Yamamoto T. 2003. Genetic characterization of pear varieties revealed by chloroplast DNA sequences. Journal of Horticultural Science and Biotechnology, 78: 241 - 247.
    137. Kitamura S, Tanaka A, Inoue N. 2005. Genomic relationships among Nicotiana species with different ploidy levels revealed by 5S rDNA spacer sequences and FISH/GISH. Genes and Genetic Systems 80: 251-260.
    138. Klak C, Hedderson T A, Linder H P. 2003. A molecular systematic study of the Lampranthus Group(Aizoaceae)based on the chloroplast TrnL-trnF and nuclear ITS and 5S NTS sequence data. Systematic Botany, 28 (1): 70 - 85
    139. Knoop V. 2004. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Current Genetics. 46: 123-139
    140. Kollipara K P. Singh R J. Hymowits T. 1997. Phylogenetic and genomic relationships in the genus Glycine Willd. based on sequences from the ITS region of nuclear rDNA. Cenome, 40(1): 57 - 68
    141. Korall P, Kenrick P. 2004. The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: extreme substitution rates and rate heterogeneity. Molecular Phylogenetics and Evolution, 31: 852 - 864
    142. Korbin M, Kuras A, Straczynska K, Orzel A, Danek J. 2005. Biotechnological Directions in Polish Breeding of Rubus. Acta Hort, 777: 133 -139
    143. Lakshmikumaran M, Negi M S. 1994. Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa. Plant molecular biology, 24: 915 - 927.
    144. Li W L,Wu W L, Zhang Z D. 2002. The utilization value and potential of Chinese bramble (Rubus L.). Acta Horticulturae, 585: 133 - 138
    145. Li Z Z, Kang M, Huang H W, Testolin R, Jiang Z W, Li J Q, Wang Y, Cipriani G 2006. Phylogenetic relationships in Actinidia as revealed by nucleated by nuclear DNA genetic markers and cytoplasm DNA sequence analysis. Acta Horticulturae, 735
    146. Lindqvist C, Motley T J, Jeffrey J J, Albert V A. 2003. Cladogenesis and reticulation in the endemic Hawaiian mints (Lamiaceae). Cladistics, 19: 480 - 495
    147. Liu Z L, Zhang D M, Wang X Q, Ma X F, WangX R. 2003. Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. American Journal of Botany, 90(1): 17-24
    148. Malek O, Lattig K, Hiesel R, Brennicke A, Knoop V. 1996. RNA editing in bryophytes and a molecular phylogeny of land plants. The EMBO Journal, 15: 1403 -1411
    149. Markos S, Baldwin B G. 2001. Higher-level relationships and major lineages of Lessingia (Compositae, Astereae)based on nuclear rDNA internal and external transcribed spacer(ITS and ETS) sequences. Systematic Botany, 26: 168-183
    150. Mason-Gamer R J, Kellogg E A. 1996. Potential utility of the nuclear gene waxy for plant phylogenetic analysis. American Journal of Botany, 83: 178
    151.Maughan P J, Kolano B A, Maluszynska J, Coles N D, Bonifacio A, Rojas J, Coleman C E, Stevens M R, Fairbanks D J, Parkinson S E, Jellen E N. 2006. Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome, 49: 825-839
    152. Meng R G, Finn C. 2002. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. Journal American Society For Horticultural Science, 127 (5): 767 - 775
    153. Miller J T, Bayer R J. 2001. Molecular phylogenetics of Acacia (Fabaceae: Mimosoideae) based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. American Journal of Botany, 88: 697-705
    154. Miyata T, Yasunaga T. 1980. Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitution from homologous nucleotide sequences and its application. Journal of Molecular Evolution, 16: 23 - 36.
