核磁共振技术对固体高聚物及其复合材料结构非均匀性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Heterogeneous Structure of Solid Polymer and Polymer Composites Investigated by Nuclear Magnetic Resonance Techniques
  • 作者:严小伟
  • 论文级别:博士
  • 学科专业名称:化学工程
  • 学位年度:2007
  • 导师:阳永荣 ; 王靖岱
  • 学科代码:081701
  • 学位授予单位:浙江大学
  • 论文提交日期:2007-12-01
摘要
本文以固体核磁共振为主要研究手段,辅之以差式量热扫描(DSC)、X射线衍射(XRD)以及动态力学性能测试(DMA)等常用分析技术,着重考察了固体高聚物及其复合材料中的非均匀性结构特征。所选取的研究对象包括聚乙烯管材料、黏土填充聚乙烯纳米复合材料以及碳黑填充天然橡胶复合材料。所使用的固体核磁共振分析手段包括质子宽线氢谱解析、质子弛豫时间测定、质子自旋扩散测试、质子双量子建立曲线分析、脉冲场梯度核磁共振以及场循环核磁共振。论文的主要研究目的在于:1)建立核磁共振技术对固体高聚物及其复合材料的相结构分析平台,对相区含量、相区大小、相区内分子运动性以及材料中不同组分间的相互作用等关键结构因素予以定量表征;2)深入探讨固体高聚物及其复合材料本征或外加的结构非均匀性特征,如部分结晶高聚物的非均相结构、复合材料中填料与聚合物之间的相互作用等与材料使用性能的关联,以期对材料的实际生产和使用过程能有所裨益。
     对于聚乙烯管材料体系,本文选取基于Cr系催化剂、气相流化床工艺的乙烯/丁烯、乙烯/己烯共聚物以及基于Ziegler-Natta催化剂、组合工艺的双峰聚乙烯作为研究对象,在部分结晶聚合物具有晶区、无定形区、界面区三组分结构模型的基础上,利用NMR方法测定了相同聚合工艺所生产的不同耐压等级、不同己烯含量以及不同聚合工艺所生产的两种PE100管材料的相结构参数,并分别与其长期力学性能进行了关联。研究发现,管材料基体树脂的界面区含量以及界面区与无定形区含量比随温度的变化可以作为非晶区中链段缠结情况的定性反映,是决定管材料长期力学性能的重要因素。通过增加共聚单体含量或增加共聚单体碳数可以提高非晶区中链段缠结效率,表现在界面区含量的增加以及界面区与无定形区含量比随温度衰减趋于缓慢,但同时会造成晶区含量的降低,对提升材料的耐压等级产生不利影响。管材料的长期使用性能主要决定于晶区大小以及非晶区中链段缠结情况两个方面的结构因素。
     本文利用原位聚合方法制备了蒙脱土和坡缕石黏土填充的聚乙烯纳米复合材料,两种黏土物质分别具有纳米尺度上二维片层以及一维纤维的微观结构。通过对原位聚合过程的考察,蒙脱土体系催化剂的活性相对于溶液催化剂有较大程度的降低,且随黏土添加量的增大进一步降低。坡缕石黏土所制备的负载型催化剂则具有与相应溶液催化剂相当的活性,文中对这一结果结合热处理载体的表面酸性进行了分析。进一步地,对两种黏土所填充的聚乙烯纳米复合材料进行了三组分相结构NMR解析,并与材料的动态力学性能进行了定性关联。研究表明,纳米尺度填充物的存在,对复合材料中PE基体的所有相结构因素均有不同程度的影响:1)黏土物质的剥离分散对于聚乙烯熔体结晶过程具有抑制作用,从而导致其结晶度降低;2)黏土物质的存在对于非晶区中的链段运动性影响更为明显;3)黏土物质的表面存在吸附链段,这部分链段的数量随黏土含量的增加而增加,且运动受阻而贡献于NMR所测得的结晶度;4)对于蒙脱土体系,当形成插层和剥离两种不同黏土分散状态的复合材料时,由于PE链段结晶方式的不同而造成其具有不同的相结构特征。黏土物质在复合材料中的含量及其对聚乙烯基体结构的影响决定了材料最终的动态力学性能。最后,本文还利用脉冲场梯度核磁共振技术测定了三种有机溶剂在不同黏土含量纳米复合材料中的自扩散系数,并据此计算了小分子溶剂在材料中的扩散曲折因子。结果表明纳米填料的引入能够大大增加小分子的扩散曲折因子,且随着填料含量的增加,这一“阻隔”效应更为明显,但不同溶剂分子在同种材料中的曲折因子计算结果不同,表明填料对小分子的阻隔不仅表现为物理阻隔,而且可能存在小分子溶剂与填料的相互作用。
     对于碳黑填充天然橡胶体系,研究的主要目的在于定量表征复合材料中碳黑-橡胶相互作用以及评价废轮胎裂解碳黑取代商业碳黑的可能性。用于橡胶填充实验的碳黑包括原始热裂解碳黑、硝酸酸洗碳黑、钛酸酯表面改性碳黑以及两种不同粒径和比表面的商业碳黑。通过质子双量子建立曲线、横向弛豫时间测定以及场循环等NMR技术的分析,发现硝酸酸洗虽然能够降低裂解碳黑中灰分含量,提高其比表面积,但不能改善碳黑与橡胶之间的相互作用,甚至有消弱这一作用的趋势。而钛酸酯改性则大大增强了橡胶-碳黑相互作用,所制备的复合材料的流变和静态拉伸性能具有较大程度的提升。从NMR所提供的测试数据看,钛酸酯改性碳黑与橡胶基体相互作用已接近于商业N330碳黑,但由于裂解碳黑中仍含有较高含量的灰分,使得其力学性能测试结果仍然较低。尽管如此,钛酸酯改性碳黑的测试性能已经超过了商业天然气半补强碳黑。
Heterogeneous structure of solid polymer and polymer composites were investigated in this thesis employing mainly nuclear magnetic resonance(NMR) techniques,with the aid of some conventional analysis methods such as DSC,XRD and DMA.Polyethylene for pipe applications,polyethylene/clay nanocomposites and carbon black filled natural rubber were selected as the representative systems.Proton wideline spectra seperation,relaxation time determination,proton spin diffusion, double quantum buildup,pulsed field gradient NMR and field cyling NMR were adopted to quantitatively determine the structural parameters.The goal of this research focused on 1)constructing a platform for characterizing the phase structure of solid polymer and polymer composites by using standard proton NMR techniques. 2)setting up structure and property relationships with the emphasis on the supermolecular structures rather than on chain structures.3)feeding back to the real producing and application processes of the polymer materials with the obtained knowledge.
