中国苎麻属植物遗传多样性及其系统发育关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以nrDNA的ITS序列为研究对象,分析了野生苎麻属植物的系统发育关系;同时还利用ISSR(简单重复序列间区)分子标记技术,探讨苎麻栽培品种间的遗传多样性。通过苎麻属植物亲缘关系的研究和苎麻栽培品种遗传多样性的分析,对于指导苎麻种质资源的搜集、保存、遗传育种与种质创新等均有十分重要的理论意义和应用价值。实验主要结论如下:
     1.通过PCR扩增、测序、序列同源性比对及聚类分析,得到了苎麻14个种和8个变种植物以及1个外类群种的ITS序列。并进行了相应的系统发育分析。在苎麻14个种和8个变种植物以及1个外类群种的ITS序列中,ITS转录间隔区(包括ITS1和ITS2)内信息位点达28.9%。由此可见,整个苎麻属内,ITS区序列信息位点比较丰富。从分支支持率来看,属内各类群的划分均具有较高的支持率,这证明ITS区可以为解决苎麻属植物的系统发育问题提供较强的证据。
     2.利用MP法和NJ法构建的系统发育树表明:外类群冷水花属的植物首先与苎麻属植物分开。而苎麻属14个种和8个变种的植物共可被分为四大类。其中,大叶苎麻组和序叶苎麻组植物聚成一类;帚序苎麻组植物和越南苎麻形成了第二个分支;苎麻组植物形成第三大组;而腋球苎麻单独成为一个分支,并与苎麻组植物具有较近的亲缘关系。它们的分支支持率都达到了50%以上。
     3.苎麻ISSR分析的技术体系建立:25ul反应体系中,100ng模板DNA,0.4μmol/L的引物,1×PCR反应缓冲液,0.2mmol/LdNTP,1U的TaqDNA聚合酶,1.5mmol/LMgCl_2。反应程序为:94℃预变性5min;94℃变性45s,56℃退火45s,72℃延伸1min,35个循环;最后72℃保持7min。15个ISSR引物共扩增出258条带,其中多态性带247条,多态性比率(PPB)为95.82%。平均每个引物扩增出17.2条带。研究说明苎麻栽培品种间遗传差异较大。
     4.依据ISSR标记谱带对供试苎麻栽培品种进行了UPGMA聚类分析,利用两条结合线可将56个苎麻品种划分成二个聚合等级。在遗传距离为0.635处的结合线可将56个苎麻品种分为5类。其中,湖南与湖北的51个苎麻品种聚为一类;贵州的2个苎麻品种聚为另一类;来自江西的2个苎麻品种和来自四川的1个品种各自成为一类。从分类结果可以看出,基本上相邻或相近地区品种的遗传距离较近,说明品种间的亲缘关系与地理位置密切相关。
Based on the difference in nrDNA ITS, we analyzed the phylogenetic relationships of Boehmeria; In the second part, by the usage of ISSR analyzing technique, we discussed the genetic diversities among 56 varieties of B.nivea. The thesis provide theoretical foundation for the evaluation, classification, selection of good rermplasm resources, utilization and protection. Major results were as follows:
     1. The nrDNA ITS sequences of the 14 species and 8 varieties of Boehmeria and one outgroup were obtained by PCR and sequencing, which subsequently were used to analyze the phylogenetic relationships in the genus by homologous blast and clade anlaysis. In the data set of 14 species and 8 varieties of Boehmeria, the percentage of phylogenetically informative is 28.9% in ITS regions (including two spacers, without 5.8S subunit). According to the above statistics, there are relatively abundant informative sites in the ITS sequences of genus Boehmeria. According to the well bootstrap support among the most of clades, which proved that the ITS regions are valuable to resolve the phylogenetic relationships in Boehmeria.
     2. According to the two ITS-based trees employing NJ and MP analyses: Pilea notata formed a single group, it has the most distant to the other species of Boehmeria. The 14 species and 8 varieties of Boehmeria formed four groups. The plants in Sect. Duretia and Sect. Phyllostachys formed the first monophyletic group; The plants in Sect. Zollingetrianae and B.tonkinensis formed the second monophyletic group; The plants in Sect. Tilocnide formed the third monophyletic group; B.malabarica formed a single monophyletic group, but it has the nearest distance to the plants of Sect. Tilocnide. Each clades has a well bootstrap support.