    155. Moore J N. 1984. Blackberry breeding. HortScience, 19(2): 183 - 185
    156. Naruhashi N, lwatsubo Y, Peng C-1. 2002. Chromosome numbers in Rubus (Rosaceae) of Taiwan. Botanical Bulletin of Academia Sinica, 43: 193 - 201
    157. Neale D B, Wheeler N C, Allard R W. 1986. Paternal inheritance of chloroplast DNA in Douglas-fir. Canadian Journal of Forest Research, 16 (5): 1152 -1154
    158. Nickrent D L, Solos D E. 1995. A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. Annals of the Missouri Botanical Garden, 82:208-234
    159. Okuyama Y, Fujii N, Wakabayashi M, Kawakita A, Ito M, Watanabe M, MurakamiN, Kato M. 2005. Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed introgression in three molecular data partition phylogenies of Asian Mitella (Saxifragaceae). Molecular Biology and Evolution, 22 (2): 285 - 296
    160. Olmstead R G, Palmer J D. 1994. Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany, 81: 1205 - 1224.
    161. Oxelman B, Liden M, Berglund D.1997. Chloroplast rpsl6 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematics and Evolution, 206: 393 - 410.
    162. Palmer J D, Jansen,R K, Michaels H J, Chase M W, Manhart, J R. 1988. Chloroplast DNA variation and plant phylogeny. Annals of the Missouri Botanical Garden, 75, 1180 -1206.
    163. Pan Y B, Burner D M, tegendre B L. 2000. An assessment of the phylogenetic relationship among Sugarcane and related taxa based on the nucleotide sequence of 5S rDNA intergenic spacers. Genetica, 108:285-295
    164. Perret M. Chautems A, Spichiger R, Kite G, Savolainen V. 2003. Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. American Journal of Botany, 90: 445 - 460.
    165. Phytochemical bulletin, 19: 11 - 15.
    166. Qiu Y L, Cho Y R, Cox J C, Palmer J D. 1998. The gain of three mitochondriaL introns identifies liverworts as the earliest land plants. Nature, 394: 671 - 674.
    167. Rogers S O, Bendich A J. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant molecular biology, 9: 509 - 520
    
    168. Rosas R A, Cameron K, Sosa V, Pell S. 2004. A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ETS, ITS, rpll6, and trnL-F nucleotide sequences. American Journal of Botany, 2004, 91(7): 1099 - 1104.
    
    169. Rydberg P A. 1903: Rosaceae. North American Flora, 22 (5): 428 - 480
    
    170. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406 - 425.
    
    171.Sambrook J, Russell D W. 2001. Molecular cloning: a laboratory manual, 3~(rd) ed, Cold Spring Harbor Laboratory Press.
    172. Sanderson M J, Doyle J A. 2001. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. American Journal of Botany, 88: 1499 - 1516.
    173. Sang T, Crawford D J, Stuessy T F. 1995.Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences, 92(15): 6813-6817
    174. Sankar A A, Moore G A. 2001. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of genetic linkage map. Theoretical and Applied Genetics, 102: 206 - 214.
    175. Savolainen V, Chase M W. 2003. A decade of progress in plant molecular phylogenetics. Trends in Genetics, 19(12): 717-724.
    176. Schnabel A, McDonel P E, Wendel J F. 2003. Systematics. Phylogenetic relationships in Gleditsia (Leguminosae) based on ITS sequence. American Journal of Botany, 90(2): 310-320
    177. Shaw J, Small R L. 2005. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Primus section Pronocerasus, Rosaceae). American Journal of Botany, 92: 2011 -2030
    178. Sneath P H A, Sokal R R. 1973. Numerical taxonomy. Freeman, San Francisco, CA.
    179. Sober E. 1988. Reconstructing the past: parsimony, evolution, and inference. MIT press, Cambridge, MA.
    180. Soltis P S, Soltis D E. 1995. Plant molecular systematics: inferences of phylogeny and evolutionary processes. Evolutionary biology, 28: 139 - 194
    181. Stebbins G L. 1971. Chromosomal evolution in higher plants. London: Edward Arnold
    182. Studier J A, Keppler K J. 1988. A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5: 729 - 731.
    183. Suh Y, Thien L B, Reeve H E. 1993. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. American journal of botany. 80: 1042-1055
    184. Sun Y, Fang K P, Leung P C, Shaw P C. 2005. A phylogenetic analysis of Epimedium (Berberidaceae) based on nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution, 35: 287-291
    185. Sun Y, Shaw P C, Fung K P. 2007. Molecular authentication of Radix Puerariae lobatae and Radix Puerariae Thomsonii by ITS and 5S rRNA spacer sequencing. Biological and pharmaceutical bulletin, 30(1): 173-175.