     On the topic of polyethylene pipe materials,series of basic resins including Cr-catalyzed ethylene-butene and ethylene-hexene copolymers, Ziegler-Natta-catalyzed bimodal polyethylene produced by tandem reactor techniques were analyzed and compared with respect to the three-fraction model of semicrystalline polymers.Different structural parameters including fraction composition,molecular mobility and domain sizes were extracted from solid state proton NMR analysis.Furthermore,the obtained results were correlated with the long-term mechanical properties of the pipe materials.It was found that the efficieny of chain entanglements in the noncrystalline region could be directly related to 1)the composition of interface component and 2)the decay of M_I/M_A versus testing temperature,where M_I and M_A indicated the compostion of the interface component and amorphous component respectively.These two parameters played an important role in determining the long-term mechanical properties of the pipe materials. Additionally,the long-term mechanical property were improved by either increasing the comonomer content or introducing long-chain comonomer,which could be seen from the increased amount of interface component and the slower decay of M_I/M_A versus temperature.However,one should take care the composition of crystalline component since it would decrease at the same time,which would impose negative effects on the long-term use property and duration grades.
     On the topic of polyethylene/clay nanocomposites,montmorillonite and palygorskite clay filled polyethylene nancomposites were prepared through in situ polymerization technique.The selected naturally occurring clay material presented either a nanofibre or nanolayer microstructure.Cp_2TiCl_2 was used as the main catalyst and MAO as the cocatalyst.It was found that the catalyst activity was significantly depressed with the feeding of MMT,and was further decreased once the filler load increased.In comparison,the palygorskite supported catalyst gave a comparable activity to the solution counterpart,which was explained from the strong Lewis acidity of the thermally treated clay material.In the next step,the phase structure of the prepared nanocomposites were analyzed by solid state NMR techniques and further correlated with the dynamic mechanical testing results.It was shown that all aspects of the phase structure including phase composition,molecular mobility and domain sizes had been affected due to the existence of nanoscale filler.Firstly,the exfoliated nanofiller depressed the chain folding process of melt-crystallized PE and thus decreased the crystallinity compared to the one without filler.Secondly,the effects of the filler on the noncrystalline region were more pronouced.Thirdly,there were motion-hindered PE chains located on the surface of the filler,which contributed to the NMR crystallinity and increased with the filler loading.Finally,when using MMT as the filler,intercalated or exfoliated nanocomposites could be prepared depending on the filler loading,which in turn resulted in the different ways of PE crystallization and phase structure characteristics.The interplay between the filler load and its effect on the PE matrix determined the final mechanical properties of the nanocomposites.In the last step,pulsed field gradient NMR technique was applied to measure the self-diffusion coefficents of organic solvents in the nanocomposites. Tortuosities inside the nanocomposites were calculated based on the obtained diffusion coefficients.It was found that the tortuosity was significantly increased due to the introduction of nanofiller.The calculated tortuosities of different solvents inside the same nanocomposite material differed obviously to each other,which illustrated that the barrier property presented by the filler was not only physical effect but also connected to the interaction between the filler and the small molecules.
     The last topic of this thesis focused on the quantitative characterization of the rubber-carbon black interaction by using NMR techniques and evaluating the possibility for pyrolytic carbon black to replace the commerical carbon black when used as the filler for natural rubber.The crude pyrolytic carbon was firstly washed with nitric acid and then chemically modified with a titanate coupling agent.Two types of commerical carbon black with different particle size and specific area were tested for comparison.Proton transverse relaxation time measurement,double quantum buildup and field cycling NMR were employed to characterize the NR-CB interaction in the composite materials.It was shown by the NMR results that washing with nitric acids alone could not improve the interaction but tend to weaken it,while the chemical modification with the titanate coupling agent had greatly favored the interaction and improved both the rheological and tensile properties.According to the NMR results,the NR-CB interaction with the chemically modified pyrolytic CB could even be comparable to the commerical N330.However,the residual ashes in the pyrolytic carbon black limited the further improvement of the tensile property,which made the replacement for commerical N330 not possbile in the present stage but the replacement for commerical semireinforced carbon black were technically feasible.
引文
[1]George C.Oppenlander,Science 1968,159,1311.
    [2]L.Mandelkern,Polymer Journal 1985,17,337.
    [3]E.Baer,A.Hiltner,H.D.Keith,Science 1987,235,1015.