     3. The establishment of an optimized PCR reaction system for ISSR analysis: PCR was performed in a 25ul reaction mixture with 100ng DNA, 0.4μmol/L primer, 0.2mmol/LdNTP, 1U Taq DNA polymerase, 1.5mmol/L Mg~(2+), 1×buffer. The reaction process went as following: the temperature profile used for PCR was 94℃for 5 minutes, followed by 35 cycles of 94℃for 45 seconds, 56℃for 45 seconds, 72℃for 1 second, and was terminated with a 7 minute DNA extension step at 72℃.
     4. The primer sieving of B.nivea ISSR and amplification of PCR: in 56 experimental varieties, 258 DNA bands were amplified by 15 ISSR primers, in which 247 DNA bands were polymorphic, polymorphic ratio (PPB) was 95.82%. 17.2 bands were amplified by every primer. According to the widely distributing and adapting to various climate and soil condition of varieties of B.nivea, we can prove B.nivea heve strong adaption and genetic ability, potential of breeding amending. Based on the ISSR mark bands, the UPGMA cluster analysis was carried on, the results indicated that: the 56 varieties were divided into five groups by first combined line (D1=0.635). The fifty-one varieties in Hunan and Hubei province formed a group; the two varieties in Guizhou province formed the second group; the two varieties in Jiangxi and one variety in Sichuan formed three groups. The result was shown that there was relation of genetic relationship with geographical position.
引文
[1]Wang W.C.(王文采),Chen J.R.(陈家瑞).Boehmeria.In:Flora Reipublicae Popularis Sinicae(中国植物志)[M].Beijing:Science Press,1995,23(2):322-355.
    [2]陈家瑞,Friis I.,Wilmot-Dear C.M..Flora of China[M].科学出版社,2003,164-174.
    [3]Jiang Y.B.(蒋彦波),Jie Y.C.(揭雨成).Advances in research on the genetic relationships of Boehmeria in Chinap[J].Journal of Plant Genetic Resources(植物遗传资源学报),2005,6(1):114-118.
    [4]Yang R.F.(杨瑞芳),Guo Q.Q.(郭清泉).Studies on the Karyotype and Giemsa C—Banding paaem of wild resources of Boehmeria[J].China's Fiber Crops(中国麻作),2000,22(2):6-11.
    [5]胡能书,郭清泉.苎麻过氧化物酶同工酶演化的初步研究[J].湖南师范大学自然科学学报,1991,14(1):73-75.
    [6]郭安平.RAPD分子标记重建我国苎麻属植物亲缘关系的研究[D].湖南农业大学博士学位论文,1999.
    [7]揭雨成,周青文,陈佩度.苎麻栽培品种亲缘关系的RAPD分析[J].作物学报,2002,28(2):254-259.
    [8]郭安平,周鹏,黎小瑛等.17份苎麻栽培品种的RAPD分析[J].农业生物技术学报,2003,11(3):318-320.
    [9]周建林,揭雨成,蒋彦波等.用微卫星DNA标记分析苎麻品种的亲缘关系[J].作物学报,2004,30(3):289-292.
    [10]李建军,郭清泉,陈建荣.21份不同木质素含量的苎麻的RAPD聚类分析[J].中国麻业,2006,28(3):120-122,127.
    [11]王文采.中国苎麻属校订[J].云南植物研究,1981,3(3):307-328.
    [12]王文采.中国苎麻属校订(续)[J].云南植物研究,1981,3(4):301-316.
    [13]张波,郑长清,臧巩固等.中国苎麻属植物比较形态学研究[J].中国农业科学,1998,31(2):36-40.
    [14]赵立宁,臧巩同,陈建华.中国苎麻属植物性别表现及其演化[J].中国麻业,2003,25(5):209-212.
    [15]臧巩固.苎麻属三组五种核型研究[J].中国麻作,1993,(1):1-6.
    [16]张波,孙焕良,臧巩固等.广西苎麻近缘野生种细胞学比较研究[J].广西农业科学,1996,(2):73-77.
