分子布尔逻辑和模糊逻辑系统的研究及其在石墨烯智能生化分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子逻辑与计算装置是一种基于物理、化学、生理过程中分子砌块间的相互作用,实现信息处理过程的分子级装置。它有望解决传统电子计算机由于晶体管电路尺寸和性能极限所带来的量子效应问题,电子线路间信号串扰问题,不可逆计算所带来的巨大能量耗散等问题。并且通过分子逻辑与计算装置构建出具有数字化、多组分组合分析、智能分析、“探测并执行”能力的生化传感装置,将在纳米科学、生化分析、生物医药、环境检测等领域具有广泛的应用前景。但是,分子逻辑与计算研究仍面临诸多问题,如:逻辑输入输出非同一性问题、逻辑门连接性问题、输入或副产物累积问题、二态性难以区分问题等。而且“从逻辑到传感”构建实用的逻辑传感分析系统的研究还刚刚起步,仍面临数字化响应不理想、信号无法甄选和利用、输入-输出编码模式匮乏等难题。因此,发展新的分子逻辑与计算模型,提出新的逻辑与计算理论,应用新型多功能性材料,开发新的模块化系统,对于解决上述问题并实现分子逻辑与计算装置的实用化具有重要意义。本论文围绕如何构建分子逻辑门与实现分子逻辑系统的有机连接,如何构建人工神经元与解决信号模糊化等问题,针对以石墨烯纳米材料为平台,结合核酸适配体、Fenton反应、金属离子、有机染料等物质建立逻辑智能分析系统进行初步研究与探索。
     1.基于双功能还原态石墨烯氧化物的荧光纳米开关用于检测汞离子和逻辑门操作
     廉价、稳定的有机染料与纳米材料(如石墨烯、碳纳米管、金纳米等)相结合,有利于设计和构建多功能传感器。本章中,通过简单混合还原态石墨烯氧化物(rGO)和有机染料吖啶橙(AO)制得AO-rGO荧光纳米开关,并利用rGO对Hg2+的选择性吸附和其高效荧光猝灭能力,建立一种免标记、简单、灵敏测定Hg2+的新方法。此外,半胱氨酸(Cys)能与Hg2+高效结合,使Hg2+脱离rGO,导致AO荧光再次猝灭。因此,可以构建Cys-Hg2+驱动荧光可逆开关,用于禁止逻辑门操作。该有机染料-碳纳米材料通用策略可潜在应用于其他免标记生物纳米工程、分子级化学传感与计算以及环境健康科学等领域。
     2.基于Fenton反应诱导DNA裂解实现荧光增强检测羟基自由基和Fe2+
     近年来,有许多利用外部竞争物质调控石墨烯的荧光共振能量转移(FRET)作用,从而构建光学传感器的报道。但是,通过割裂探针直接切断FRET的研究还很少。本章报道了一种新型DNA-石墨烯氧化物(GO)-Fenton混合系统,利用了GO的荧光猝灭能力和羟基自由基(HO·)对DNA探针的选择性割裂作用,实现FRET作用调控,从而建立了一种高灵敏度、高选择性测定Fe2+和HO·的新方法。由于7π-π堆积作用,荧光团标记DNA与GO自组装形成复合物,导致荧光团荧光几乎完全猝灭。Fenton试剂生成的HO·可诱导割裂被吸附DNA链,使标记荧光团的DNA碎片从GO表面释放出来,从而恢复荧光。因此,荧光恢复依赖于HO·和Fe2+的浓度。实验表明,增加的荧光强度与Fe2+和HO·的浓度呈正比,线性范围从10nM到1μM,检测限为2.4nM。此外,Fenton-DNA割裂开关还可以用于区分铁元素的价态(如Fe2+和Fe3+)。与传统方法相比,所用DNA不需要修饰巯基、氨基等共价作用基团,从而简化了功能化探针的步骤,并且GO还大大降低了背景信号。该通用策略可潜在扩展应用于检测自由基清除剂,研究新的类Fenton反应,体内ROS的检测和成像,监测割裂酶活性和环境污染物分析等。
     3.基于还原态石墨烯氧化物模糊逻辑检测G四联体DNA及其裂解试剂
     G四联体(G4)结构的检测可以有力推动G4结构动态特性的研究,并且有利于发现新型DNA割裂抗癌试剂,构建基于G4构型变化的生物传感器和分子开关。但是,现有的G4结构检测方法,还存在费时、费力、相对昂贵、需要大型仪器等不足。本章结合纳米技术和模糊逻辑理论的优点,发展了一种基于有机染料-rGO复合物的简单、无标记、通用的策略,用于荧光智能检测G4DNA、HO·和Fe2+。利用AO-rGO复合物作为纳米过滤器、纳米开关,结合rGO与不同构型DNA作用力的差异,实现了目标分析物的有效区分和定量检测。实验表明,AO-rGO复合物的荧光强度会随G4DNA的浓度增加而增强,两者呈线性关系,线性范围为16-338nM,检测限为2.0nM。而Fenton试剂会重新猝灭G4DNA-AO-rGO复合物的荧光,Fenton试剂浓度与被猝灭荧光的强度呈非线性关系。但是,Fenton试剂浓度以10为底的对数与猝灭的荧光强度呈正比关系,线性范围为两段,分别为0.1-100μM和100-2000μM。此外,还发展了一种基于模糊逻辑的新型智能检测方法,主要是利用了模糊逻辑可以模拟人的推理、解决复杂和非线性问题、以及将数字信号转换为语言描述等特点。该方法未来可应用于生物化学系统、环境检测系统以及分子级模糊逻辑计算系统。
     4.基于石墨烯化学系统的布尔逻辑树用于分子计算和智能分子搜索查询
     近年来,使用生物化学分子或者生物元件作为砌块,构建新型人造计算装置的研究引起了人们的广泛兴趣。目前,分子计算装置的构建面临的最严峻问题是如何连接分子事件成为有用的装置。本章中,利用布尔逻辑分析并组织连接石墨烯、有机染料、凝血酶适配体以及Fenton反应等化学事件形成布尔逻辑树。并利用这些化学事件网络执行荧光组合逻辑(包括基本逻辑门和复杂的联合逻辑环路)和模糊逻辑计算。基于布尔逻辑树分析和逻辑计算,这些基本的化学事件可以作为可编程“字符”,化学相互作用作为“语义”逻辑规则,从而可构建分子搜索引擎用于智能分子搜索查询。该方法有利于发展分子级高级逻辑“程序”,未来有望应用于生化传感、纳米技术、载药系统等。
     5.pH感应分子神经元用于逻辑计算、信息编码和加密
     脑环路具有强大记忆、联想、推理等功能。为此,许多研究者致力于使用人工分子系统或电子装置来设计神经元类似物。但是,目前还没有提出一个合理的分子神经元模型。本章中,通过使用紫外-可见光吸收、荧光、共振光散射光谱技术研究常用的酸碱指示剂刚果红(CR)染料的pH依赖响应,展示了利用CR如何构建分子神经元以及表现出类神经元行为。所提出的分子神经元模型使用分子基团作为“树突”以接受环境刺激输入(如pH),分子母体作为“胞体”以执行整合功能,光谱性质的变化作为“轴突以产生输出。通过将简单的分子看作McCulloch-Pitts神经元(线性阈值门),可设计实验用于执行大批量并行逻辑计算,并且借助分子神经元内在的超高信息密度进行字符信息编码以及分子加密。实验结果表明,分子可以用作通用人工神经元,并具备环境刺激应答、分子事件模式识别、推理判决等能力。
Molecular Boolean Logic and Computing (MBLC) is becoming increasingly popular, because a chemist's bottom-up approach toward for information processing might be an attractive alternative, which is potential to overcome the development bottleneck of information technology:the chip size, cross-talk, and heat dissipation. And, construction of digital, intelligent,"sensing and acting" biochemical sensors based on MBLC will be helpful in development of nanoscience, biochemical sensing, biomedical engineering, environmental monitoring, etc. However, MBLC is suffering from several well-identified problems:1) lack of multi-functionality, for example, most previous logic gates usually perform only simple operations;2) poor gate connectivity and scale integration;3) buildups of inputs and waste products which will complicate logic operations;4) ignoring dynamic characteristics of MBLC operation;5) difficulty in distinguishing logical0and1. Moreover, Design and applications of logic-based sensing systems are still at a very early stage, and face lots of challenges, such as unideal digital responses, difficulty of differentiating and utilizing fuzzy signals, and lack of input-output codes, etc. Thus, it is very important for solving above problems and achieving practical applications of logic-based sensor to develop novel models of MBLC, provide new theory on MBLC, and combine new materials with new systems. In this dissertation, valuable explorations have been carried out on how to construct molecular logic gates, conncet logic systems, design artificial molecular neuron, solve and utilize fuzzy signals, and construct graphene-based intelligent logic analysis systems for detection of Hg2+, G-quadruplex (G4) DNA, Fe2+, hydroxyl radical (HO·).
     1. A Reversible Fluorescence Nanoswitch Based on Bifunctional Reduced Graphene Oxide:Use for Detection of Hg2+and Molecular Logic Gate Operation
     The marriage of nanomaterials (including graphene, carbon nanotubes, and gold nanoparticles, et al.) with inexpensive, label-free, common, and stable organic dyes to develop novel sensors with versatile features possesses more great potential. Herein, an organic dye-reduced graphene oxide (rGO) nanoswitch, which is constructed by simply mixing the diluted aqueous solutions of both components, is successfully and efficiently utilized for the label-free, simple, sensitive, and selective determination of Hg2+. Our approach uses the highly selective Hg2+adsorption capacity and effective fluorescence quenching capacity of bifunctional rGO. Moreover, Based on the fact that the addition of cysteine (Cys) into the Hg2+-restored fluorescence system can lead to the release of Hg2+from rGO platform, resulting in the reformation of organic dye-rGO and requenching of dye fluorescence, a reversible on-off INHIBIT rGO logic gate based on the Cys-Hg2+system has also been designed. Molecular logic-gate operation which exhibits intrinsic attractive properties can expand the application of graphene. This proposed nanoswitch design using carbon nanomaterials-common organic dye complex provides a general design strategy, which may expand application potential of various nanomaterials with fluorescence resonance energy transfer (FRET) in label-free optical bionanotechnology, molecular-level chemical sensing, and environmental health science.
     2. A Simple and Facile Strategy Based on Fenton-Induced DNA Cleavage for Fluorescent Turn-On Detection of Hydroxyl Radicals and Fe2+
     Recently many graphene-based FRET optical sensors are well-known for external competition sensing approaches. However, the directly switching off FRET based on the probe cleavage remains rarely reported. Herein, a novel DNA-GO-Fenton hybrid system was constructed for sensitive and selective determination of Fe2+and HO·. This strategy is based on exceptional fluorescence quenching ability of GO towards the proximate dye and the switching off of FRET through the highly selective HO-induced cleavage of DNA strands. Due to the π-stacking interactions, a mixture of dye-labeled single-stranded DNA and GO forms a self-assembly of two components which almost completes fluorescence quenching of the dye and needs neither specific design of the probe DNA structure nor additional modification of the DNA termini. In comparison with traditional covalent assembly to fabricate sensing probe, the proposed approach reduces background signal and simplifies procedures for the preparation of functional probe. The GO as efficient nanoquencher modules incorporate in fluorescent probes for DNA damage caused by HO·-generating Fenton reagent. Therefore, switching off FRET depends on the amounts of Fe2+and HO·. In vitro assays with Fe2+and HO· demonstrated increases in fluorescence intensity with a linear range from10nM to1μM and a detection limit as low as2.4nM. The approach based on Fenton-DNA cleavage switch expands Fenton reaction for discriminating various chemical species of an element (such as Fe2+and Fe3+). Besides, the general strategy can be shown potential applications in sensing radical scavengers and investigating new Fenton-like reactions. Our proposed general strategy with its simplicity, sensitivity, and specificity will hold great promise in applications such as probing and bioimaging ROS in vivo, monitoring activity of cleavage enzymes and environmental contaminations, and open new opportunities for the development and design of other extended nanomaterials-DNA systems for oxidative DNA damage study, molecular engineering and sensing applications in the future.
     3. Fuzzy Logic Sensing of G-quadruplex DNA and Its Cleavage Reagents Based on Reduced Graphene Oxide
     The specific detection of G4formation can be a great help in studying the dynamic nature of G4structures and designing biosensor and molecular switches based on configurational change. The probing of G4formation also facilitates the discovery of G4DNA cleavage agents which can be used DNA cleaving anti-cancer agents. However, the existing methods for identifying G4structures are not only time-consuming, laborious and comparatively expensive but also require specialized equipment. Herein, by combining the merits of nanotechnology and fuzzy logic theory, we develop a simple, label-free, and general strategy based on an organic dye-graphene hybrid system for fluorescence intelligent sensing of G4formation, HO·, and Fe2+in vitro. By exploiting AO dyes-graphene as a nanofilter and nanoswitch and the ability of graphene to interact with DNA with different structures, our approach can efficiently distinguish, quantitatively detect target analytes. In vitro assays with G4DNA demonstrated increases in fluorescence intensity of the AO-rGO system with a linear range of16-338nM and a detection limit as low as2.0nM. The requenched fluorescence of the G4TBA-AO-rGO system has a non-linear response to Fenton reagent. But this requenching reduces the fluorescence intensity in a manner proportional to the logarithm to the base10of the concentration of Fenton reagent in the range of0.1-100μM and100-2000μM, respectively. Furthermore, we develop a novel and intelligent sensing method based on fuzzy logic which mimics human reasoning, solves complex and non-linear problems, and transforms the numerical output into the language description output for potential application in biochemical systems, environmental monitoring systems, and molecular-level fuzzy logic computing system.