    [4]H.Mark,G.S.Whitby,Collected Papers of W.H.Carothers on High Polymers,Interscience,New York,1940.
    [5]A.Abragam,Principles of Nuclear Magnetism,Clarendon Press,Oxford,1961.
    [6]B.Blumich,Essential NMR,Springer Berlin Heidelberg,2005.
    [7]L.Mandelkern,Chemtracts:Macromol.Chem.1992,3,347.
    [1]F.Bloch,Nuclear Induction,Phys.Rev.1946,70,460.
    [2]E.O.Stejskal,J.E.Tanner,J.Chem.Phys.1965,42,288.
    [3]E.O.Stejskal,J.Chem.Phys.1965,43,3597.
    [4]J.E.Tanner,J.Chem.Phys.1970,52,2523.
    [5]P.T.Callaghan,Principle of Nuclear Magnetic Resonance Microscopy,Clarendon Press,Oxford,1991.
    [6]J.Clauss,K.Schmidt-Rohr,H.W.Spiess,Acta Polym.1993,44,1.
    [7]K.Schmidt-Rohr,H.W.Spiess,Multidimensional Solid-State NMR and Polymers,Academic Press,London,1994.
    [8]D.L.VanderHart,G.B.McFadden,Solid State Nucl.Magn.Reson.1996,7,45.
    [9]T.T.P Cheung,Spin Diffusion in Solids,in "Encyclpedia of Nuclear Magnetic Resonance"(D.M.Grant and R.K.Harris,Eds.),pp4518-4524,Wiley,Chichester,1996.
    [10]D.E.Demco,A.Johansson,J.Tegenfeldt,Solid State Nucl.Magn.Reson.1995,4,13.
    [11]F.Weigand,D.E.Demco,B.Blumich,H.W.Spiess,J.Magn.Reson.1996,A120,190.
    [12]J.Wang,J.Chem.Phys.1996,104,4850.
    [13]M.Goldman,L.Shen,Phys.Rev.1966,144,321.
    [14]R.R.Ernst,G.Bodenhausen,A.Wokaun,Principles of Nuclear magnetic Resonance in One and Two Dimensions,Clarendon,Oxford,1987.
    [15]M.munowitz,A.Pines,Principles and applications of multiple-quantum NMR,Adv.Chem.Phys.1987,66,1.
    [16]R.Graf,D.E.Demco,J.Gottwald,S.Hafner,H.W.Spiess,J.Chem.Phys.1997,106,885.
    [17]Y.Ba,J.A.Ripmesster,J.Chem.Phys.1998,108,8589.
    [18]A.M.Kenwright,K.J.Parker,Chem.Phys.Lett.1990,173,471.
    [19]R.H.Newman,Chem.Phys.Lett.1991,180,301.
    [20]S.Zhang,M.Mehring,Chem.Phys.Lett.1989,160,644.
    [21]A.Buda,D.E.Demco,M.Bertmer,B.Blumich,B.Reining,H.Keul,H.Hocker,Solid State Nucl.Magn.Reson.2003,24,39.
    [22]R.Kimmich,Bull.Magn.Reson.1980,1,195.
    [23]F.Noack,Prog.NMR Spectr.1986,18,171.
    [24]E.Anoardo,G.Galli,G.Ferrante,Appl.Magn.Reson.2001,20,365.
    [25]R.Kimmich,E.Anoardo,Prog.NMR Spectr.2004,44,257.
    [26]R.Kimmich,N.Fatkullin,Adv.Polym.Sci.2004,170,1.
    [27]R.Kimmich,NMR Tomography Diffusometry Relaxometry,Springer,Berlin,1997.
    [28]N.Fatkullin,R.Kimmich,H.W.Weber,Phys.Rev.E 1993,47,4600.
    [29]R.Kimmich,H.W.Weber,J Chem.Phys.1993,98,5847.
    [30]H.W.Weber,R.Kimmich,Macromolecules 1993,26,2597.
    [31]J.D.Ferry,Viscoelastic Properties of Polymers,Wiley,New York,1980.
    [32]K.S.Schweizer,J.Chem.Phys.1989,91,5802.
    [33]N.Fatkullin,R.Kimmich,J.Chem.Phys.1994,101,822.
    [34]R.Kimmich,N.Fatkullin,R.-O.Seitter,K.Gille,J.Chem.Phys.1998,108,2173.
    [1]Y.L.Huang,N.Brown,J.Polym.Sci.,Part B:Polym.Phys.1991,29,129.
    [2]X.Lu,N.Brown,J.Mater Sci.1986,21,2433.
    [3]L.L.Bohm,H.F.Enderle,M.Fleissner,Adv.Mater.1992,4,231.
    [4]Y.L.Huang,N.Brown,J.Polym.Sci.,Part B:Polym.Phys.1990,28,2007.
    [5]X.Lu,Q.Wang,N.Brown,J.Mater.Sci.1988,23,643.
    [6]L.Hubert,L.David,R.Seguela,G.Vigier,C.Corfias-zuccalli,Y.Germain,Polymer 2001,42,8425.
    [7]V.Stephenne,D.Daoust,G.Debras,M.Dupire,R.Legras,J.Michel,J.Appl.Polym.Sci.2001,82,916.
    [8]R.Seguela,J.Polym.Sci.,Part B:Polym.Phys.2005,43,1729.
    [9]何曼君,陈维孝,董西侠编,高分子物理,复旦大学出版社,上海,2005.
    [10]J.R.Isasi,L.Mandelkern,M.J.Galante,R.G.Alamo,J..Polym.Sci.Polym.Phys.Ed 1999,37,323.