    [17]胡能书,朱泽瑞,郭清泉等.苎麻酯酶同工酶亲缘关系的初步研究[J].湖南师范大学学报,1990,13(1):65-70.
    [18]屈良鹄,陈月琴.简单并不代表原始—关于生物早期演化的一种新观点[J].中山大学学报(自然科学版),1999,38(1)128-129.
    [19]Eleder J.R.,Turner B.J..Concerted evolution of repetitive DNA sequences in eukaryotes[J].Quart Rev Biol,1995,70:297-319.
    [20]Ainouche M.L.,Bayer R..On the origins of the tetraploid Bromus species(section Bromus,Poaceae):insight from internal transcribed spacer sequences of nuclear ribonsomal DNA[J].Genome,1997,730-743.
    [21]Hsias C.,Chatterton N.J.,Asay KH.Phylogentic relationships of 10 grass species:an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots[J].Genome,1994,37:112-120.
    [22]WANG J.B.(王建波),ZHANG W.J.(张文驹),CHEN J.K.(陈家宽).Application of ITS sequences of nuclear rDNA in phylogenetic and evolutionary studies of angiosperms[J].Acta Phytotaxonomica Sinica(植物分类学报),1999,37(4):407-416.
    [23]张道远,陈之端,孙海英等.用核糖体DNA的ITS序列探讨中国怪柳植物系统分类中的几个问题[J].西北植物学报,2000,20(3):421-431.
    [24]向见英,管开云,杨俊波.应用ITS区序列对秋海棠属无翅组分类学问题的探讨[J].云南植物研究,2002,24(4):455-462.
    [25]戴波,顾红雅,瞿礼家等.韭不同倍性及其非整倍体的序列变异研究[J].云南植物研究,2003,25(4):483-490.
    [26]Moreno S.,Martin J.P.,Ortiz J.M..Inter-simple sequence repeats PCR for charaterization of closely relied grape vine gemplasm[J].Euphytica,101:117-125.
    [27]Blair M.W,Panaud O.,McCouch S.R..Tnter-simple sequence repeat(ISSR)amplification for analysis of microsatellite motif firequency and fingerprinting in rice(Oryzasativa L.)[J],Theor.Appl.Genet,1999,98:780-792.
    [28]Gilbert J.E.,Lewis R.V.,Wilkinson M.J.,CaligariP.D.S..Developing an appropriate strategy to assess genetic variability in plant germplasm collections[J].Theor.Appl.Genet,1999,98:1125-1131.
    [29]钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性[J].植物学报,2000,42:741-750.
    [30]Huang J.C.,Sun M..Genetic diversity and relationships of sweetpotato and its wild re;latives in Ipomoea series Batatas(Conbobulanceae) as revealed by inter-simple sequence repeat(ISSR) and restrication analysis of chloroplast DNA[J].Theor Appl Genet,2000,100:1050-1060.
    [31]Gupta M.,Chyi Y.S.,Romero-Severson J.,Owen J.L..Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats J.Theor Appl Genet,1994,89:998-1006.
    [32]Zietkiewicz E.,Rafalski A.,Labuda D..Genome finger printing by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J].Genomics,1994,20:176-183.
    [33]Kantety R.V.,Zeng X.,Bennetzen J..Assessment of genetic dicersity in popcorn(Zea mays L.) inbred lines using inter-imple sequence repeat(ISSR) amplification[J].J Hered,1990,90:247-249.
    [34]agaoka T.,Ogihara Y..Apllicability of inter-simple sequence repeat markers in wheat for use as DNA markers in comparison to RFLP and RAPD markers[J].Theor Appl Genet,1997,94:597-602.
    [35]Prevost A.,wilkinson M.J..A new system of comparing PCR priers applied to ISSR fringerprinting of potato cultivars[J].Theor Appl Genet,1998,98:107-112.
    [36]Fang D.Q.,Krueger R.,Roose M.L..Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat(ISSR) markers[J].J Amer Soc Horticul Sci,1998,123:612-617.
    [37]Gilbert J.E.,Lewis R.V.,Wilkinson M.J.,et al.Developing an appropriate strategy to assess genetic variability in plant germplasm collections[J].Theor Appl Genet,1999,98:1125-1131.