     4. Boolean Logic Tree of Graphene-Based Chemical System for Molecular Computation and Intelligent Molecular Search Query
     There is a great deal of interest and excitement recently in building and designing of novel artificial computational devices using biochemical molecular events or engineered biological units as building blocks. The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analysing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. Based on the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable'words'and chemical interactions as'syntax' logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in bio-sensing, nanotechnology, and drug delivery.
     5. Molecular Neuron:From Sensing to Logic Computation, Information Encoding, and Encryption
     The impressive functions of brain circuits have inspired many scientists to attempt in designing neuron analogues by using artificial molecular systems or electronic devices. However, the study of molecular neuron has not produced an equal variety of models. Here, using UV-Vis absorption, fluorescence, and resonance light scattering spectroscopies for recording of the pH-dependent graded responses of common indicators—Congo red (CR) dyes, we show how CR molecules can be used to construct molecular neuron and exhibit neuron-like behavior. Our molecular neural model uses molecular groups as'dendrites'which receive the environmental stimuli inputs (pH), molecular matrix as'soma'which acts as the summation function, and the change in optical characteristics as'axon'which represents outputs. Our approach allows us to utilize simple molecules as McCulloch-Pitts neuron (the linear threshold gate) for experimental implementation of large-scale logic computation in batch mode and to use extraordinary information density inherent in molecular neuron for alphanumeric information encoding and molecular cryptography. Our results suggest that molecules could be used as universal artificial neurons with the capability of responding to the environmental stimuli, remembering patterns of molecular events, and making decisions.
引文
[1](a) Leff, H. S.; Rex, A. F. Maxwell's Demon 2:Entropy, Classical and Quantum Information. Computing, Bristol, Institute of Physics,2003. (b) Plenio, M. B.; Vitelli, V. The physics of forgetting:Landauer's erasure principle and information theory. Contemp. Phys 2001,42,25.
    [2](a) Landauer, R. Irreversibility and heat generation in the computing process. IB M J. Res. Dev. 1961,5,183-191. (b) Bennett, C. H. Demons, engines and the second law. Sci. Am.1987,257, 108-116.
    [3](a) Shannon, C. E. A mathematical theory of communication. Bell. Syst. Tech. J.1948,27, 379-423. (b) Hartley, R. V. L. Transmission of information. Bell. Syst. Tech. J.1928,7, 535-563.
    [4]Shizume, K. Heat generation by information erasure. Phys. Rev. E.1995,52,3495-3499.
    [5]Turing A M. On computable numbers, with an application to the Entscheidungsproblem. J. of Math 1936,55,345-363.
    [6]Hillis, W. D. The Pattern on the Stone. The Simple Ideas that Make Computers Work, Perseus Publishing, Boulder.1999.
    [7]Waser, R. Logic Gates, in Nanoelectronics and Information Technology (ed. R. Waser), Wiley-VCH Verlag GmbH, Weinheim,2003, pp.321-358.
    [8]Gibilisco, S. The Illustrated Dictionary of Electronics, McGraw-Hill, New York,2001.
    [9]Zadeh L A. Fuzzy sets. Information and control 1965,8,338-353.
    [10]McCulloch, W. S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysics 1943,5,115-133.
    [11]Minsky, M. Computation:Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, 1967.
    [12]Rosenblatt, F. The perceptron:a probabilistic model for information storage and organization in the brain. Psychol. Rev.1958,65,386.
    [1]Mack, C. A. Fifty years of Moore's law. Semicond. Manuf. IEEE Trans.2011,24,202-207.
    [2]Moore, G. E. Cramming more components onto integrated circuits. Electronics,1965,38.
    [3]Powell, J. R. The quantum limit to Moore's law. Proc. IEEE 2008,96,1247-1248.
    [4]Del Rio, L.; Aberg, J.; Renner, R.; Dahlsten, O.; Vedral, V. The thermodynamic meaning of negative entropy. Nature 2011,474,61-63.
    [5]Ezziane, Z. Quantum computing measurement and intelligence. Int. J. Quantum Chem.2010, 110,981-992.
    [6](a) Xu, J.; Tan, G. A review on DNA computing models. J. Comput. Theor. Nanosci.2007,4, 1219-1230. (b) Soreni, M.; Yogev, S.; Kossoy, E.; Shoham, Y.; Keinan, E. Parallel biomolecular computation on surfaces with advanced finite automata. J. Am. Chem. Soc.2005, 127,3935-3943. (c) Stojanovic, M. N.; Stefanovic, D. A deoxyribozyme-based molecular automaton. Nat. Biotechnol.2003,21,1069-1074. (d) Stojanovic, M.N., Stefanovic, D., LaBean, T, Yan, H. in Bioelectronics:from Theory to Applications, Chapter 14 (eds Ⅰ. Willner and E. Katz), Wiley-VCH Verlag GmbH, Weinheim,2005, pp.427-455.
    [7]Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds) Unconventional Computation, Lecture Notes in Computer Science, Vol.5715, Springer, Berlin,2009. (b) Adamatzky, A., De.Lacy.Costello, B., Bull, L., Stepney, S., and Teuscher, C. (eds) Unconventional Computing, Luniver Press,2007.
    [8]de Silva, A. P. Molecular Logic-Based Computation, Royal Society of Chemistry, Cambridge, 2012.
    [9](a) Lehn, J.-M. Supramolecular Chemistry:Concepts and Perspectives, VCH, Weinheim, 1995. (b) De Silva, A. P.; Uchiyama, S. Molecular logic and computing. Nat. Nanotechnol. 2007,2,399-410.
    [10]Hirshberg, Y. Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J. Am. Chem. Soc.1956,78,2304-2312.
    [11]Laing, R. Artificial organisms and autonomous cell rules. J. Cybernet.1972,2,38-49.
    [12](a) Hjelmfelt, A.; Weinberger, E. D.; Ross, J. Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sci.1991,88,10983-10987. (b) Hjelmfelt, A.; Ross, J. Chemical implementation and thermodynamics of collective neural networks. Proc. Natl. Acad. Sci.1992,89,388-391. (c) Hjelmfelt, A.; Ross, J. Mass-coupled chemical systems with computational properties. J. Phys. Chem.1993,97,7988-7992. (d) Hjelmfelt, A.; Ross, J. Implementation of logic functions and computations by chemical kinetics. Phys. D:Nonlinear Phenom.1995,84,180-193. (e) Hjelmfelt, A.; Schneider, F. W.; Ross, J. Pattern recognition in coupled chemical kinetic systems. Science 1993,260,335-337.
    [13]Matiyasevich, Y. (1987) Problems of Cybernetics, vol.131, Moscow (English translation in: Kreinovich, V. and Mints, G. (eds) (1996) Problems of Reducing the Exhaustive Search, American Mathematical Society, Providence, RI, pp.75-77).
    [14](a) Lebender, D.; Schneider, F. W. Logical gates using a nonlinear chemical reaction. J. Phys. Chem.1994,98,7533-7537. (b) Toth, A.; Gaspar, V.; Showalter, K. Signal transmission in chemical systems:propagation of chemical waves through capillary tubes. J. Phys. Chem. 1994,98,522-531. (c) Toth, A.; Showalter, K. Logic gates in excitable media. J. Chem. Phys. 1995,103,2058-2066.
    [15]De Silva, P. A.; Gunaratne, N. H.; McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 1993,364, 42-44.
    [16](a) Ma, D.-L.; He, H.-Z.; Chan, D. S.-H.; Leung, C.-H. Simple DNA-based logic gates responding to biomolecules and metal ions. Chem. Sci.2013,4,3366-3380. (b) He, H.-Z.; Chan, D. S.-H.; Leung, C.-H.; Ma, D.-L. G-quadruplexes for luminescent sensing and logic gates. Nucleic acids Res.2013,41,4345-4359. (c) Miyamoto, T.; Razavi, S.; DeRose, R.; Inoue, T. Synthesizing biomolecule-based Boolean logic gates. ACS Synth. Biol.2013,2, 72-82. (d) de Silva, A. P. Molecular logic gate arrays. Chem. Asian J.2011,6,750-766. (e) Ruiter, G. de; Boom, M. E. van der Surface-confined assemblies and polymers for molecular logic. Accounts Chem. Res.2011,44,563-573.
    [17](a) Stoffelen, C; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual stimuli-responsive self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed.2014,53,3400-3404. (b) Xia, H.; Xu, Y.; Yang, G.; Jiang, H.; Zou, G.; Zhang, Q. A reversible multi-stimuli-responsive fluorescence probe and the design for combinational logic gate operations. Macromol. Rapid Commun.2014,35,303-308.
    [18]Pais, V. F.; Lineros, M.; Lopez-Rodriguez, R.; El-Sheshtawy, H. S.; Fernandez, R.; Lassaletta, J. M.; Ros, A.; Pischel, U. Preparation and pH-switching of fluorescent borylated arylisoquinolines for multilevel molecular logic. J. Org. Chem.2013,78,7949-7961.
    [19]Yang, Y.; Wang, Y.; Peng, Y. A bifunctional, colorimetric and fluorescent probe for recognition of Cu2+ and Hg2+ and its application in molecular logic gate.5ci. China Chem. 2014,57,289-295.
    [20]Gotor, R.; Costero, A. M.; Gil, S.; Parra, M.; Gavina, P.; Rurack, K. Boolean operations mediated by an ion-pair receptor of a multi-readout molecular logic gate. Chem. Commun. 2013,49,11056-11058.
    [21]Bairi, P.; Chakraborty, P.; Roy, B.; Nandi, A. K. Sensing of Hg2+ and Ag+ through a pH dependent FRET system:Fabrication of molecular logic gates. Sensors Actuators B:Chem. 2014,193,349-355.
    [22]Goswami, S.; Manna, A.; Paul, S.; Aich, K.; Das, A. K.; Chakraborty, S. Dual channel selective fluorescence detection of Al(III) and PPi in aqueous media with an "off-on-off' switch which mimics molecular logic gates (INHIBIT and EXOR gates). Dalton Trans.2013, 42,8078-8085.
    [23](a) Credi, A. Molecules that make decisions. Angew. Chem. Int. Ed.2007,46,5472-5475. (b) Pischel, U. Chemical approaches to molecular logic elements for addition and subtraction. Angew. Chem. Int. Ed.2007,46,4026-4040. (c) Qu, D.-H.; Wang, Q.-C; Tian, H. A half adder based on a photochemically driven [2]rotaxane. Angew. Chem. Int. Ed.2005,44, 5296-5299. (d) Miyaji, H.; Kim, H.-K.; Sim, E.-K.; Lee, C.-K.; Cho, W.-S.; Sessler, J. L.; Lee, C.-H. Coumarin-strapped calix[4]pyrrole:A fluorogenic anion receptor modulated by cation and anion binding. J. Am. Chem. Soc.2005,127,12510-12512. (e) Katz, E.; Privman, V. Enzyme-based logic systems for information processing. Chem. Soc. Rev.2010,39,1835. (f) Angelos, S.; Yang, Y.-W.; Khashab, N. M.; Stoddart, J. F.; Zink, J. I. Dual-Controlled Nanoparticles Exhibiting AND Logic. J. Am. Chem. Soc.2009,131,11344-11346. (g) Liu, D.; Chen, W.; Sun, K.; Deng, K.; Zhang, W.; Wang, Z.; Jiang, X. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed.2011,50,4103-4107.
    [24]Pu, F.; Ju, E.; Ren, J.; Qu, X. Multiconfigurable logic gates based on fluorescence switching in adaptive coordination polymer nanoparticles. Adv. Mater.2014,26,1111-1117.
    [25]Rurack, K.; Koval'chuck, A.; Bricks, J. L.; Slominskii, J. L. A simple bifunctional fluoroionophore signaling different metal ions either independently or cooperatively. J. Am. Chem. Soc.2001,123,6205-6206.
    [26]Silva, A. P. de; McClenaghan, N. D. Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one-or two-ion receptors. Chem.-Eur. J.2002,8,4935-4945.
    [27]Neilsen, M. A.; Chuang, I. L. Quantum Computation and Quantum Information, Cambridge University Press, Cambridge,2000.
    [28]Silva, A. P. de; McClenaghan, N. D. Molecular-Scale Logic Gates. Chem.-Eur. J.2004,10, 574-586.
    [29]Silva, A. P. de; Dixon, I. M.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. Integration of logic functions and sequential operation of gates at the molecular-scale. J. Am. Chem. Soc.1999,121,1393-1394.
    [30]Vance, D. H.; Czarnik, A. W. Real-time assay of inorganic pyrophosphatase using a high-affinity chelation-enhanced fluorescence chemosensor. J. Am. Chem. Soc.1994,116, 9397-9398.