    [11]J.Hirschinger,H.Miura,A.D.English,Macromolecules 1990,23,2153.
    [12]P.J.Flory,D.Y.Yoon,K.A.Dill,Macromolecules 1986,17,862.
    [13]S.Gautam,S.Balijepalli,G.C.Rutledge,Macromolecules 2000,33,9136.
    [14]S.Balijepalli,G.C.Rutledge,Computational and Theoretical Polymer Science 2000,10,103.
    [15]L.Mandelkem,Acc.Chem.Res.1990,23,380.
    [16]K.Iwata,Polymer 2002,43,6609.
    [17]R.Hiss,S.Hobeika,C.Lynn,G.Strobl,Macromolecules 1999,32,4390.
    [18]A.M.E.Baker,A.H.Windle,Polymer 2002,42,667.
    [19]A.Rastogi,A.E.Terry,V.B.F.Mathot,S.Rastogi,Macromolecules 2003,38,4744.
    [20]Y.Shimizu,Y.Harashina,Y.Sugiura,M.Matsuo,Macromolecules 1995,28,6889.
    [21]R.R.Eckman,P.M.Henrichs,A.T.Peacock,Macromolecules 1997,30,2474.
    [22]W.Pang,C.Fan,Q.Zhu,European Polymer Journal 2001,37,2425.
    [23]D.A.Ivanov,T.Pop,D.Y.Yoon,A.M.Jonas,Macromolecules 2002,35,9813.
    [24]B.Blumich,NMR Imaging of Materials,Oxford,Clarendon Press,2000.
    [25]K.Bergmann,J.Polym.Sci.Polym.Phys.Ed.,1978,16,1611.
    [26]K.J.Packer,J.M.Pope,R.R.Yeung,J.Polym.Sci.Polym.Phys.Ed.1984,22,589.
    [27]R.R.Eckman,P.M.Henrichs,A.J.Peacock,Macromolecules 1997,30,2474.
    [28]E.W.Hansen,P.E.Kristiansen,B.Pedersen,J.Phys.Chem.B 1998,102,5444.
    [29]P.E.Kristiansen,E.W.Hansen,B.Pedersen,J.Phys.Chem.B 1999,103,3552.
    [30]H.Uehara,T.Yamanobe,T.Komoto,Macromolecules 2000,33,4861.
    [31]V.M.Litvinov,M.Soliman,Polymer 2005,46,3077.
    [32]V.M.Litvinov,V.B.F.Mathot,SolidState Nucl Magn Reson 2002,22,218.
    [33]R.Kitamaru,F.Horii,Q.Zhu,D.C.Bassett,R.H.Olley,Polymer 1994,35,1171.
    [34]L.Hillebrand,A.Schmidt,A.Bolz,M.Hess,W.Veeman,R.J.Veeman,Macromolecules 1998,31,5010.
    [35]J.Cheng,M.Fone,V.N.Reddy,K.B.Schwartz,H.P.Fisher,B.Wunderlich,J.Polym.Sci.Part B:Polym.Phys.1994,32,2683.
    [36]K.Schmidt-Rohr,H.W.Spiess,Macromolecules 1991,24,5288.
    [37]P.G.Klein,M.A.N.Driver,Macromolecules 2002,35,6598.
    [38]K.Kuwabara,H.Kaji,M.Tsuji,F.Horii,Macromolecules 2000,33,7093.
    [39]J.Z.Hu,W.Wang,S.Bai,R.J.Pugmire,G.M.V.Taylor,D.M.Grant,Macromolecules 2000,33,3359.
    [40]D.Hentschel,H.Sillescu,H.W.Spiess,Polymer 1984,25,1078.
    [41]K.J.Packer,J.M.Pope,R.R.Yeung,J.Polym.Sci.Polym.Phys.Ed 1984,22,589.
    [42]A.Buda,D.E.Demco,M.Bertmer,B.Blumich,V.M.Litvinov,J.P.Penning,J.Phys.Chem.B 2003,107,5357.
    [43]A.Buda,D.E.Demco,B.Blumich,V.M.Litvinov,J.P.Penning,ChemPhysChem 2004,5,876.
    [44]D.L.VanderHart,G.B.McFadden,Solid State Nucl.Magn.Reson.1996,7,45.
    [45]B.Wunderlich,"Macromolecular Physics",Vol.3,"Crystal Melting",Academic Press,New York,1980.
    [46]莫志深,张宏放编,晶态聚合物结构和X身线衍射,科学出版社,北京,2003.
    [47]D.Massiot,F.Fayon,M.Capron,L.King,S.L.Calve,B.Alonso,J.O.Durand,B.Bujoli,Z.Gan,G.Hoatson,Magn.Reson.Chem.2001,40,70.
    [48]D.Demco,A.Johansson,J.Tegenfeldt,Solid State Nucl.Magn.Reson.1995,4,13.
    [49]A.Buda,D.E.Demco,M.Bertmer,B.Blumich,B.Reining,H.Keul,Solid State Nucl.Magn.Reson.2003,24,39.
    [50]M.Voda,D.Demco,A.Voda,T.Schauber,M.Adler,T.Dabisch,A.Adams,M.Baias,B.Blumich,Macromolecules 2006,39,4802.
    [51]C.Hedesiu,D.Demco,R.Kleppinger,A.A.Buda,B.Blumich,K.Remerie,V.M.Litvinov,Polymer 2007,48,763.
    [52]B.Neway,M.S.Hedenqvist,U.W.Gedde,Polymer 2003,44,4003.