    [38]Moreno S.,Martin J.P.,Ortiz M..Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm[J].Euphytica,1998,101:117-125.
    [39]KojimaT.,NagaokaT.,Noda K.,OgiharaY..Geneticlinkage map of ISSR and RAPD markers in Einkom wheat in relation to that of RFLP markers[J].Theor.Appl.Genet,1998,96:37-45.
    [40]Ammiraju J.S.S.,Dholakia B.B.,Santra D.K.,Singh H.,Lagu M.D.,Tamhankar S.A.,Dhaliwal H.S.,RaoV.S.,Gupta V.S.,Ranjekar P.K..Identification of intersimple sequence repeat(ISSR) markers associated with seed size in wheat[J].Theor.Appl.Genet,2001,102:726-732.
    [41]Liu B.S,Sun Q.X.,Sun L.Z.,Gao Q.R.,Xie C.J.,Dou B.D.,Ni Z.F.,Wei Y.L.,Zhang Y.C..RAPD and ISSR Marker of fertility restoring gene for Aegilops kotschyi cytoplasmic male sterility in wheat[J].Zhiwu Xuebao(Acta Botanic Sinica),2002,44(4):446-450.
    [42]关荣霞,郭小丽,刘冬成,曹双河,张爱民.小麦T型细胞质雄性不育恢复基因Rf6的ISSR标记分析[J].中国农业科学,2002,35(11):1297-1301.
    [43]张立荣,徐大庆,杨文香,刘大群.小麦抗叶锈基因Lr37 ISSR分子标记[J].农业生物技术学报,2004,12(1):86-89.
    [44]景润春,何予卿,黄青阳,朱英国.水稻野败型细胞质雄性不育恢复基因的ISSR和SSLP标记分析[J].中国农业科学,2000,33(2):10-15.
    [45]Li D.K.(李登科),Huang C.L.(黄丛林),Tian J.B.(田建保),et al.Extraction ways of high qualitiful DNA from Z.jujuba Mill[J].Molecular Plant Breeding(分子植物育种),2005,3(4):579-583.
    [46]罗志勇,周钢,陈湘晖,陆秋恒,胡维新.高质量植物基因组DNA的分离[J].湖南医科大学学报,2001,26(2):178-180.
    [47]丁晓东,吕柳新.从顽拗植物荔枝中提取基因组DNA技术的研究[J].应用与环境生物学报,2001,6(2):142-145.
    [48]Elder J.R.,Turner B.J..Concerted evolution of repetitive DNA sequences in eukarvotes[J].Quart Rev Biol,1995,70:297-319.
    [49]Ainouche M.L.,Bayer R..On the origins of the tetraploid Bromus species(section Bromus,Poaceae):insights from internal transcribed spacer sequences of nuclear ribosomal DNA[J].Genome,1997,730-743.
    [50]Hsiao C.,Chatterton N.J.,Asay K.H..Phylogenetic relationships of 10 grass species:an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots[J].Genome,1994,37:112-120.
    [51]汪小全,洪德元.植物分子系统学近五年的研究进展概况[J].植物分类学报,1997,35(5):465-480.
    [52]White T.J.,Bruns T.,Lee S.,etal.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.In:Innis M.,Gelfand D.,Sninsky J.,White T.eds.PCR Protocols:A Guide to Methods and Application[J].San Diego,Califomia:Academic Press,1990,315-322.
    [53]Sang T.,Crawford D.J.,Stuessy T.F..Documentation of reticulate evolution in peonies(Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA:implications for biogeogrphy and concerted evolution[J].Proc Natl Acad Sci USA,1995,92:6813-6817.
    [54]Wendel J.F.,Schnabel A.S.,Seelanan T..Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton(Gossypium)[J].Proc Natl Acad Sci USA,1995,92:280-284.
    [55]藏巩固,赵立宁.中国苎麻属无融种综发现初报[J].中国麻作,1996,18(1):19.
    [56]陈守良,徐克学.应用数量分类探讨鹅冠草属的归属问题[J].植物分类学报,1989,27(3):190-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700