    [31]Czarnik, A. W. Chemical communication in water using fluorescent chemosensors. Accounts Chem. Res.1994,27,302-308.
    [32]Baytekin, H. T.; Akkaya, E. U. A molecular NAND gate based on Watson-Crick base pairing. Org. Lett.2000,2,1725-1727.
    [33]Raymo, F. M.; Tomasulo, M. Optical processing with photochromic switches. Chem.-Eur. J. 2006,12,3186-3193.
    [34]Gupta, T.; Van der Boom, M. E. Redox-active monolayers as a versatile platform for integrating boolean logic gates. Angew. Chem. Int. Ed.2008,47,5322-5326.
    [35]Ceroni, P.; Bergamini, G.; Balzani, V. Old molecules, new concepts:[Ru(bpy)3]2+as a molecular encoder-decoder. Angew. Chem. Int. Ed.2009,48,8516-8518.
    [36]Silva, A. P. de; James, M. R.; McKinney, B. O. F.; Pears, D. A.; Weir, S. M. Molecular computational elements encode large populations of small objects. Nat. Mater.2006,5, 787-789.
    [37]De Ruiter, G.; Motiei, L.; Choudhury, J.; Oded, N.; Vander Boom, M. E. Electrically addressable multistate volatile memory with flip-flop and flip-flap-flop logic circuits on a solid support. Angew. Chem. Int. Ed.2010,49,4780-4783.
    [38]Chuang, M.-C.; Windmiller, J. R.; Santhosh, P.; Ramirez, G. V.; Katz, E.; Wang, J. High-fidelity determination of security threats via a Boolean biocatalytic cascade. Chem. Commun.2011,47,3087.
    [39]Guo, Z.; Zhu, W.; Shen, L.; Tian, H. A fluorophore capable of crossword puzzles and logic memory. Angew. Chem. Int. Ed.2007,46,5549-5553.
    [40]Andreasson, J.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust, D. An all-photonic molecular keypad lock. Chem.-Eur. J.2009,15,3936-3939.
    [41]Ecik, E. T.; Atilgan, A.; Guliyev, R.; Uyar, T. B.; Gumus, A.; Akkaya, E. U. Modular logic gates:cascading independent logic gates via metal ion signals. Dalton. Trans.2014,43, 67-70.
    [42]Erbas-Cakmak, S.; Akkaya, E. U. Cascading of molecular logic gates for advanced functions: A self-reporting, activatable photosensitizer. Angew. Chem. Int. Ed.2013,52,11364-11368.
    [43]Andreasson, J.; Pischel, U.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust, D. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc.2011,133,11641-11648.
    [44]Dadon, Z.; Samiappan, M.; Wagner, N.; Ashkenasy, N.; Ashkenasy, G. Peptide-based computation:Switches, gates, and simple arithmetic. Biomol. Inf. Process. From Log. Syst. to Smart Sensors Actuators 2012,9-32.
    [45]Privman, V. Control of noise in chemical and biochemical information processing. Isr. J. Chem.2011,57,118-131.
    [46]Miyamoto, T.; Razavi, S.; DeRose, R.; Inoue, T. Synthesizing biomolecule-based Boolean logic gates. ACS synthetic biology 2012,2,72-82.
    [47]Adleman, L. Molecular computation of solutions to combinatorial problems. Science 1994, 266,1021-1024.
    [48]Paun, G. DNA computing based on splicing:universality results. Theor. Comput. Sci.2000, 231,275-296.
    [49]Kari, L.; Paun, G.; Rozenberg, G.; Salomaa, A.; Yu, S. DNA computing, sticker systems, and universality. Acta Inform.1998,35,401-420.
    [50]Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E. Programmable and autonomous computing machine made of biomolecules. Nature 2001,414,430-434.
    [51]Freund, R. DNA computing based on splicing:The existence of universal computers. Theory Comput. Syst.1999,32,69-112.
    [52]Csuhaj-Varju, E.; Kari, L.; Paun, G. Test tube distributed systems based on splicing. Comput. Artif Intell 1996,15,211-232.
    [53]Yokomori, T.; Kobayashi, S. DNA-EC:a model of DNA computing based on equality checking. DNA Based Comput. Ⅲ, DIMACS Ser. Discret. Math. Theor. Comput. Sci.1999, 48,347-360.
    [54]Xiao, X.; Hu, H. Development of formal models for DNA computing. Comput. Appli.2004, 24,123-126.
    [55](a) Song, W.; Li, H.; Liang, H.; Qiang, W.; Xu, D. Disposable electrochemical aptasensor array by using in situ dna hybridization inducing silver nanoparticles aggregate for signal amplification. Anal. Chem.2014,86,2775-2783. (b) Zhu, J.; Zhang, L.; Zhou, Z.; Dong, S.; Wang, E. Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem.2014,86,312-316.
    [56]Macdonald, J.; Li, Y.; Sutovic, M.; Lederman, H.; Pendri, K.; Lu, W.; Andrews, B. L.; Stefanovic, D.; Stojanovic, M. N. Medium scale integration of molecular logic gates in an automaton. Nano Lett.2006,6,2598-2603.
    [57]Zhai, W.; Du, C; Li, X. A series of logic gates based on electrochemical reduction of Pb2+ in self-assembled G-quadruplex on the gold electrode. Chem. Commun.2014,50,2093-2095.
    [58](a)Li, T.; Ackermann, D.; Hall, A. M.; Famulok, M. Input-dependent induction of oligonucleotide structural motifs for performing molecular logic. J. Am. Chem. Soc.2012,134, 3508-3516. (b) Inoue, M.; Miyoshi, D.; Sugimoto, N. Development of molecular logic gates using the structural switch of telomere DNAs. Nucleic Acids Symp. Ser.2006,50,315-316.
    [59](a)Park, K. S.; Jung, C; Park, H. G. "Illusionary" polymerase activity triggered by metal ions: use for molecular logic-gate operations. Angew. Chem.2010,49,9757-60. (b) Bi, S.; Ji, B.; Zhang, Z.; Zhu, J.-J. Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem. Sci.2013,4,1858-1863. (c) Lin, J.-H.; Tseng, W.-L. Design of two and three input molecular logic gates using non-Watson-Crick base pairing-based molecular beacons. Analyst 2014. (d) Tong, D.; Duan, H.; Zhuang, H.; Cao, J.; Wei, Z.; Lin, Y. Using T-Hg-T and C-Ag-T:a four-input dual-core molecular logic gate and its new application in cryptography. RSC Adv.2014,4,5363-5366.
    [60](a) Elbaz, J.; Wang, Z.-G.; Orbach, R.; Willner, Ⅰ. pH-Stimulated Concurrent Mechanical Activation of Two DNA "Tweezers'". A "SET-RESET" logic gate system. Nano Lett.2009,9, 4510-^514. (b) Elbaz, J.; Moshe, M.; Willner, Ⅰ. Coherent activation of DNA tweezers:A "SET-RESET" logic system. Angew. Chem. Int. Ed.2009,48,3834-3837.
    [61](a) Pei, H.; Liang, L.; Yao, G.; Li, J.; Huang, Q.; Fan, C. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. Int. Ed. 2012,51,9020-9024. (b) Graugnard, E.; Kellis, D. L.; Bui, H.; Barnes, S.; Kuang, W.; Lee, J.; Hughes, W. L.; Knowlton, W. B.; Yurke, B. DNA-controlled excitonic switches. Nano Lett. 2012,12,2117-2122. (c) Lake, A.; Shang, S.; Kolpashchikov, D. M. Molecular logic gates connected through DNA four-way junctions. Angew. Chem. Int. Ed.2010,49,4459-4462.
    [62]Xu, S.; Li, H.; Miao, Y.; Liu, Y.; Wang, E. Implementation of half adder and half subtracter with a simple and universal DNA-based platform. NPG-asia Mater.2013,5,76.
    [63]Zhao, J.; Zhang, Z.; Shi, Y.; Li, X.; He, L. Linearly programmed DNA-based molecular computer operated on magnetic particle surface in test-tube. Chin. Sci. Bull.2004,49,17-22.
    [64]Zhang, Z.; Fan, C; He, L. Development of nano-scale DNA computing devices. Curr: Nanosci.2005,1,89-93.
    [65]Chen, X.; Wang, Y.; Liu, Q.; Zhang, Z.; Fan, C.; He, L. Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. Angew. Chem.2006,118,1791-1794.
    [66]Qian, L.; Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 2011,332,1196-1201.
    [67]Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011,475,368-372.
    [68]Frutos, A. Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Res.1997,25,4748-4757.
    [69]Liu, Q.; Frutos, A. G.; Thiel, A. J.; Corn, R. M.; Smith, L. M. DNA computing on surfaces: encoding information at the single base level. J. Comput. Biol.1998,5,269-278.
    [70]Liu, Q.; Frutos, A. G.; Wang, L.; Thiel, A. J.; Gillmor, S. D.; Strother, C. T.; Condon, A. E.; Corn, R. M.; Lagally, M. G.; Smith, L. M. Progress toward demonstration of a surface based DNA computation:a one word approach to solve a model satisfiability problem. Bio Syst. 1999,52,25-33.
    [71]Liu, Q.; Wang, L.; Frutos, A. G.; Condon, A. E.; Corn, R. M.; Smith, L. M. DNA computing on surfaces. Nature 2000,403,175-179.
    [72]Smith, L. M.; Corn, R. M.; Condon, A. E.; Lagally, M. G.; Frutos, A. G.; Liu, Q.; Thiel, A. J. A surface-based approach to DNA computation. J. Comput. Biol.1998,5,255-267.
    [73]Wang, L.; Liu, Q.; Frutos, A. G.; Gillmor, S. D.; Thiel, A. J.; Strother, T. C.; Condon, A. E.; Corn, R. M.; Lagally, M. G.; Smith, L. M. Surface-based DNA computing operations: DESTROY and READOUT. Biosystems 1999,52,189-191.
    [74]Zhang, Z.; Zhao, J.; He. L. Progress in molecular biology stugy of DNA computer. Acta Genetica. Sinica.2004,30,886-892.
    [75]Normile, D. Molecular computing:DNA-based computer takes aim at genes. Science 2002, 295,951-951.
    [76]Rinaudo, K.; Bleris, L.; Maddamsetti, R.; Subramanian, S.; Weiss, R.; Benenson, Y. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 2007,25,795-801.
    [77]Pu, F.; Liu, Z.; Yang, X.; Ren, J.; Qu, X. DNA-based logic gates operating as a biomolecular security device. Chem. Commun.2011,47,6024-6026.
    [78]Strack, G.; Ornatska, M.; Pita, M.; Katz, E. Biocomputing security system:Concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc.2008, 130,4234-4235.
    [79]Li, Z.; Rosenbaum, M. A.; Venkataraman, A.; Tam, T. K.; Katz, E.; Angenent, L. T. Bacteria-based AND logic gate:a decision-making and self-powered biosensor. Chem. Commun.2011,47,3060-3062.
    [1]Deaton, R.; Garzon, M. Fuzzy logic with biomolecules. Soft Comput.2001,5,2-9.
    [2]Gentili, P. L.; Ortica, F.; Romani, A.; Favaro, G. Effects of proximity on the relaxation dynamics of flindersine and 6 (5 H)-phenanthridinone. J. Phys. Chem.2007,111,193-200.
    [3]Gentili, P. L. Boolean and fuzzy logic gates based on the interaction of flindersine with bovine serum albumin and tryptophan. J. Phys. Chem.2008,112,11992-11997.
    [4]Gentili, P. L. The fundamental Fuzzy logic operators and some complex Boolean logic circuits implemented by the chromogenism of a spirooxazine. Phys. Chem. Chem. Phys.2011,13, 20335-20344.
    [5]Gentili, P. L. Molecular processors:From qubits to fuzzy logic. ChemPhysChem 2011,12, 739-745.
    [6]Hjelmfelt, A.; Weinberger, E. D.; Ross, J. Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sci.1991,88,10983-10987.
    [7]Okamoto, M.; Maki, Y.; Sekiguchi, T.; Yoshida, S. Self-organization in a biochemical-neuron network. Phys. D:Nonlinear Phenom.1995,84,194-203.
    [8]Hjelmfelt, A.; Schneider, F. W.; Ross, J. Pattern recognition in coupled chemical kinetic systems. Science 1993,260,335-337.
    [9]Hjelmfelt, A.; Ross, J. Mass-coupled chemical systems with computational properties. J. Phys. Chem.1993,97,7988-7992.
    [10]Hjelmfelt, A.; Weinberger, E. D.; Ross, J. Chemical implementation of finite-state machines. Proc. Natl. Acad. Sci.1992,89,383-387.
    [11]Hjelmfelt, A.; Ross, J. Implementation of logic functions and computations by chemical kinetics. Phys. D:Nonlinear Phenom.1995,84,180-193.
    [12]Mills Jr, A. P.; Turberfield, M.; Turberfield, A. J.; Yurke, B.; Platzman, P. M. Experimental aspects of DNA neural network computation. Soft Comput.2001,5,10-18.
    [13]Lim, H.-W.; Lee, S. H.; Yang, K.-A.; Lee, J. Y.; Yoo, S.-I.; Park, T. H.; Zhang, B.-T. In vitro molecular pattern classification via DNA-based weighted-sum operation. Biosystems 2010, 100,1-7.