    [53]M.Hedenqvist,A.A.Angelstok,L.Edsberg,P.T.Larsson,U.W.Gedde,Polymer 1996,37,2887.
    [54]A.Mattozzi,B.Neway,M.S.Hedenqvist,U.W.Gedde,Polymer 2005,46,929.
    [55]R.Alamo,L.Mandelkern,J.Polym.Sci.,Polym.Phys.Ed.1986,24,2087.
    [56]L.Mandelkern,Chemtracts:Macromol.Chem.1992,3,347.
    [57]Gui,Z.-T.“Polyethylene Resins and Their Applications",Chemical Industry Press,Beijing,2002.(桂祖桐主编,聚乙烯树脂及其应用,化学工业出版社,北京,2002。)
    [58]Kausch,H.H."Polymer Fracture",Springer-Verlag,Berlin,1978.
    [59]J.T.Yeh,J.Runt,J.Polym.Sci.Part B:Polym.Phys.1991,29,371.
    [60]T.Cho,E.Shin,W.Jeong,B.Heck,R.Graf,G.Strobl,H.Spiess,D.Yoon,Macromol.Rapid Commun.2006,27,322.
    [61]R.G.Alamo,L.Mandelkern,Thermochim.Acta 1994,238,155.
    [62]J.R.Isasi,J.S.Haigh,J.T.Graham,L.Mandelkern,R.G.Alamo,Polymer,2000,41,8813.
    [63]钱保功,许观藩,余赋生,高聚物的转变与松弛,科学出版社,北京,1986.
    [64]过梅丽编,高聚物与复合材料的动态力学热分析,化学工业出版社,北京,2002。
    [65]P.J.DesLauriers,M.P.McDaniel,D.C.Rohlfing,R.K.Krishnaswamy,S.J.Secora,E.A.Benham,P.L.Maeger,A.R.Wolfe,A.M.Sukhadia,B.B.Beaulieu,Polym.Eng.Sci.2005,45,1203.
    [66]http://www.bodycotepolymer.com,聚乙烯管材料国际专业定级测试结构。
    [1]M.Alexandre,P.Dubois,Material Science and Engineering 2000,28,1.
    [2]B.K.G.Theng,The chemistry of clay-organic reactions,John Wiley & Sons,New York,1974.
    [3]M.Orgawa,K.Kuroda.Bull.Chem.Soc.Jpn,1997,70,2593.
    [4]Y.Kojima,A.Usuki,M.Kawasumi,A.Okada,Y.Fukushima,T.T.Kurauchi,O.Kamigaito,J Mater Res 1993,8,1179.
    [5]Y.Kojima,A.Usuki,M.Kawasumi,A.Okada,T.T.Kurauchi,O.Kamigaito.J Polym Sci,Part A:Polym Chem 1993,31,983.
    [6]R.A.Vaia,H.Ishii,E P.Giannelis,Chem Mater 1993,5,1694.
    [7]G.Jimenez,N.Ogata,H.Kawai,T.Ogihara,J..Appl.Polym.Sci.1997,64,2211.
    [8]N.Ogata,S.Kawakage,T.Ogihara,J Appl.Polym.Sci.1997,66,573.
    [9]N.Ogata,G.Jimenez,H.Kawai,T.Ogihara,J.Polym.Sci.:Part B:Polym Phys.1997,35,389.
    [10]H.G.Jeon,H.-T.Jung,S.W.Lee,S.D.Hudson,Polym.Bull.1998,41,107.
    [11]J.Zhang,C.A.Wilkie,Polymer Degradation and Stability 2003,80,163.
    [12]T.G.Gopakurnar,J.A.Lee,M.Kontopoulou,J.S.Parent.Polymer 2002,43,5483.
    [13]K.H.Wang,M.H.Choi,C.M.Koo,Y.S.Choi,I.J.Chung,Polymer 2001,42,9819.
    [14]K.H.Wang,M.Xu,Y.S.Choi,I.J.Chung,Polymer Bulletin 2001,46,499.
    [15]K.H.Wang,C.M.Koo,I.J.Chung,J Appl Polym Sci.2003,89,2131.
    [16]S.C.Tjong,Y.Z.Meng,JAppl Polym Sci,Part B:Polymer Physics 2003,41,1476.
    [17]M.Alexandre,G.Beyer,C.Henrist,Chem Mater 2001,13,3830.
    [18]S.F.Wang,Y.Hu,Y.Tang,Z.Wang,Z.Chen,W.C.Fang,J Appl Polym Sci 2003,89,2583.
    [19]S.F.Wang,Y.Hu,Z.K.Qu,Z.Wang,Z.Chen,W.C.Fang,Materials Letters 2003,57,2675.
    [20]J.Zhang,C.A.Wilkie,Polymer 2006,47,5736
    [21]J.Zhang,R.K.Gupta,C.A.Wilkie,Polymer 2006,47,4537
    [22]M.Tanniru,Q.Yuan,R.D.K.Misra,Polymer 2006,47,2133
    [23]C.Zhao,H.Qin,F.Gong,M.Feng,S.Zhang,M.Yang,Polym.Degrad.Stab.2005,87,183
    [24]J.Tudor,L.Willington,D.O'Hare,B.Royan,Chem.Commun.1996,2031.
    [25]Y.H.Jin,H.J.Park,S.S.Im,S.Y.Kwak,S.Kwak,Macromol.Rapid Commun.2002,23,135.
    [26]F.Yang,X.Zhang,H.Zhao,B.Chen,B.Huang,Z.Feng,J.Appl.Polym.Sci.2003,89, 3680.