    186. Swofford D L. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts, USA.
    187. Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant molecular biology, 17, 1105-1109.
    188. Takezaki N, Nei M. 1996. Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 144: 389 - 399.
    189. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596 -1599.
    190. Thomopson M M. 1995. Chromosome numbers of Rubus species at the National Clonal Germplasm Repository. HortScience, 30: 1447-1452.
    191. Thompson J D, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid. Res. 25: 4876-4882.
    192. Thompson M M, Zhao C M. 1993. Chromosome numbers of Rubus species in Southwest China. Acta Horticulturae, 352: 493 - 502
    193. Thompson M M. 1997. Survey of chromosome numbers in Rubus (Rosaceae: Rosoideae). Annals of the Missouri Botanical Garden, 84: 128-164.
    194. Volker K. 2004. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet, 46: 123-139.
    195. Walker J M. 1974. Aperture evolution in the pollen of primitive angiosperm. American Journal of Botany, 61 (10): 1112-1136
    196. Wang A, Yang M, Liu J. Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Annals of Botany, 2005, 96: 489-498.
    197. Waugh R, Van de ven WTG, Phillips MS, Powell W. 1990. Chloroplast DNA diversity in the genus Rubus (Rosaceae) revealed by Southern hybridization. Plant Systematics and Evolution. 172, 65 -75
    198. Weber C. 2006. Raspberry plant types and recommend varieties. North American Bramble , Growers Association Conference Proceedings: 27 - 29
    199. Weber C. 2007. Raspberry variety review: old reliable and new potential. Berry Notes, 19 (2): 4-7
    200. Wen J, Berggren S T, Lee C H, Bond S I, Yi T S, Yoo K O, Xie L, Shaw J, Potter D. 2008. Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. Journal of Systematics and Evolution, 46(3):322-332
    201. White T J, Bruns T S, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR Protocols: A Guide to Methods and Applications, San Diego: Academic Press, pp. 315 - 322.
    202. Wolfe K H, Li W H, Sharp P M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci, 84: 9054-9058.
    203. Xia T, Chen S L, Chen S Y, et al. ISSR analysis of genetic diversity of the Qinghai-Tibet Plateau endemic Rhodiola chrysanthemifolia (Crassulaceae). Biochemical Systematics and Ecology, 2007, 35,209-214.
    204. Yamashiro T, Fukuda T, Yokoyama 1, Maki M. 2004. Molecular phylogeny of Vincetoxicum (Apocynaceae-Asclepiadoideae) based on the nucleotide sequences of cpDNA and nrDNA. Molecular Phylogenetics and Evolution, 31: 689 - 700
    205. Yang J Y, Pak J H .2006. Phylogeny of Korean Rubus (Rosaceae) based on ITS (nrDNA) and trnL/F intergenic region (cpDNA). Journal of Plant Biology. 49:44-54
    206. Yockteng R, Nadot S. 2004. Infrageneric phylogenies: a comparison of chloroplast-expressed glutamine synthetase, cytosol-expressed glutamine synthetase and cpDNA maturase K in Passiflora. Molecular Phylogenetics and Evolution, 31: 397-402
    207. Zietkiewicz E, Rafalski A, Labuda D. 1994. Genome fingerprinting by single sequence repeats (SSR)-anchored PCR amplification. Genomics, 20:176-183.
    208. Zurawski G, Clegg M T. 1987. Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annual review of plant physiology, 38: 391 -418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700