    [14]Kim, J.; Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol.2011,7.
    [15]Lebender, D.; Schneider, F. W. Logical gates using a nonlinear chemical reaction. J. Phys. Chem.1994,98,7533-7537.
    [16]Laplante, J.-P.; Pemberton, M.; Hjelmfelt, A.; Ross, J. Experiments on pattern recognition by chemical kinetics. J. Phys. Chem.1995,99,10063-10065.
    [17]Rambidi, N. G. Practical approach to implementation of neural nets at the molecular level. Biosystems 1995,35,195-198.
    [18]Schinor, N.; Schneider, F. W. The phases of small networks of chemical reactors and neurons. Biophys. Chem.2000,85,199-208.
    [19]Gentili, P. L.; Horvath, V.; Vanag, V. K.; Epstein, Ⅰ. R. Belousov-Zhabotinsky "chemical neuron" as a binary and fuzzy logic processor. Int. J. Unconv. Comput.2012,8,177-192.
    [20]Pina, F.; Melo, M. J.; Maestri, M.; Passaniti, P.; Balzani, V. Artificial chemical systems capable of mimicking some elementary properties of neurons. J. Am. Chem. Soc.2000,122, 4496-4498.
    [21]Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011,475,368-372.
    [1](a) Orbach, R.; Mostinski, L.; Wang, F.; Willner, I. Nucleic Acid Driven DNA Machineries Synthesizing Mg2+-Dependent DNAzymes:An Interplay between DNA Sensing and Logic-Gate Operations. Chem. Eur. J.2012,18,14689-14694. (b) De Silva, A. P. Luminescent photoinduced electron transfer (PET) molecules for sensing and logic operations. J. Phys. Chem. Lett 2011,2,2865-2871.
    [2](a) Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M. pH-sensitive liposomes:possible clinical implications. Science 1980,210,1253-1255. (b) Gallagher, F. A.; Kettunen, M. I.; Day, S. E.; Hu, D.-E.; Ardenkjaer-Larsen, J. H.; Jensen, P. R.; Karlsson, M.; Golman, K.; Lerche, M. H.; Brindle, K. M. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008,453,940-943. (c) Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med.2009,15,104-109.
    [3]Rafael, S. P.; Vallee-Belisle, A.; Fabregas, E.; Plaxco, K.; Palleschi, G.; Ricci, F. Employing the metabolic "branch point effect" to generate an all-or-none, digital-like response in enzymatic outputs and enzyme-based sensors. Anal. Chem.2011,84,1076-1082.
    [4]Wang, J.; Katz, E. Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept. Anal. Bioanal. Chem.2010,398,1591-1603.
    [5]Zhou, M.; Dong, S. Biocomputing:Explore its realization and intelligent logic detection. Biomol. Inf. Process. From Log. Syst. to Smart Sensors Actuators 2012,117-131.
    [6]andJoseph Wang, E. K. Enzyme logic digital biosensors for biomedical applications. Biomol. Inf. Process. From Log. Syst. to Smart Sensors Actuators 2012.
    [7](a) Hemphill, J.; Deiters, A. DNA Computation in mammalian cells:microRNA logic operations. J. Am. Chem. Soc.2013,135,10512-10518. (b) Zhu, K.; Acaroz, U.; Martlbauer, E. A cellular logic circuit for the detection of bacterial pore-forming toxins. Chem. Commun.2013,49, 5198-5200. (c) Wang, B.; Barahona, M.; Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron.2013,40,368-376.
    [8](a) Li, Z.; Rosenbaum, M. A.; Venkataraman, A.; Tam, T. K.; Katz, E.; Angenent, L. T. Bacteria-based AND logic gate:a decision-making and self-powered biosensor. Chem. Commun. 2011,47,3060-3062. (b) Ran, T.; Douek, Y.; Milo, L.; Shapiro, E. A programmable NOR-based device for transcription profile analysis.Sci. reports 2012,2.
    [9]Zhu, K.; Dietrich, R.; Didier, A.; Acar, G.; Martlbauer, E. Versatile antibody-sensing Boolean logic for the simultaneous detection of multiple bacterial toxins. Chem. Commun.2013,49, 9314-9316.
    [10](a) Wang, L.; Zhu, J.; Han, L.; Jin, L.; Zhu, C.; Wang, E.; Dong, S. Graphene-based aptamer logic gates and their application to multiplex detection. ACS nano 2012,6,6659-6666. (b) Du, M.; Yang, T.; Zhao, C; Jiao, K. Electrochemical logic aptasensor based on graphene. Sensors Actuators B:Chem.2012,169,255-260. (c) Mei, Q.; Jiang, C; Guan, G.; Zhang, K.; Liu, B.; Liu, R.; Zhang, Z. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging. Chem. Commun.2012,48,7468-7470.
    [11](a) Lien, C.-W.; Tseng, Y.-T.; Huang, C.-C.; Chang, H.-T. Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal. Chem.2014. (b) Zhang, J.; Chen, C.; Xu, X.; Wang, X.; Yang, X. Use of fluorescent gold nanoclusters for the construction of a NAND logic gate for nitrite. Chem. Commun.2013,49,2691-2693.
    [12]Li, T.; Wang, E.; Dong, S. Potassium-lead-switched G-quadruplexes:a new class of DNA logic gates. J. Am. Chem. Soc.2009,131,15082-15083.
    [13](a)Willner, Ⅰ.; Shlyahovsky, B.; Zayats, M.; Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev.2008,37,1153-1165. (b) Zhou, M.; Kuralay, F.; Windmiller, J. R.; Wang, J. DNAzyme logic-controlled biofuel cells for self-powered biosensors. Chem. Commun.2012,48,3815-3817.
    [14]Zhang, G.; Lin, W.; Yang, W.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Logic gates for multiplexed analysis of Hg2+ and Ag+. Analyst 2012,137,2687-2691.
    [15](a) Chen, J.; Fang, Z.; Lie, P.; Zeng, L. Computational lateral flow biosensor for proteins and small molecules:a new class of strip logic gates. Anal. Chem.2012,84,6321-6325. (b) Chen, J. Zeng, L. Enzyme-amplified electronic logic gates based on split/intactaptamers. Biosens. Bioelectron.2013,42,93-99.
    [16]Li, T.; Zhang, L.; Ai, J.; Dong, S.; Wang, E. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. ACS nano 2011,5,6334-6338.
    [17](a) Xia, F.; Zuo, X.; Yang, R.; White, R. J.; Xiao, Y.; Kang, D.; Gong, X.; Lubin, A. A.; Vall6e-Belisle, A.; Yuen, J. D. Label-free, dual-analyte electrochemical biosensors:A new class of molecular-electronic logic gates. J. Am. Chem. Soc.2010,132,8557-8559. (b) Liao, W.-C.; Chuang, M.-C; Ho, J. A. Electrochemical sensor for multiplex screening of genetically modified DNA:Identification of biotech crops by logic-based biomolecular analysis. Biosens. Bioelectron. 2013,50,414-420.
    [18](a) Ezziane, Z. DNA computing:applications and challenges. Nanotechnology 2006,17. (b) Adar, R.; Benenson, Y.; Linshiz, G.; Rosner, A.; Tishby, N.; Shapiro, E. Stochastic computing with biomolecular automata. Proc. Natl. Acad. Sci. United States Am.2004,101,9960-9965. (c) Simmel, F. C. Towards biomedical applications for nucleic acid nanodevices.2007.
    [19]May, E. E.; Dolan, P. L.; Crozier, P. S.; Brozik, S.; Manginell, M. Towards De novo design of Deoxyribozyme Biosensors for GMO detection. Sensors Journal, IEEE 2008,8,1011-1019.
    [20]Von Maltzahn, G.; Harris, T. J.; Park, J.-H.; Min, D.-H.; Schmidt, A. J.; Sailor, M. J.; Bhatia, S. N. Nanoparticle self-assembly gated by logical proteolytic triggers. J. Am. Chem. Soc.2007,129, 6064-6065.
    [21]You, M.; Peng, L.; Shao, N.; Zhang, L.; Qiu, L.; Cui, C.; Tan, W. DNA "nano-claw": Logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc.2013.
    [22]Wang, D.; Fu, Y.; Yan, J.; Zhao, B.; Dai, B.; Chao, J.; Liu, H.; He, D.; Zhang, Y.; Fan, C.; Song, S. Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. Anal. Chem.2014,86,1932-1936.
    [23]Margulies, D.; Hamilton, A. D. Digital analysis of protein properties by an ensemble of DNA quadruplexes. J. Am. Chem. Soc.2009,131,9142-9143.
    [24]Cornett, E. M.; Campbell, E. A.; Gulenay, G.; Peterson, E.; Bhaskar, N.; Kolpashchikov, D. M. Molecular logic gates for DNA analysis:detection of rifampin resistance in M. tuberculosis DNA. Angew. Chem.2012,124,9209-9211.
    [25](a) Szacilowski, K. Biomedical implications of information processing in chemical systems: Non-classical approach to photochemistry of coordination compounds. Biosystems 2007,90, 738-749. (b) Mailloux, S.; Halamek, J.; Katz, E. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks. Analyst 2014. (c) Douglas, S. M.; Bachelet, Ⅰ.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012,335,831-834.
    [26]Jiang, Y.; Liu, N.; Guo, W.; Xia, F.; Jiang, L. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers:A nanofluidic IMPLICATION logic device. J. Am. Chem. Soc.2012,134,15395-15401.
    [27](a)Pita, M.; Zhou, J.; Manesh, K. M.; Halamek, J.; Katz, E.; Wang, J. Enzyme logic gates for assessing physiological conditions during an injury:Towards digital sensors and actuators. Sensors Actuators B:Chem.2009,139,631-636. (b) Manesh, K. M.; Halamek, J.; Pita, M.; Zhou, J.; Tam, T. K.; Santhosh, P.; Chuang, M.-C.; Windmiller, J. R.; Abidin, D.; Katz, E. Enzyme logic gates for the digital analysis of physiological level upon injury. Biosens. Bioelectron.2009,24,3569-3574. (c) Windmiller, J. R.; Strack, G.; Chuang, M.-C; Halamek, J.; Santhosh, P.; Bocharova, V.; Zhou, J.; Katz, E.; Wang, J. Boolean-format biocatalytic processing of enzyme biomarkers for the diagnosis of soft tissue injury. Sensors Actuators B: Chem.2010,150,285-290.
    [28]Halamek, J.; Windmiller, J. R.; Zhou, J.; Chuang, M.-C; Santhosh, P.; Strack, G.; Arugula, M. A.; Chinnapareddy, S.; Bocharova, V.; Wang, J. Multiplexing of injury codes for the parallel operation of enzyme logic gates. Analyst 2010,135,2249-2259.
    [29]Kramer, F.; Halamkova, L.; Poghossian, A.; Schoning, M. J.; Katz, E.; Halamek, J. Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American groups. Analyst 2013,138,6251-6257.
    [30]Halamkova, L.; Halamek, J.; Bocharova, V.; Wolf, S.; Mulier, K. E.; Beilman, G.; Wang, J.; Katz, E. Analysis of biomarkers characteristic of porcine liver injury-from biomolecular logic gates to an animal model. Analyst 2012,137,1768-1770.
    [31](a)Privman, V.; Halamek, J.; Arugula, M. A.; Melnikov, D.; Bocharova, V.; Katz, E. Biochemical filter with sigmoidal response:increasing the complexity of biomolecular logic. J. Phys. Chem. B 2010,114,14103-14109. (b) Halamek, J.; Zhou, J.; Halamkova, L.; Bocharova, V.; Privman, V.; Wang, J.; Katz, E. Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis. Anal. Chem.2011,83,8383-8386.
    [32]Bocharova, V.; Halamek, J.; Zhou, J.; Strack, G.; Wang, J.; Katz, E. Alert-type biological dosimeter based on enzyme logic system. Talanta 2011,85,800-803.
    [1](a) Zhao, Y.-L.; Stoddart, J. F. Noncovalent functionalization of single-walled carbon nanotubes. Accounts Chem. Res.2009,42,1161-1171. (b) Saito, N.; Usui, Y.; Aoki, K.; Narita, N.; Shimizu, M.; Hara, K.; Ogiwara, N.; Nakamura, K.; Ishigaki, N.; Kato, H. Carbon nanotubes:biomaterial applications. Chem. Soc. Rev.2009,38,1897-1903.
    [2](a) Zhang, B.-T.; Zheng, X.; Li, H.-F.; Lin, J.-M. Application of carbon-based nanomaterials in sample preparation:A review. Anal. Chim. Acta 2013,784,1-17. (b) Zhu, S.; Xu, G. Single-walled carbon nanohorns and their applications. Nanoscale 2010,2,2538-2549.
    [3]Guo, S.; Dong, S. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev.2011,40,2644-2672.
    [4]Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent advances in graphene quantum dots for sensing. Mater. Today 2013,16,433-442.
    [5](a) Ding, C.; Zhu, A.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts Chem. Res.2013,47,20-30. (b) Luo, P. G.; Sahu, S.; Yang, S.-T.; Sonkar, S. K.; Wang, J.; Wang, H.; LeCroy, G. E.; Cao, L.; Sun, Y.-P. Carbon "quantum" dots for optical bioimaging. J. Mater. Chem. B 2013,1,2116.