    [27]S.W.Kuo,W.J.Huang,S.B.Huang,H.C.Kao,F.C.Chang,Polymer 2003,44,7709.
    [28]D.Lee,H.Kim,K.Yoon,K.E.Min,K.H.Seo,S.K.Noh,Sci.Technol.Adv.Mater.,2005,6,457.
    [29]L.Wei,T.Tang,B.Huang,J.Polym.Sci.,Part A:Polym.Chem.2004,42,941.
    [30]J.T.Xu,Y.Q.Zhao,Q.Wang,Z.Q.Fang,Polymer 2005,46,11978.
    [31]J.Wang,Z.Liu,C.Guo,Y.Chen,D.Wang,Macromol.Rapid Commun.2001,22,1422.
    [32]M.Alexandre,P.Dubois,T.Sun,J.M.Garces,R,Jerome,Polymer 2002,43,2123.
    [33]J.Heinemann,P.Reichert,R.Thomann,R.Mulhaupt,Macromol.Rapid Commun.1999,20,423.
    [34]J.S.Bergman,H.Chen,E.P.Giannelis,M.G.Thomas,G.W.Coates,Chem.Commun.1999,2179
    [35]S.Y.A.Shin,L.C.Simon,J.B.P.Soares,G.Scholz,Polymer 2003,44,5317.
    [36]J.T.Xu,Q.Wang,Z.Q.Fan,European Polymer Journal 2005,41,3011.
    [37]吕文华,赵广杰,塑料工业,2006,5,56.
    [38]J.C.Taylor,Powder Diffraction 1991,6,2.
    [39]何曼君,陈维孝,董西侠编,高分子物理,复旦大学出版社,上海,2005。
    [40]童瑜晔,邵倩芬,费伦,译,实验脉冲核磁共振.E.Fukushima,S.B.W.Rocder原著,复旦大学出版社,上海,1993。
    [41]D.L.Vanderhart,A.Asano,J.W.Gilman,Macromolecules 2001,34,3819.
    [42]D.L.Vanderhart,A.Asano,J.W.Gilman,Chem.Mater.2001,13,3796.
    [43]D.L.VanderHart,A.Asano,J.W.Gilman,Chem.Mater.2001,13,3781.
    [44]钱保功,许观藩,余赋生,等著,高聚物的转变与松弛,科学出版社,北京,1986。
    [1]S.W.Kuo,W.J.Huang,S.B.Huang,H.C.Kao,F.C.Chang,Polymer 2003,44,7709.
    [2]L.Wei,T.Tang,B.Huang,J.Polym.Sci.,Part A:Polym.Chem.2004,42,941.
    [3]D.Lee,H.Kim,K.Yoon,K.E.Min,K.H.Seo,S.K.Noh,Sci.Technol.Adv.Mater.2005,6,457.
    [4]J.Heinemann,P.Reichert,R.Thomann,R.Mulhaupt,Macromol.Rapid Commun.1999,20,423.
    [5]J.T.Xu,Y.Q.Zhao,Q.Wang,Z.Q.Fang,Polymer 2005,46,11978.
    [6]G.Satyanarayana,S.Sivaram,Macromolecules 1993,26,4712.
    [7]S.S.Sarma,S.Sivaram,Macromol.Chem.Phys.1997,198,495.
    [8]H.Rahiala,I.Beurroies,T.Eklund,K.Hakala,Gougeon,P.Trens,J.B.Rosenholm,J.Catal.1999,188,14.
    [9]K.S.Lee,C.G.Oh,J.H.Yim,S.K.Ihm,J.Mol.Catal.A:Chem.2000,159,301.
    [10]V.I.Costa,P.G.Belelli,J.H.Z.Santos,M.L.Ferreira,D.E.Damiani,J.Catal.2001,204,1.
    [11]郑自立,中国坡缕石,地质出版社,北京,1997。
    [12]须藤俊男,黏土矿物学,严寿鹤译,地质出版社,北京,1981。
    [13]W.X.Kuang,G.A.Facey,C.Detellier,B.Casal,J.M.Serratosa,E.R.Hitzky,Chem.Mater.2003,15,4956.
    [14]M.R.Weir,E.Rutinduka,C.Detellier,C.Y.Feng,Q.Wang,T.Matsuura,R.L.Mao,J.Membr.Sci.2001,182,41.
    [15]J.C.Taylor,Powder Diffraction 1991,6,2.
    [16]B.Wunderlich,"Macromolecular Physics",Vol.3,"Crystal Melting",Academic Press,New York,1980.
    [17]R.M.Cotts,M.J.R.Hoch,T.Sun,J.T.Markert,J.Magnetic Resonance 1989,83,252.
    [18]赵燕,新型铝氧烷的合成、表征及其在烯烃聚合中的作用,浙江大学博士论文,2000。
    [19]辛勤主编,固体催化剂研究方法,科学出版社,北京,2004.
    [20]E.P.Parry,J.Catal.1963,2,371.
    [21]M.R.Basila,T.R.Kanmer,K.H.Rhee,J.Phys.Chem.1964,68,3197.
    [22]J.W.Ward,J.Catal.1967,9,225.
    [23]H.Hattori,T.Shiba,J.Catal.1968,12,111.
    [24]M.C.Sacchi,D.Zucchi,I.Tritto,P.Locatelli,Macromol.RapidCommun.1995,16,581.
    [25]M.R.Ribeiro,A.Deffieux,M.F.Portela,Ind Eng Chem Res 1997,36,1224.