    [6](a) Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787. (b) Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging:The recent advances. Adv. drug Deliv. Rev.2013, 65,1951-1963. (c) Kruss, S.; Hilmer, A. J.; Zhang, J.; Reuel, N. F.; Mu, B.; Strano, M. S. Carbon nanotubes as optical biomedical sensors. Adv. drug Deliv. Rev.2013,65,1933-1950.
    [7]Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors:should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010,49,2114-2138.
    [8](a) Wang, R.; Sun, X.; Wang, X.; Jiang, G. Review on the applications of functionalized graphene composites as drug delivery carriers. Curr. Phys. Chem.2013,3,283-290. (b) Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater.2013,9,9243-9257. (c) Boncel, S.; Zajac, P.; Koziol, K. K. Liberation of drugs from multi-wall carbon nanotube carriers. J. Control. Release 2013,169, 126-140. (d) Iannazzo, D.; Piperno, A.; Pistone, A.; Grassi, G.; Galvagno, S. Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr. Med. Chem.2013,20, 1333-1354.
    [9]Ku, S. H.; Lee, M.; Park, C. B. Carbon-based nanomaterials for tissue engineering. Adv. Healthc. Mater.2013,2,244-260.
    [10]Janas, D.; Koziol, K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 2013.
    [11]Garcia de Abajo, F. J. Graphene plasmonics:Challenges and opportunities. ACS Photon-2014.
    [12]Novoselov, K. S.; Fal, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012,490,192-200.
    [13](a) Bottini, M.; Bottini, N. Modified carbon nanotubes:from nanomedicine to nanotoxicology. In SPIE NanoScience Engineering; 2012; pp.84620-84620. (b) Seabra, A. B.; Paula, A. J.; De Lima, R.; Alves, O. L.; Duran, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol.2014.
    [14](a) Mao, H. Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A. A.; Mahmoudi, M. Graphene:promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 2013,113,3407-3424. (b) Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev.2013,42,530-547.
    [15]Li, W.; Wang, J.; Ren, J.; Qu, X. Near-infrared-and pH-responsive system for reversible cell adhesion using graphene/gold nanorods functionalized with i-motif DNA. Angew. Chem. Int. Ed.2013,52,6726-6730.
    [16]Tang, Z.; Wu, H.; Cort, J. R.; Buchko, G. W.; Zhang, Y.; Shao, Y.; Aksay, Ⅰ. A-; Liu, J.; Lin, Y. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 2010,6,1205-1209.
    [17](a) Sordan, R.; Traversi, F.; Russo, V. Logic gates with a single graphene transistor. Appl. Phys.. Lett.2009,94,073305. (b) Reddy, D.; Register, L. F.; Tutuc, E.; Banerjee, S. K. Bilayer pseudospin field-effect transistor:applications to Boolean logic. Electron Devices, IEEE Trans. 2010,57,755-764. (c) Wei, D.; Liu, Y.; Zhang, H.; Huang, L.; Wu, B.; Chen, J.; Yu, G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc.2009, 131,11147-11154. (d) Li, S.-L.; Miyazaki, H.; Lee, M. V.; Liu, C.; Kanda, A.; Tsukagoshi, K. Complementary-like graphene logic gates controlled by electrostatic doping. Small 2011,7, 1552-1556.
    [18]Huang, W. T.; Shi, Y.; Xie, W. Y.; Luo, H. Q.; Li, N. B. A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:use for detection of Hg2+ and molecular logic gate operation. Chem. Commun.2011,47,7800-7802.
    [19]Lin, Y.; Tao, Y.; Pu, F.; Ren, J.; Qu, X. Combination of graphene oxide and thiol-activated DNA metallization for sensitive fluorescence turn-on detection of cysteine and their use for logic gate operations. Adv. Funct. Mater.2011,21,4565-4572.
    [20]Xie, W. Y.; Huang, W. T.; Li, N. B.; Luo, H. Q. Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun. 2012,48,82-84.
    [21]Zhang, M.; Ye, B.-C. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem. Commun.2012,48,3647-3649.
    [22](a) Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide:Application for logic gate operations. ACS nano 2012,6,3553-3563. (b) Wang, L.; Zhu, J.; Han, L.; Jin, L.; Zhu, C.; Wang, E.; Dong, S. Graphene-based aptamer logic gates and their application to multiplex detection. ACS nano 2012,6,6659-6666.
    [23]Liu, W.; Wu, L.; Yan, S.; Huang, R.; Weng, X.; Zhou, X. Graphene oxide-based fluorescent detection of DNA and enzymes using Hoechst 33258 and its use for dual-output fluorescent logic gates. Anal. Methods 2013,5,3631-3634.
    [24]Lin, B.; Sun, Q.; Liu, K.; Lu, D.; Fu, Y.; Xu, Z.; Zhang, W. Label-free colorimetric protein assay and logic gates design based on the self-assembly of hemin-graphene hybrid nanosheet. Langmuir 2014,30,2144-2151.
    [25]Tang, L.; Li, D.; Li, J. Formation of a graphene oxide-DNA duplex-based logic gate and sensor mediated by RecA-ssDNA nucleoprotein filaments. Chem. Commun.2013,49, 9971-9973.
    [26]He, Y.; Cui, H. Chemiluminescent logic gates based on functionalized gold nanoparticles/graphene oxide nanocomposites. Chem. Eur:J.2013,19,13584-13589.
    [27]Du, M.; Yang, T.; Zhao, C.; Jiao, K. Electrochemical logic aptasensor based on graphene. Sensors Actuators B:Chem.2012,169,255-260.
    [28]Jia, C.; Li, H.; Jiang, J.; Wang, J.; Chen, H.; Cao, D.; Stoddart, J. F.; Guo, X. Interface-engineered bistable [2] rotaxane-graphene hybrids with logic capabilities. Adv. Mater. 2013,25,6752-6759.
    [29]Mei, Q.; Jiang, C.; Guan, G.; Zhang, K.; Liu, B.; Liu, R.; Zhang, Z. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging. Chem. Commun.2012,48,7468-7470.
    [1]Mao, C.; Liu, A.; Cao, B. Virus-based chemical and biological sensing. Angew. Chem. Int. Ed.2009,48,6790-6810.
    [2]Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis:beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed 2006,45,4562-4589.
    [3]Bunz, U. H. F.; Rotello, V. M. Gold nanoparticle-fluorophore complexes:sensitive and discerning "noses" for biosystems sensing. Angew. Chem. Int. Ed.2010,49,3268-3279.
    [4]Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization.J. Am. Chem. Soc.2008,130,8351-8358.
    [5](a) Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787. (b) Lu, C. H.; Li, J.; Lin, M. H.; Wang, Y. W.; Yang, H. H.; Chen, X.; Chen, G. N. Amplified aptamer-based assay through catalytic recycling of the analyte. Angew. Chem. Int. Ed.2010,49, 8454-8457. (c) He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Fund. Mater.2010,20,453-459. (d) Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem. Int. Ed.2010,49,5708-5711.
    [6](a) Liu, X.; Qi, C; Bing, T.; Cheng, X.; Shangguan, D. Highly selective phthalocyanine-thymine conjugate sensor for Hg+ based on target induced aggregation. Anal. Chem.2009, 81,3699-3704. (b) Zhang, L.; Li, T.; Li, B.; Li, J.; Wang, E. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (Ⅱ) ion. Chem. Commun.2010,46,1476-1478. (c) Wen, Y.; Xing, F.; He, S.; Song, S.; Wang, L.; Long, Y.; Li, D.; Fan, C. A graphene-based fluorescent nanoprobe for silver (Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun.2010,46, 2596-2598. (d) Zhao, C.; Qu, K.; Song, Y.; Xu, C.; Ren, J.; Qu, X. A reusable dna single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions. Chem. Eur. J.2010,16,8147-8154.
    [7]Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew. Chem. Int. Ed.2004,43,4300-4302.
    [8]Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun.2008,4825-4827.
    [9]Chandra, V.; Kim, K. S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun.2011,47,3942-3944.
    [10]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,10876-10877.
    [11]Swathi, R. S.; Sebastian, K. L. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys.2008,129,054703.
    [12]Stricks, W.; Kolthoff, I. M. Reactions between mercuric mercury and cysteine and glutathione. apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and-glutathione. J. Am. Chem. Soc.1953,75, 5673-5681.
    [13]Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80,1339-1339.
    [14]Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008,3,101-105.
    [15](a) Kong, B.-S.; Geng, J.; Jung, H.-T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009,2174-2176. (b) Kim, J.; Kim, F.; Huang, J. Seeing graphene-based sheets. Mater. Today 2010,13,28-38.
    [16]Wang, X.; Zhi, L.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett.2008,8,323-327.
    [17]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45,1558-1565.
    [18](a) Jeong, H.-K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M.-H.; An, K. H.; Kim, Ⅰ. J.; Yang, C.-W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of graphitic ab stacking order of graphite oxides. J. Am. Chem. Soc.2008,130,1362-1366. (b) Cote, L. J.; Cruz-Silva, R.; Huang, J. Flash Reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc.2009,131,11027-11032. (c) Tang, X.-Z.; Li, W.; Yu, Z.-Z.; Rafiee, M. A.; Rafiee, J.; Yavari, F.; Koratkar, N. Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon 2011,49, 1258-1265.
    [19]Ferreyra, N. F; Rivas, G. A self-assembled multilayers of polyethylenimine and DNA: spectrophotometric and electrochemical characterization and application for the determination of acridine orange interaction. Electroanalysis 2009,21,1665-1671.
    [20](a) Shaikh, M.; Mohanty, J.; Singh, P. K.; Nau, W. M.; Pal, H. Complexation of acridine orange by cucurbit[7]uril and beta-cyclodextrin:photophysical effects and pKa shifts. Photochem. Photobiol. Sci.:Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol.2008,7, 408-414. (b) Liu, J.; Jiang, N.; Ma, J.; Du, X. Insight into unusual downfield NMR shifts in the inclusion complex of acridine orange with cucurbit [7] uril. Eur. J. Org. Chem.2009, 2009,4931-4938. (c) Shaw, A. K.; Pal, S. K. Fluorescence relaxation dynamics of acridine orange in nanosized micellar systems and DNA. J. Phys. Chem. B 2007,111,4189-4199.
    [21](a)Xu, Y.; Zhao, L.; Bai, H.; Hong, W.; Li, C.; Shi, G. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(ii) ions. J. Am. Chem. Soc.2009,131, 13490-13497. (b) Chernia, Z.; Gill, D. Flattening of TMPyP adsorbed on laponite. Evidence in observed and calculated UV-vis spectra. Langmuir 1999,15,1625-1633.
    [22]Li, Y.; Li, X.; Dong, C.; Qi, J.; Han, X. A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 2010,48, 3427-3433.
    [23]Ramanathan, T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater.2005,17, 1290-1295.
    [24]Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem.2011,21,3455-3461.
    [25]Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem.2010,2,1015-1024.
    [26]Huang, C.-C.; Chang, H.-T. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution. Anal. Chem.2006,78,8332-8338.
    [27]Park, K. S.; Jung, C.; Park, H. G. "Illusionary" polymerase activity triggered by metal ions: use for molecular logic-gate operations. Angew. Chem. Int. Ed.2010,49,9757-9760.
    [28]Szacilowski, K. Digital information processing in molecular systems. Chem. Rev.2008, 108,3481-3548.
    [1](a) Balasubramanian, B.; Pogozelski, W. K.; Tullius, T. D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci.1998,95,9738-9743. (b) Malins, D. C.; Polissar, N. L.; Gunselman, S. J. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc. Natl. Acad. Sci.1996,93,2557-2563.
    [2]Jacobs, A. C.; Resendiz, M. J.; Greenberg, M. M. Direct strand scission from a nucleobase radical in RNA. J. Am. Chem. Soc.2010,132,3668-3669.
    [3](a) Gieseg, S. P.; Simpson, J. A.; Charlton, T. S.; Duncan, M. W.; Dean, R. T. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 1993,32,4780-4786. (b) Wolff, S. P.; Garner, A.; Dean, R. T. Free radicals, lipids and protein degradation. Trends Biochem. Sci.1986,11, 27-31.
    [4]Tien, M.; Svingen, B. A.; Aust, S. D. An investigation into the role of hydroxyl radical in xanthine oxidase-dependent lipid peroxidation. Arch. Biochem. Biophys.1982,216, 142-151.
    [5](a) Briede, J. J.; De Kok, T. M.; Hogervorst, J. G.; Moonen, E. J.; Op den Camp, C. L. Kleinjans, J. C. Development and application of an electron spin resonance spectrometry method for the determination of oxygen free radical formation by particulate matter. Environ. Sci. Technol.2005,39,8420-8426. (b) Scholz, F.; Lopez de Lara Gonzalez, G.; Machado de Carvalho, L.; Hilgemann, M.; Brainina, K. Z.; Kahlert, H.; Jack, R. S.; Minh, D. T. Indirect electrochemical sensing of radicals and radical scavengers in biological matrices. Angew. Chem. Int. Ed.2007,46,8079-8081. (c) Zheng, J.; Springston, S. R.; Weinstein-Lloyd, J. Quantitative analysis of hydroperoxyl radical using flow injection analysis with chemiluminescence detection. Anal. Chem.2003,75,4696-4700. (d) Jiang, H.; Ju, H. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal. Chem.2007,79, 6690-6696.
    [6](a) Kundu, K.; Knight, S. F.; Willett, N.; Lee, S.; Taylor, W. R.; Murthy, N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Ed.2009,48,299-303. (b) Zielonka, J.; Vasquez-Vivar, J.; Kalyanaraman, B. Detection of 2-hydroxyethidium in cellular systems:a unique marker product of superoxide and hydroethidine. Nat. Protoc.2008,3,8-21. (c) Zhao, H.; Joseph, J.; Fales, H. M.; Sokoloski, E. A.; Levine, R. L.; Vasquez-Vivar, J.; Kalyanaraman, B. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc. Natl. Acad. Sci.2005,102,5727-5732.
    [7](a) Tang, B.; Zhang, N.; Chen, Z.; Xu, K.; Zhuo, L.; An, L.; Yang, G. Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles. Chem. Eur. J.2008,14,522-528. (b) Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. J. Am. Chem. Soc.2008,130, 8351-8358. (c) Wang, Y.; Li, Z.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc.2010, 132,9274-9276.
    [8]Liu, M.; Zhang, Q.; Zhao, H.; Chen, S.; Yu, H.; Zhang, Y.; Quan, X. Controllable oxidative DNA cleavage-dependent regulation of graphene/DNA interaction. Chem. Commun.2011, 47,4084-4086.
    [9]Wu, P.; Li, Y.; Yan, X.-P. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal. Chem.2009,81,6252-6257.
    [10]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,10876-10877.
    [11]Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787.
    [12]Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80,1339-1339.
    [13]Wang, X.; Zhi, L.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett.2008,8,323-327.
    [14]Li, Y.; Li, X.; Dong, C.; Qi, J.; Han, X. A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 2010,48, 3427-3433.
    [15](a) Ma, J.; Song, W.; Chen, C.; Ma, W.; Zhao, J.; Tang, Y. Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ. Sci. Technol.2005,39, 5810-5815. (b) Rupcich, N.; Chiuman, W.; Nutiu, R.; Mei, S.; Flora, K. K.; Li, Y.; Brennan, J. D. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions:implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes. J. Am. Chem. Soc.2006,128,780-790.
    [16]Joms, A.; Tiedge, M.; Lenzen, S.; Munday, R. Effect of superoxide dismutase, catalase, chelating agents, and free radical scavengers on the toxicity of alloxan to isolated pancreatic islets in vitro. Free. Radic.Biol Med 1999,26,1300-1304.
    [17]Zhao, Z.-G.; Shen, T.; Xu, H.-J. The absorption and structure of fluorescein and its ethyl derivatives in various solutions. Spectrochim. Acta Part A:Mol. Spectrosc.1989,45, 1113-1116.
    [18]Halliwell, B.; Gutteridge, J. Oxygen free radicals and iron in relation to biology and medicine:some problems and concepts. Arch. Biochem. Biophys.1986,246,501-514.
    [19](a) Liochev, S. I. Metal Ions in Biological Systems, Marcel Dekker, New York,1999,36, ppl-39. (b) Kasprzak, K. S. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free. Radic. Biol. Med.2002,32,958-967.
    [1]Leung, C.-H.; Zhong, H.-J.; He, H.-Z.; Lu, L.; Chan, D. S.-H.; Ma, D.-L. Luminescent oligonucleotide-based detection of enzymes involved with DNA repair. Chem. Sci.2013,4, 3781-3795.
    [2]He, H.-Z.; Chan, D. S.-H.; Leung, C.-H.; Ma, D.-L. G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids Res.2013,41,4345-4359.
    [3]Lv, L.; Guo, Z.; Wang, J.; Wang, E. G-quadruplex as signal transducer for biorecognition events. Curr. Pharm. Des.2012,18,2076-2095.
    [4]Ma, D.-L.; Chan, D. S.-H.; Man, B. Y.-W.; Leung, C.-H. Oligonucleotide-based luminescent detection of metal Ions. Chem.-Asian J.2011,6,986-1003.
    [5]Wang, K.; You, M.; Chen, Y; Han, D.; Zhu, Z.; Huang, J.; Williams, K.; Yang, C. J.; Tan, W. Self-assembly of a bifunctional DNA carrier for drug delivery. Angew. Chem. Int. Ed.2011,50, 6098-6101.
    [6]Balasubramanian, S.; Hurley, L. H.; Neidle, S. Targeting G-quadruplexes in gene promoters:a novel anticancer strategy? Nat. Rev. Drug Discov.2011,10,261-275.
    [7]Bochman, M. L.; Paeschke, K.; Zakian, V. A. DNA secondary structures:stability and function of G-quadruplex structures. Nat. Rev. Genet.2012,13,770-780.
    [8]Shimron, S.; Wang, F.; Orbach, R.; Willner, I. Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex dnazyme nanowires. Anal. Chem. 2012,84,1042-1048.
    [9]Wilner,0.Ⅰ.; Willner, I. Functionalized DNA nanostructures. Chem. Rev.2012,112,2528-2556.
    [10]Tuntiwechapikul, W.; Salazar, M. Cleavage of telomeric G-quadruplex DNA with perylene-EDTA·Fe(II). Biochemistry 2001,40,13652-13658.
    [11]Tuntiwechapikul, W.; Lee, J. T; Salazar, M. Design and synthesis of the G-quadruplex-specific cleaving reagent Perylene-EDTA·Iron(II). J. Am. Chem. Soc.2001,123,5606-5607.
    [12]Andrushchenko, V.; Tsankov, D.; Krasteva, M.; Wieser, H.; Bour, P. Spectroscopic detection of DNA quadruplexes by vibrational circular dichroism. J. Am. Chem. Soc.2011,133,15055-15064.
    [13]He, Y. Intramolecular quadruplex conformation of human telomeric DNA assessed with 1251-radioprobing. Nucleic Acids Res.2004,32,5359-5367.
    [14]Li, J. Not so crystal clear:the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res.2005,33,4649-4659.
    [15]Li, T.; Liu, D.; Chen, J.; Lee, A. H. F.; Qi, J.; Chan, A. S. C. Construction of circular oligodeoxyribonucleotides on the new structural basis of i-motif. J. Am. Chem. Soc.2001,123, 12901-12902.
    [16]Lynch, S.; Baker, H.; Byker, S. G.; Zhou, D.; Sinniah, K. Single molecule force spectroscopy on G-quadruplex DNA. Chem.-Eur. J.2009,15,8113-8116.
    [17]Redon, S. Platinum cross-linking of adenines and guanines on the quadruplex structures of the AG3(T2AG3)3 and (T2AG3)4 human telomere sequences in Na+ and K+ solutions. Nucleic Acids Res.2003,57,1605-1613.
    [18]Rusciano, G.; Luca, A. C. D.; Pesce, G.; Sasso, A.; Oliviero, G.; Amato, J.; Borbone, N.; D'Errico, S.; Piccialli, V.; Piccialli, G.; Mayol, L. Label-free probing of G-quadruplex formation by surface-enhanced raman scattering. Anal. Chem.2011,83,6849-6855.
    [19]Ying, L. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci.2003,100, 14629-14634.
    [20]Lee, J. Y. Extreme conformational diversity in human telomeric DNA. Proc. Natl. Acad. Sci.2005, 102,18938-18943.
    [21]Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787.
    [22]Margulies, D.; Hamilton, A. D. Protein recognition by an ensemble of fluorescent DNA G-quadruplexes.Angew. Chem. Int. Ed 2009,48,1771-1774.
    [23]Shirude, P. S.; Okumus, B.; Ying, L.; Ha, T.; Balasubramanian, S. Single-molecule conformational analysis of G-quadruplex formation in the promoter DNA duplex of the proto-oncogene C-kit. J. Am. Chem. Soc.2007,129,7484-7485.
    [24]Wang, H.; Chen, T.; Wu, S.; Chu, X.; Yu, R. A novel biosensing strategy for screening G-quadruplex ligands based on graphene oxide sheets. Biosens. Bioelectron.2012,34,88-93.
    [25]Li, H. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci.2004,101,14036-14039.
    [26]Li, D.; Song, S.; Fan, C. Target-responsive structural switching for nucleic acid-based sensors. Accounts Chem. Res.2010,43,631-641.
    [27]Li, H.; Zhang, Y; Wang, L.; Tian, J.; Sun, X. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun.2010,47,961-963.
    [28]Xie, W. Y; Huang, W. T.; Li, N. B.; Luo, H. Q. Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun.2012,48, 82-84.
    [29]Yang, R; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. J. Am. Chem. Soc.2008,130,8351-8358.
    [30]Ma, D.-L.; He, H.-Z.; Chan, D. S.-H.; Leung, C.-H. Simple DNA-based logic gates responding to biomolecules and metal ions. Chem. Sci.2013,4,3366-3380.
    [31]Xie, W. Y; Huang, W. T.; Zhang, J. R.; Luo, H. Q.; Li, N. B. A triple-channel optical signal probe for Hg2+ detection based on acridine orange and aptamer-wrapped gold nanoparticles. J. Mater. Chem.2012,22,11479-11482.
    [32]Lin, Y; Tao, Y; Pu, F.; Ren, J.; Qu, X. Combination of graphene oxide and thiol-activated DNA metallization for sensitive fluorescence turn-on detection of cysteine and their use for logic gate operations. Adv. Funct. Mater.2011,21,4565-4572.
    [33]Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide:Application for logic gate operations. ACS nano 2012,6,3553-3563.
    [34]Tang, L.; Li, D.; Li, J. Formation of a graphene oxide-DNA duplex-based logic gate and sensor mediated by RecA-ssDNA nucleoprotein filaments. Chem. Commun.2013,49,9971-9973.
    [35]Zhang, M.; Ye, B.-C. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem. Commun.2012,48,3647-3649.
    [36]Ma, D.-L.; He, H.-Z.; Leung, K.-H.; Zhong, H.-J.; Chan, D. S.-H.; Leung, C.-H. Label-free luminescent oligonucleotide-based probes. Chem. Soc. Rev.2013,42,3427-3429.
    [37]Li, X.; Lu, X.; Tian, J.; Gao, P.; Kong, H.; Xu, G. Application of fuzzy c-means clustering in data analysis of metabolomics. Anal. Chem.2009,81,4468-4475.
    [38]Otto, M.; George, T.; Schierle, C.; Wegscheider, W. Fuzzy logic and neural networks-Applications to analytical chemistry. Pure Appl. Chem.1992,64,497-502.
    [39]Wilson, A. J. Chemical sensing:Nanonose for sniffing out proteins. Nat. Chem.2009,1,429-430.
    [40]Huang, W. T.; Xie, W. Y.; Shi, Y; Luo, H. Q.; Li, N. B. A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+. J. Mater. Chem.2012,22,1477-1481.
    [41]Kong, B.-S.; Geng, J.; Jung, H.-T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun.2009,2174-2176.
    [42]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45,1558-1565.
    [43]Park, J.-W.; Tatavarty, R.; Kim, D. W.; Jung, H.-T.; Gu, M. B. Immobilization-free screening of aptamers assisted by graphene oxide. Chem. Commun.2012,48,2071-2073.
    [44]Park, S.; Hu, Y.; Hwang, J. O.; Lee, E.-S.; Casabianca, L. B.; Cai, W.; Potts, J. R.; Ha, H.-W.; Chen, S.; Oh, J.; Kim, S. O.; Kim, Y.-H.; Ishii, Y.; Ruoff, R. S. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat. Commun. 2012,5,638.
    [45]Hongthani, W.; Patil, A. J.; Mann, S.; Fermin, D. J. Contrast in electron-transfer mediation between graphene oxide and reduced graphene oxide. ChemPhysChem 2012,13,2956-2963.
    [46]Chou, S. S.; De, M.; Luo, J.; Rotello, V. M.; Huang, J.; Dravid, V. P. Nanoscale graphene oxide (nGO) as artificial receptors:Implications for biomolecular interactions and sensing. J. Am. Chem. Soc.2012,134,16725-16733.
    [47]Huang, W. T.; Shi, Y.; Xie, W. Y.; Luo, H. Q.; Li, N. B. A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:use for detection of Hg2+ and molecular logic gate operation. Chem. Commun.-2011,47,7800-7802.
    [48]Shi, Y.; Huang, W. T.; Luo, H. Q.; Li, N. B. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin. Chem. Commun.2011,47, 4676-4678.
    [49]Macaya, R. F. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci.1993,90,3745-3749.
    [50]Rujan, I. N. Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Res.2005,33,2022-2031.
    [51]Nagesh, N.; Krishnaiah, A. A comparative study on the interaction of acridine and synthetic bis-acridine with G-quadruplex structure. J. Biochem. Biophys. Methods 2003,57,65-74.
    [52]Kim, J.; Cote, L. J.; Kim, F.; Huang, J. Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc.2010,132,260-267.
    [53]Hoffman, M.; Rajapakse, A.; Shen, X.; Gates, K. S. Generation of DNA-damaging reactive oxygen species via the autoxidation of hydrogen sulfide under physiologically relevant conditions: Chemistry relevant to both the genotoxic and cell signaling properties of H2S. Chem. Res. Toxicol. 2012,25,1609-1615.