    [26]W.C.Finch,R.D.Gillespie,D.Hedden,T.J.Marks,J.Am.Chem.Soc.1990,112,6221.
    [27]J.C.Chien,D.He,J.Polym.Sci.A:Chem.1991,29,1603.
    [28]J.T.Xu,Q.Wang,Z.Q.Fan,European Polymer Journal 2005,41,3011.
    [29]何曼君,陈维孝,董西侠编,高分子物理,复旦大学出版社,上海,2005。
    [30]S.C.Tjong,Y.Z.Meng,J.Polym.Sci.,Part B:Polym.Phys.2003,41,1476.
    [31]钱保功,许观藩,余赋生,等著,高聚物的转变与松弛,科学出版社,北京,1986。
    [32]过梅丽编著,高聚物与复合材料的动态力学热分析,化学工业出版社,北京,2002。
    [33]B.Blumich,NMR Imaging of Materials,Oxford,Clarendon Press,2000
    [34]A.Buda,D.Demco,M.Bertmer,B.Blumich,B.Reining,H.Keul,H.Hocker,Solid State Nucl.Magn.Reson.2003,24,39.
    [35]C.Hedesiu,D.Demco,R.Kleppinger,A.A.Buda,B.Blumich,K.Remerie,V.M.Litvinov,Polymer 2007,48,763.
    [36]C.Hedesiu,D.E.Demco,R.Kleppinger,G.Vanden Poel,W.Gijsbers,B.Blumich,K.Remerie,V.M.Litvinov,Macromolecules 2007,
    [37]M.Voda,D.Demco,A.Voda,T.Schauber,M.Adler,T.Dabisch,A.Adams,M.Baias,B.Blumich,Macromolecules 2006,39,4802.
    [38]K.Bergmann,J.Polym.Sci.Polym.Phys.Ed.1978,16,1611.
    [39]J.Cheng,M.Fone,V.N.Reddy,K.B.Schwartz,H.P.Fisher,B.Wunderlich,J.Polym.Sci.Part B:Polym.Phys.1994,32,2683.
    [40]M.Hedenqvist,A.A.Angelstok,L.Edsberg,P.T.Larsson,U.W.Gedde,Polymer 1996,37,2887.
    [41]A.Mattozzi,B.Neway,M.S.Hedenqvist,U.W.Gedde,Polymer 2005,46,929.
    [42]B.Neway,M.S.Hedenqvist,U.W.Gedde,Polymer 2003,44,4003.
    [43]B.Neway,M.S.Hedenqvista,V.B.F.Mathot,U.W.Gedde,Polymer 2001,42,5307.
    [44]G.Fleischer,Polymer Bulletin 1982,7,423.
    [45]G.Fleischer,Colloid.Polym.Sci.1984,262,919.
    [46]J.G.Seland,B.Hafskjold,Magn.Reson.Imag.1998,16,687
    [47]R.Kimmich,NMR:Tomography,Diffusiometry,Relaxometry,Springer-Verlag:Berlin,1997
    [48]T.M.Hyde,L.F.Gladden,M.R.Mackley,P.Gao,J.polym.Sci.A:Chem.1995,33,1795.
    [49]S.G.Harding,L.F.Gladden,Magnetic Resonance Imaging 1998,16,647.
    [50]J.E.Tanner,J.Chem.Phys.1970,52,2523.
    [51]P.N.Sen,L.M.Schwartz,P.P.Mitra,B.I.Halperin,Phys.Rev.B 1994,49,215.
    [52]Bruker 2005 Annual Report,Bruker Corporation.
    [1]柴琳,阳永荣,陈伯川,环境污染与防治,2005,24(1):42
    [2]K.Huang,Q.Gao,Powder Technology 2005,160,190.
    [3]H.Darmstadt,C.Roy,S.Kaliaguine,G.Xu,M.Auger,A.Tuel,V.Ramaswamy,Carbon 2000,38,1279.
    [4]D.Pantea,H.Darmstadt,S.Kaliaguine,C.Roy,J.Anal.Appl.Prolysis 2003,67,55.
    [5]M.M.Barbooti,T.J.Mohamed,A.A.Hussain,F.O.Abas,J.Anal.Appl.Prolysis 2004,72,165.
    [6]H.Huang,L.Tang,C.Z.Wu,Environ.Sci.Technol.2003,37,4463.
    [7]C.Roy,A.Chaala,H.Darmstadt,J.Anal,Appl.Prolysis 1999,51,201.
    [8]H.Darmstadt,L.Summchen,U.Roland,C.Roy,S.Kaliaguine,A.Adnot,Surface and Interface Analysis 1997,25,245.
    [9]H.Darmstadt,C.Roy,S.Kaliaguine,B.Sahouli,S.Blacher,R.Pirard,F.Brouers,Rubber Chem.Technol.1995,68,330.
    [10]B.Sahouli,F.Brouers,S.Blacher,H.Darmstadt,C.Roy,S.Kaliaguine,Fuel 1996,75,1244.
    [11]H.Darmstadt,C.Roy,S.Kaliaguine,H.Cormier,Rubber Chem.Technol.1997,70,759.
    [12]H.Darmstadt,C.Roy,S.Kaliaguine,Carbon 1994,32,1399.
    [13]H.Darmstadt,C.Roy,S.Kaliaguine,Carbon 1995,33,1449.
    [14]B.Sahouli,F.Brouers,S.Blacher,H.Darmstadt,C.Roy,S.Kaliaguine,Fuel 1996,75,1244.