    [54]Kasprzak, K. S. Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free. Radic. Biol. & Med.2002,32,958-967.
    [55]Zhang, L.; Wen, L.; Lu, Y.; Yang, P. Quantitative fuzzy neural network for analytical determination. Anal, Chim. Acta 2002,468,105-117.
    [56]Mamdani, E. H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng.1974,121,1585.
    [57]Mamdani, E. H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud 1975,7,1-13.
    [58]Jang, J.-S. R.; Sun, C.-T. Neuro-fuzzy modeling and control. Proc. IEEE 1995,83,378-406.
    [59]Perez-Vizcaino, F.; Cogolludo, A.; Moreno, L. Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir. Physiol. Neurobiol.2010,174,212-220.
    [60]Slauch, J. M. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol. Microbiol.2011,80,580-583.
    [61]Karthikeyan, R.; Manivasagam, T.; Anantharaman, P.; Balasubramanian, T.; Somasundaram, S. T. Chemopreventive effect of Padina boergesenii extracts on ferric nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats. J. Appl. Phycol.2011,23,257-263.
    [62]Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem.2013,5,182-186.
    [63]E. Paux, et al. A physical map of the 1-gigabase bread wheat chromosome 3B, Science 2008,322, 101-104.
    [64]Okumura, M.; Seike, Y.; Fujinaga, K.; Hirao, K. In situ preconcentration method for iron(II) in environmental water samples using solid phase extraction followed by spectrophotometric determination. Anal. Sci.1997,75,231-235.
    [65]Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem.,2009,81,5603-5613.
    [66]Dunforda, C. L.; Smith, G. J.; Swinny, E. E.; Markham, K. R. The fluorescence and photostabilities of naturally occurring isoflavones. Photochem. Photobiol. Sci.2003,2,611-615.
    [67]Dwieckia, K.; Neunerta, G.; Polewskib, P.; Polewski, K. Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. J. Photochem. Photobiol. B:Biol.2009,96,242-248.
    [68]Li, W.; Zhang, M.; Zhang, J. L.; Li, H.Q.; Zhang, X.C.; Sun, Q.; Qiu, C.M. Interactions of daidzin with intramolecular G-quadruplex. FEBS Lett.2006,580,4905-4910.
    [69]Sun, H. X.; Tang, Y. L.; Xiang, J. F.; Xu, G. Z.; Zhang, Y. Z.; Zhang, H.; Xu, L. H. Spectroscopic studies of the interaction between quercetin and G-quadruplex DNA. Bioorg. Med. Chem. Lett. 2006,16,3586-3589.
    [70]Hashimoto, K.; Miwa, K.; Goto, M.; Ishimori, Y. DNA sensor:A novel electrochemical gene detection method using carbon electrode immobilized DNA probes. Supramol. Chem.1993,2, 265-270.
    [71]Hashimoto, K.; Ito, K.; Ishimori, Y. Novel DNA sensor for electrochemical gene detection. Anal. Chim. Acta 1994,286,219-224.
    [72]Hashimoto, K.; Ito, K.; Ishlmori, Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem.1994,66, 3830-3833.
    [73]Vlasova, Y. G.; Legina, A. V.; Rudnitskayaa, A. M.; D'Amicob, A.; Di Natale, C. 《Electronic tongue》—new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition. Sensors Actuators B:Chem.2000,65,235-236.
    [74]Gentili, P. L. Boolean and fuzzy logic implemented at the molecular level. Chem. Phys.2007,336, 64-73.
    [75]Gentili, P. L. Boolean and fuzzy logic gates based on the interaction of flindersine with bovine serum albumin and tryptophan. J. Phys. Chem. A 2008,112,11992-11997.
    [76]Gentili, P. L. The fundamental Fuzzy logic operators and some complex boolean logic circuits implemented by the chromogenism of a spirooxazine. Phys. Chem. Chem. Phys.2011,13, 20335-20344.
    [1]Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. An Autonomous molecular computer for logical control of gene expression. Nature 2004,429,423-429.
    [2]Braich, R. S. Solution of a 20-variable 3-SAT problem on a DNA computer. Science 2002, 296,499-502.
    [3]Auslander, S.; Auslander, D.; Muller, M.; Wieland, M.; Fussenegger, M. Programmable single-cell mammalian biocomputers. Nature 2012,487,123-127.
    [4]Regot, S.; Macia, J.; Conde, N.; Furukawa, K.; Kjellen, J.; Peeters, T.; Hohmann, S.; Nadal, E. de; Posas, F.; Sole, R. Distributed biological computation with multicellular engineered networks. Nature 2010,469,207-211.
    [5]Tamsir, A.; Tabor, J. J.; Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical'wires'. Nature 2010,469,212-215.
    [6]de Silva, A. P.; Uchiyama, S. Molecular logic and computing. Nat. Nanotechnol.2007,2, 399-410.
    [7]Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E. Programmable and autonomous computing machine made of biomolecules. Nature 2001,414,430-434.
    [8]Qian, L.; Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 2011,332,1196-1201.
    [9]Benenson, Y. Biomolecular computing systems:Principles, progress and potential. Nat. Rev. Genet.2012,13,455-468.
    [10]de Silva, A. P.; Gunaratne, N. H. Q.; McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 1993,364,42-44.
    [11]Szacilowski, K. Digital information processing in molecular systems. Chem. Rev.2008,108, 3481-3548.
    [12](a) Kou, S.; Lee, H. N.; Van Noort, D.; Swamy, K. M. K.; Kim, S. H.; Soh, J. H.; Lee, K.-M.; Nam, S.-W.; Yoon, J.; Park, S. Fluorescent molecular logic gates using microfluidic devices. Angew. Chem. Int. Ed.2008,47,872-876. (b) Margulies, D.; Melman, G.; Felder, C. E.; Arad-Yellin, R.; Shanzer, A. Chemical input multiplicity facilitates arithmetical processing. J. Am. Chem. Soc.2004,126,15400-15401. (c) de Silva, A. P.; McClenaghan, N. D. Proof-of-principle of molecular-scale arithmetic. J. Am. Chem. Soc.2000,122, 3965-3966.
    [13](a) Coskun, A.; Deniz, E.; Akkaya, E. U. Effective PET and ICT switching of boradiazaindacene emission:A unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. Org. Lett.2005,7,5187-5189. (b) Langford, S. J.; Yann, T. Molecular logic:A half-subtractor based on tetraphenylporphyrin. J. Am. Chem. Soc.2003, 125,14951-14951.
    [14](a) Perez-Inestrosa, E.; Montenegro, J.-M.; Collado, D.; Suau, R. A molecular 1:2 demultiplexer. Chem. Commun.2008,1085-1087. (b) Amelia, M.; Baroncini, M.; Credi, A. A simple unimolecular multiplexer/demultiplexer. Angew. Chem. Int. Ed.2008,47, 6240-6243. (c) Andreasson, J.; Straight, S. D.; Bandyopadhyay, S.; Mitchell, R. H.; Moore, T. A.; Moore, A. L.; Gust, D. Molecular 2:1 digital multiplexer. Angew. Chem. Int. Ed. 2007,46,958-961.
    [15](a) Ceroni, P.; Bergamini, G.; Balzani, V. Old molecules, new concepts:[Ru(bpy)3]2+ as a molecular encoder-decoder. Angew. Chem. Int. Ed.2009,48,8516-8518. (b) Andreasson, J.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust, D. Molecular all-photonic encoder-decoder. J. Am. Chem. Soc.2008,130,11122-11128.
    [16](a) Macdonald, J.; Stefanovic, D.; Stojanovic, M. N. DNA computers for work and play. Sci. Am.2008,299,84-91. (b) Stojanovic, M. N.; Stefanovic, D. A deoxyribozyme-based molecular automaton. Nat. Biotechnol.2003,21,1069-1074.
    [17]de Silva, A. P.; James, M. R.; McKinney, B. O. F.; Pears, D. A.; Weir, S. M. Molecular computational elements encode large populations of small objects. Nat. Mater.2006,5, 787-789.
    [18]Baiter, M.; Li, S.; Nilsson, J. R.; Andreasson, J.; Pischel, U. An all-photonic molecule-based parity generator/checker for error detection in data transmission. J. Am. Chem. Soc.2013, 755,10230-10233.
    [19](a) Andreasson, J.; Pischel, U. Smart molecules at work-mimicking advanced logic operations. Chem. Soc. Rev.2009,39,174. (b) Remon, P.; Hammarson, M.; Li, S.; Kahnt, A.; Pischel, U.; Andreasson, J. Molecular implementation of sequential and reversible logic through photochromic energy transfer switching. Chem.-Eur. J.2011,17,6492-6500. (c) Pais, V. F.; Remon, P.; Collado, D.; Andreasson, J.; Perez-Inestrosa, E.; Pischel, U. OFF-ON-OFF fluorescence switch with T-latch function. Org. Lett.2011,13,5572-5575. (d) Remon, P.; Baiter, M.; Li, S.; Andreasson, J.; Pischel, U. An all-photonic molecule-based d flip-flop. J. Am. Chem. Soc.2011,133,20742-20745.
    [20]Orbach, R.; Remacle, F.; Levine, R. D.; Willner, I. Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates. Proc. Natl. Acad. Sci.2012,109,21228-21233.
    [21](a) Gentili, P. L. Boolean and fuzzy logic implemented at the molecular level. Chem. Phys. 2007,336,64-13. (b) Gentili, P. L. Boolean and fuzzy logic gates based on the interaction of flindersine with bovine serum albumin and tryptophan. J. Phys. Chem. A 2008,112, 11992-11997. (c) Gentili, P. L. The Fundamental fuzzy logic operators and some complex boolean logic circuits implemented by the chromogenism of a spirooxazine. Phys. Chem. Chem. Phys.2011,13,20335-20344.
    [22]Andreasson, J.; Pischel, U.; Straight, S. D.; Moore, T. A.; Moore, A. L.; Gust, D. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc.2011,133, 11641-11648.
    [23]Leisner, M.; Bleris, L.; Lohmueller, J.; Xie, Z.; Benenson, Y. Rationally designed logic integration of regulatory signals in mammalian cells. Nat. Nanotechnol.2010,5,666-670.
    [24](a) Privman, V.; Arugula, M. A.; Halamek, J.; Pita, M.; Katz, E. Network analysis of biochemical logic for noise reduction and stability:A system of three coupled enzymatic AND gates. J. Phys. Chem. B 2009,113,5301-5310. (b) Arugula, M. A.; Halamek, J.; Katz, E.; Melnikov, D.; Pita, M.; Privman, V.; Strack, G. Optimization of enzymatic logic gates and networks for noise reduction and stability. In 2009 Second International Conference on Advances in Circuits, Electronics and Micro-electronics; IEEE,2009; pp.1-7. (c) Strack, G.; Crnatska, M.; Pita, M.; Katz, E. Biocomputing security system:Concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc.2008, 130,4234^235. (d) Privman, V.; Pedrosa, V.; Melnikov, D.; Pita, M.; Simonian, A.; Katz, E. Enzymatic AND-gate based on electrode-immobilized glucose-6-phosphate dehydrogenase: Towards digital biosensors and biochemical logic systems with low noise. Biosens. Bioelectron.2009,25,695-701. (e) Fedichkin, L.; Katz, E.; Privman, V. Error correction and digitalization concepts in biochemical computing. J. Comput. Theor. Nanosci.2008,5, 36-43.
    [25]Zhou, J.; Arugula, M. A.; Halamek, J.; Pita, M.; Katz, E. Enzyme-based NAND and NOR logic gates with modular design. J. Phys. Chem. B 2009,113,16065-16070.
    [26](a) Zavalov, O.; Bocharova, V.; Privman, V.; Katz, E. Enzyme-based logic:OR gate with double-sigmoid filter response. J. Phys. Chem. B 2012,116,9683-9689. (b) Halamek, J.; Zavalov, O.; Halamkova, L.; Korkmaz, S.; Privman, V.; Kate, E. Enzyme-based logic analysis of biomarkers at physiological concentrations:AND gate with double-sigmoid "filter" response. J. Phys. Chem. B 2012,116,4457-4464.
    [27]MacVittie, K.; Halamek, J.; Katz, E. Enzyme-based D-flip-flop memory system. Chem. Commun.2012,48,11742-11744.
    [28](a) MacVittie, K.; Halamek, J.; Privman, V.; Katz, E. A bioinspired associative memory system based on enzymatic cascades. Chem. Commun.2013,49,6962-6964. (b) Bocharova, V.; MacVittie, K.; Chinnapareddy, S.; Halamek, J.; Privman, V; Katz, E. Realization of associative memory in an enzymatic process:Toward biomolecular networks with learning and unlearning functionalities. J. Phys. Chem. Lett.2012,3,1234-1237.
    [29]Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011,475,368-372.
    [30]Xie, Z.; Wroblewska, L.; Prochazka, L.; Weiss, R.; Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 2011,333,1307-1311.
    [31]Douglas, S. M.; Bachelet, I.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012,335,831-834.
    [32]Pei, R.; Matamoros, E.; Liu, M.; Stefanovic, D.; Stojanovic, M. N. Training a molecular automaton to play a game. Nat. Nanotechnol.2010,5,773-777.
    [33]Rinaudo, K.; Bleris, L.; Maddamsetti, R.; Subramanian, S.; Weiss, R.; Benenson, Y. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 2007,25,795-801.
    [34]Wei, B.; Dai, M.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012,485,623-626.
    [35]Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V; Besenbacher, F.; Gothelf, K. V; Kjems, J. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009,459,73-76.
    [36](a) Bunz, U. H. F.; Rotello, V. M. Gold nanoparticle-fluorophore complexes:sensitive and discerning "noses" for biosystems sensing. Angew. Chem. Int. Ed.2010,49,3268-3279. (b) Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon nanomaterials in biosensors:should you use nanotubes or graphene? Angew. Chem. Int. Ed. 2010,49,2114-2138. (c) Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. J. Am. Chem. Soc.2008,130,8351-8358.
    [37](a) Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787. (b) He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Fund. Mater.2010,20, 453-459. (c) Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem. Int. Ed.2010,49, 5708-5711.
    [38](a) Huang, W. T.; Zhang, J. R.; Xie, W. Y.; Shi, Y.; Luo, H. Q.; Li, N. B. Fuzzy logic sensing of G-quadruplex DNA and its cleavage reagents based on reduced graphene oxide. Biosens. Bioelectron.2014,57,117-124. (b) Huang, W. T.; Xie, W. Y.; Shi, Y.; Luo, H. Q.; Li, N. B. A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+. J. Mater. Chem.2012,22,1477-1481. (c) Huang, W. T.; Shi, Y.; Xie, W. Y.; Luo, H. Q.; Li, N. B. A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide:use for detection of Hg2+ and molecular logic gate operation. Chem. Commun.2011,47,7800-7802. (d) Zhang, J. R.; Huang, W. T.; Xie, W. Y.; Wen, T.; Luo, H. Q.; Li, N. B. Highly sensitive, selective, and rapid fluorescence Hg2+ sensor based on DNA duplexes of poly (dT) and graphene oxide. Analyst 2012,137, 3300-3305. (e) Xie, W. Y.; Huang, W. T.; Li, N. B.; Luo, H. Q. Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun.2012,48,82-84. (f) Shi, Y.; Huang, W. T.; Luo, H. Q.; Li, N. B. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin. Chem. Commun.2011,47,4676-4678.
    [39](a) Wang, L.; Zhu, J.; Han, L.; Jin, L.; Zhu, C.; Wang, E.; Dong, S. Graphene-based aptamer logic gates and their application to multiplex detection. ACS nano 2012,6,6659-6666. (b) Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide:Application for logic gate operations. ACS nano 2012,6,3553-3563.
    [40](a) Wang, J.; Katz, E. Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept. Anal. Bioanal. Chem.2010,398, 1591-1603. (b) Windmiller, J. R.; Strack, G.; Chuang, M.-C.; Halamek, J.; Santhosh, P.; Bocharova, V.; Zhou, J.; Katz, E.; Wang, J. Boolean-format biocatalytic processing of enzyme biomarkers for the diagnosis of soft tissue injury. Sensors Actuators B:Chem.2010, 150,285-290.
    [41]Manesh, K. M.; Halamek, J.; Pita, M.; Zhou, J.; Tam, T. K.; Santhosh, P.; Chuang, M.-C.; Windmiller, J. R.; Abidin, D.; Katz, E. Enzyme logic gates for the digital analysis of physiological level upon injury. Biosens. Bioelectron.2009,24,3569-3574.
    [42]Melnikov, D.; Strack, G.; Zhou, J.; Windmiller, J. R.; Halamek, J.; Bocharova, V.; Chuang, M.-C.; Santhosh, P.; Privman, V.; Wang, J. Enzymatic AND logic gates operated under conditions characteristic of biomedical applications. J. Phys. Chem. B 2010,114, 12166-12174.
    [43](a) Privman, V. Molecular and Supramolecular Information Processing:From Molecular Switches to Logic Systems; John Wiley & Sons, Ltd,2012, pp.281-303. (b) Privman, V. Control of noise in chemical and biochemical information processing. Isr. J. Chem.2011,51, 118-131. (c) Katz, E.; Privman, V. Enzyme-based logic systems for information processing. Chem. Soc. Rev.2010,39,1835.
    [44](a) Halamek, J.; Zhou, J.; Halamkovi, L.; Bocharova, V.; Privman, V.; Wang, J.; Katz, E. Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis. Anal. Chem.2011,83,8383-8386. (b) Privman,V.; Zavalov, O.; Simonian, A. Extended linear response for bioanalytical applications using multiple enzymes. Anal. Chem.2013,85,2027-2031. (c) Katz, E.; Wang, J.; Privman, M.; Halamek, J. Multianalyte digital enzyme biosensors with built-in boolean logic. Anal. Chem.2012,84, 5463-5469.
    [45](a) Zavalov, O.; Bocharova, V; Halamek, J.; Halamkova, L.; Korkmaz, S.; Arugula, M. A.; Chinnapareddy, S.; Katz, E.; Privman, V. Two-input enzymatic logic gates made sigmoid by modifications of the biocatalytic reaction cascades. Int. J. Unconv. Comput.2012,8, 347-365. (b) Privman, V.; Zavalov, O.; Halamkova, L.; Moseley, F.; Halamek, J.; Katz, E. Networked enzymatic logic gates with filtering:new theoretical modeling expressions and their experimental application. J. Phys. Chem. B 2013,117,14928-14939.
    [46](a) Privman, V.; Strack, G.; Solenov, D.; Pita, M.; Katz, E. Optimization of enzymatic biochemical logic for noise reduction and scalability:how many biocomputing gates can be interconnected in a circuit? J. Phys. Chem. B 2008,112,11777-11784. (b) Melnikov, D.; Strack, G; Pita, M.; Privman, V.; Katz, E. Analog noise reduction in enzymatic logic gates. J. Phys. Chem. B 2009,113,10472-10479.
    [47]Szacilowski, K. Infochemistry:information processing at the nanoscale; John Wiley & Sons, Ltd,2012.
    [48]Ran, T.; Kaplan, S.; Shapiro, E. Molecular implementation of simple logic programs. Nat. Nanotechnol.2009,4,642-648.
    [49]Macaya, R. F. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Nail. Acad. Sci.1993,90,3745-3749.
    [50]de Silva, A. P.; Gale, P.; Steed, J. Molecular Logic-based Computation; Royal Society of Chemistry,2012.
    [51]Andrews, J. D.; Dunnett, S. J. Event-tree analysis using binary decision diagrams. IEEE Trans. Reliab.2000,49,230-238.
    [52]Mendel, J. M. Fuzzy logic systems for engineering:a tutorial. Proc. IEEE.1995,83, 345-377.
    [53]Sugeno, M. Industrial applications of fuzzy control; North Holland, Amsterdam,1985.
    [1]Lehn, J.-M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed.1990,29, 1304-1319.
    [2]Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol.2003,27,1171-1178.
    [3](a) de Silva, A. P.; Uchiyama, S. Molecular logic and computing. Nat. Nanotechnol.2007,2, 399-410. (b) Szacilowski, K. Infochemistry:information processing at the nanoscale, WILEY-VCH, Chichester,2012. (c) de Silva, A. P. Molecular logic-based computation, Royal Society of Chemistry, Cambridge,2012.
    [4]Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol.2006,1, 25-35.
    [5]Han, D.; Pal, S.; Nangreave, J.; Deng, Z.; Liu, Y.; Yan, H. DNA origami with complex curvatures in three-dimensional space. Science 2011,332,342-346.
    [6]Rojas, R. Neural networks:a systematic introduction; Springer,1996.
    [7]Bandyopadhyay, A.; Sahu, S.; Fujita, D. Smallest artificial molecular neural-net for collective and emergent information processing. Appl. Phys. Lett.2009,95,113702-113702.
    [8]Haronian, D.; Lewis, A. Elements of a unique bacteriorhodopsin neural network architecture. Appl. Opt.1991,30,597-608.
    [9]Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011,475,368-372.
    [10]Mahowald, M.; Douglas, R. A silicon neuron. Nature 1991,354,515-518.
    [11]Samardak, A. S.; Nogaret, A.; Janson, N. B.; Balanov, A.; Farrer, I.; Ritchie, D. A. Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure. J. Appl. Phys.2011,109,102408-102408.
    [12]Amatore, C.; Thouin, L.; Warkocz, J.-S. Artificial neurons with logical properties based on paired-band microelectrode assemblies. Chem.-Eur. J.1999,5,456-465.
    [13]Fromherz, P.; Offenhaeusser, A.; Vetter, T.; Weis, J. A neuron-silicon junction-A Retzius cell of the leech on an insulated-gate field-effect transistor. Science 1991,252,1290-1293.
    [14]Ulbrich, M.; Fromherz, P. Neuron-silicon self-excitation:A prototype of iono-electronics. Adv. Mater.2001,13,344-347.
    [15]Kaul, R. A.; Syed, N. I.; Fromherz, P. Neuron-semiconductor chip with chemical synapse between identified neurons. Phys. Rev. Lett.2004,92,038102.
    [16]Hjelmfelt, A.; Weinberger, E. D.; Ross, J. Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sci.1991,88,10983-10987.
    [17]Okamoto, M.; Maki, Y.; Sekiguchi, T.; Yoshida, S. Self-organization in a biochemical-neuron network. Phys. D:Nonlinear Phenom.1995,84,194-203.
    [18]Hjelmfelt, A.; Schneider, F. W.; Ross, J. Pattern recognition in coupled chemical kinetic systems. Science 1993,260,335-337.
    [19]Hjelmfelt, A.; Ross, J. Mass-coupled chemical systems with computational properties. J. Phys. Chem.1993,97,7988-7992.
    [20]Hjelmfelt, A.; Weinberger, E. D.; Ross, J. Chemical implementation of finite-state machines. Proc. Natl. Acad. Sci.1992,89,383-387.
    [21]Hjelmfelt, A.; Ross, J. Implementation of logic functions and computations by chemical kinetics. Phys. D:Nonlinear Phenom.1995,84,180-193.
    [22]Mills Jr, A. P.; Turberfield, M.; Turberfield, A. J.; Yurke, B.; Platzman, P. M. Experimental aspects of DNA neural network computation. Soft Comput.2001,5,10-18.
    [23]Lim, H.-W.; Lee, S. H.; Yang, K.-A.; Lee, J. Y.; Yoo, S.-I.; Park, T. H.; Zhang, B.-T. In vitro molecular pattern classification via DNA-based weighted-sum operation. Biosystems 2010, 100,1-7.
    [24]Kim, J.; Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol.2011,7.
    [25]Lebender, D.; Schneider, F. W. Logical gates using a nonlinear chemical reaction. J. Phys. Chem.1994,98,7533-7537.
    [26]Laplante, J.-P.; Pemberton, M.; Hjelmfelt, A.; Ross, J. Experiments on pattern recognition by chemical kinetics. J. Phys. Chem.1995,99,10063-10065.
    [27]Rambidi, N. G. Practical approach to implementation of neural nets at the molecular level. Biosystems 1995,35,195-198.
    [28]Schinor, N.; Schneider, F. W. The phases of small networks of chemical reactors and neurons. Biophys. Chem.2000,55,199-208.
    [29]Gentili, P. L.; Horvath, V.; Vanag, V. K.; Epstein, I. R. Belousov-Zhabotinsky "chemical neuron" as a binary and fuzzy logic processor. Int. J. Unconv. Comput.2012,8,177-192.
    [30]Pina, F.; Melo, M. J.; Maestri, M.; Passaniti, P.; Balzani, V. Artificial chemical systems capable of mimicking some elementary properties of neurons. J. Am. Chem. Soc.2000,122, 4496-4498.
    [31]McCulloch, W. S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.1943,5,115-133.
    [32]Fujii, A.; Yoneyama, M.; Ishihara, K.; Maeda, S.; Murayama, T. Memory effect of an organic photo conductor and its application to a neuron model. Appl. Phys. Lett.1993,62, 648-650.
    [33]Zhu, H.; Jiang, R.; Xiao, L.; Chang, Y.; Guan, Y.; Li, X.; Zeng, G. Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater.2009,169,933-940.
    [34]Griffiths, J. Colour and constitution of organic molecules. Academic Press,1976.
    [35]Pigorsch, E.; Elhaddaoui, A.; Turrell, S. Spectroscopic study of pH and solvent effects on the structure of Congo red and its binding mechanism to amyloid-like proteins. Spectrochim. Acta Part A:Mol. Spectrosc.1994,50,2145-2152.
    [36]Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci.1984,81,3088-3092.
    [37]Ratner, T.; Reany, O.; Keinan, E. Encoding and processing of alphanumeric information by chemical mixtures. ChemPhysChem 2009,10,3303-3309.
    [38]Baum, E. B. Building an associative memory vastly larger than the brain. Science 1995,268, 583-585.
    [39]Clelland, C. T.; Risca, V.; Bancroft, C. Hiding messages in DNA microdots. Nature 1999, 399,533-534.
    [40]Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. A Molecular Keypad Lock:A photochemical device capable of authorizing password entries. J. Am. Chem. Soc.2007; 129, 347-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700