    [15]H.Darmstadt,N.-Z.Cao,D.Pantea,C.Roy,L.Summchen,U.Roland,J.-B.Donner,T.K.Wang,C.H.Peng,P.J.Donnelly,Rubber Chem.Technol.2000,73,293.
    [16]H.Darmstadt,C.Roy,S.Kaliaguine,Kautschuk Plastik Kunststoffe 1994,47,891.
    [17]F.Cataldo,Carbon 2002,40,157.
    [18]A.M.Mastral,R.Murillo,M.S.Callen,T.Garcia,FuelProcess.Technol.1999,60,231.
    [19]A.M.Mastral,R.Murillo,M.S.Callen,T.Garcia,Fuel Process.Technol.2001,69,127.
    [20]Y.Shi,L.Shao,W.F.Olson,E.M.Eyring,Fuel Process.Technol.1999,58,135.
    [21]W.Kaminsky,C.Hemmerich,J.Anal.Appl.Pyrol.2001,58/59,803.
    [22]G.Kuhner,M.Voll,Manufacture of Carbon Black,in:J.B.Donnet,R.C.Bansal,M.J.Wang (Eds.),Carbon Black Science and Technology,second ed.,Marcel Dekker,New York,USA,1993,pp.1-65.
    [23]F.Cataldo,Macromolecular Materials and Engineering 2005,290,463.
    [24]阳永荣,吕杰,陈伯川,环境科学学报,2002,22,637.
    [25]阳永荣,王靖岱,颜丽红,化工学报,2005,56,720.
    [26]J.Zhou,Y.Yang,J.Env.Sci.2004,16,1016.
    [27]J.Zhou,J.Wang,X.Ren,Y.Yang,B.Jiang,Chinese J.Chem.Eng.2006,14,654.
    [28]J.Zhou,Y.Yang,X.Ren,S.Stapf,J.Zhejiang Univ.SCIENCEA 2006,7,1440.
    [29]J.A.Mark,B.Erman,Elastomeric Polymer Network,Prentice-Hall,Englewood Cliffs,NJ,1992.
    [30]B.Blumich,NMR Imaging of Materials,Oxford,Clarendon Press,2000
    [31]G.E.Wardell,V.J.McBrierty,V.Marsland,Rubber Chem.Technol.1982,55,1095.
    [32]T.P.Huijgen,H.Angad Gaur,T.L.Weeding,L.W.Jenneskens,H.E.C.Schuurs,W.G.B.Huysmans,W.S.Veeman,Macromolecules 1990,23,3063.
    [33]J.C.Kenny,V.J.McBrierty,Z.Rigbi,D.C.Douglass,Macromolecules 1991,24,436.
    [34]V.M.Litvinov,P.A.M.Steeman,Macromolecules 1999,32,8476.
    [35]R.Mansencal,B.Haidar,A.Vidal,L.Delmotte,J.M.Chezeau,Polym.Int.2001,50,387.
    [36]P.Blumler,B.Blumich,Acta Polym.1993,44,125.
    [37]L.Pellicioli,S.K.Mowdood,F.Negroni,D.D.Parker,J.L.Koenig,Rubber Chem.Technol.2002,75,65.
    [38]R.Graf,A.Heuer,H.W.Spiess,Phys.Rev.Lett.1998,80,5738.
    [39]M.Wang,M.Bertmer,D.E.Demco,B.Blumich,V.M.Litvinov,H.Bathel,Macromolecules 2003,36,4411.
    [40]G.Leu,Y.Liu,D.D.Werstler,D.G.Cory,Macromolecules 2004,37,6883.
    [41]P.Sotta,C.Fulber,D.E.Demco,H.W.Spiess,Macromolecules 1996,29,6222.
    [42]J.O'Brien,E.Cashell,G.E.Wardell,V.J.McBrierty,Macromolecules 1976,9,653.
    [43]C.A.Steren,G.A.Monti,A.J.Marzocca,S.Cerveny,Macromolecules 2004,37,5624.
    [44]M.Schneider,L.Gasper,D.E.Demco,B.Blumich,J.Chem.Phys.1999,111,402.
    [45]M.Schneider,D.E.Demco,and B.Blumich,Macromolecules 2001,34,4019.
    [46]M.Schneider,D.E.Demco,B.Blumich,J.Magn.Reson.1999,140,432.
    [47]G.Simon,K.Baumann,W.Gronski,Macromolecules 1992,25,3624.
    [48]D.E.Demco,S.Hafner,C.Fulber,R.Graf,H.W.Spiess,J.Chem.Phys.1996,105,11285.
    [49]C.Fulber,D.E.Demco,O.Weintraub,B.Blumich,Macromol.Chem.Phys.1996,197,581.
    [50]P.T.Callaghan,E.T.Samulski,Macromolecules 1997,30,113.
    [51]R.Kimmich,E.Anoardo,Progress in Nuclear Resonance Spectroscopy 2004,44,257.
    [52]S.Kariyo,S.Stapf,B.Blumich,Macromol.Chem.Phys.2005,206,1292.
    [53]S.Kariyo,S.Stapf,Macromol.Chem.Phys.2005,206,1300.
    [54]S.Kariyo,S.Stapf,Macromolecules,2002,35,9253.
    [55]S.Kariyo,S.Stapf,Solid State NMR 2004,25,64.
    [56]A.Buda,D.E.Demco,M.Bertmer,B.Blumich,B.Reining,Solid State NMR 2003,24,39.
    [57]H.P.Boehm,Carbon 1994,32,759.
    [58]M.L.Williams,R.F.Landel,J.D.Ferry,J.Am.Chem.Soc.1955,77,3701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700