多排螺旋CT对动脉粥样硬化斑块无创探查及其冠状动脉成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探索兔动脉粥样硬化模型建立的方法及评价多排螺旋CT探查粥样硬化斑块的能力。方法成年新西兰大白兔9只,随机分成3组,对照组1只,实验A组4只,实验B组4只。实验A组麻醉固定后以相同方法损伤主动脉内膜,并每日每只喂养胆固醇3g加基础饲料。实验B组不行主动脉内膜损伤,每日每只喂养胆固醇3g加基础饲料。对照组只喂基础饲料。喂养16周左右对照组兔及实验A组兔行16排螺旋CT主动脉增强扫描,实验B组兔行64排螺旋CT扫描。检查结束一日后处死实验动物以观察主动脉病理变化。结果对照组兔内膜光滑。全部横断面病理切片共135层,对照组未发现斑块,实验A组60层切片中53层发现斑块(88.3%),实验B组60层切面中37层发现斑块(37.3%),三组间有显著性差异(p<0.001):实验A组粥样硬化斑块中脂质斑块占68%,实验B组脂质斑块占69%,两组间无显著性差异;逐层测量实验A组及B组切片主动脉内膜厚度,两组平均内膜厚度分别为488±128μm和532±230μm,有显著性差异(p<0.001)。16排CT对斑块探查敏感性为45%,特异性为86%,64排CT对斑块探查敏感性为65%,特异性为85%。结论两种方法均可成功建立兔动脉粥样硬化模型,主动脉内膜损伤后斑块形成更广泛,多排螺旋CT对实验动脉粥样硬化斑块探查还有一定限度。
     目的以冠状动脉节段为基础,对照冠状动脉内超声(Intravascular Ultrasound IVUS)结果,评价16排螺旋CT(Multi-detector Spiral Computed Tomography MDCT)探查无明显管腔狭窄的冠状动脉粥样斑块的能力及准确性。方法2005年10月至2006年1月,共30例患者行冠状动脉内超声检查及冠状动脉MDCT(美国GE公司Lightspeed 16排螺旋CT)成像。共对94支无明显狭窄及支架置入的冠状动脉节段的MDCT及IVUS图像行对照研究,逐一分析每支冠状动脉节段是否出现粥样硬化斑块,IVUS根据斑块回声特点将斑块分为钙化斑块、纤维斑块、脂质斑块,MDCT则测量斑块密度,以CT值表示。结果总共对94个冠状动脉节段行对照研究(左主干19段,前降支49个节段,回旋支6个节段,右冠状动脉20个节段),对照IVUS结果,MDCT对出现任何粥样硬化斑块节段的诊断敏感性为82%,特异性为89%。对于含钙化斑块的节段,MDCT诊断敏感性为92%,特异性为96%。对于含非钙化斑块的节段,MDCT诊断敏感性为73%,特异性89%。对于仅含非钙化斑块的节段,MDCT诊断敏感性仅为68%。MDCT分析54个斑块平均CT值,按照IVUS的分类,钙化斑块19个,纤维斑块19个,脂质斑块16个,对应CT值为钙化斑块:489±169(196~817 HU),纤维斑块69±21(25~117 HU)以及软斑块23±18(-12~47)。非参数Kruskal-Wallis检验显示三组斑块MDCT测量密度CT值间有显著差异(p<0.001)。两种方法对斑块面积的测量具有相关性(r=0.58 p<0.01),MDCT测定斑块平均面积为5.3mm~2,而IVUS为5.6 mm~2。结论MDCT具有良好的探查无明显狭窄冠状动脉粥样斑块的能力。根据斑块密度(CT值)差异,MDCT能区分不同类型冠状动脉粥样斑块。对斑块面积测量,MDCT与IVUS结果具有相关性。随着软硬件进步,时间分辨率、空间分辨率提高,MDCT这种无创手段将会作出更加准确的诊断结果。
     目的对照冠状动脉内超声(Intravascular Ultrasound IVUS)结果,评价64排螺旋CT(Multi-Detector Spiral Computed Tomography MDCT)探查无明显管腔狭窄的冠状动脉粥样斑块的能力及准确性。方法2006年7月至2006年9月,共18例连续住院患者行冠状动脉内超声检查及冠状动脉64排螺旋CT(美国GE公司Lightspeed VCT)成像。共对25段无明显管腔狭窄的冠状动脉节段的MDCT及IVUS图像行对照研究,其中左主干节段5共2段、前降支近段节段6共9段、前降支中段节段7共10段、回旋支近段节段11共2段、第一钝缘支节段12仅1段。结果对照IVUS结果,MDCT对粥样硬化斑块的诊断敏感性为96%,特异性为94%。两种方法对斑块面积的测量具有很好相关性(r=0.87 p<0.001),MDCT测定斑块平均面积为7.8mm~2±4.10 mm~2,而IVUS为9.2 mm~2±4.59mm~2。结论64排CT具有良好的探查无明显管腔狭窄冠状动脉粥样斑块的能力。对斑块面积测量,64排CT与IVUS结果具有好的相关性。64排CT图像对斑块脂质核心的直接显示对患者危险度分层及随访具有重要意义。
     第四部分64排螺旋CT对冠状动脉成像质量的相关因素分析
     目的探讨影响64排螺旋CT冠状动脉造影(MDCTA)图像质量的因素。方法对100例临床怀疑冠心病的患者行64排MDCT冠状动脉造影检查,对重组图像进行评分,分析心率等因素与冠状动脉评分的相关性。统计学处理采用多元线性回归模型。结果心率、心率变化、钙化积分、冠状动脉腔内对比剂密度、图像噪声对图像质量的影响有统计学意义,上述因素与图像质量间具有多元线性回归关系(标准化回归系数分别为-0.298、-0.310、-0.258、0.265、-0.247)。结论对患者心率良好控制,扫描方案、对比剂用法的恰当选择有利于改善MDCT冠状动脉造影成像质量。
     目的探讨64排螺旋CT(MDCT)诊断冠状动脉病变的准确性及影响因素。方法72例连续住院患者行64排MDCT冠状动脉成像,并与同期常规冠状动脉造影(CCA)结果行盲法对照。结果CCA共分析了1085个冠状动脉节段(美国心脏病协会冠状动脉15节段划分法,其中后降支为节段4,左室后支为节段4+)。MDCT除图像质量差的10个节段(占0.9%)及细小远端和分支19个节段(占1.8%)外,共1056个节段(占97.3%)的MDCT图像与CCA结果对照。以节段为基础,IVIDCT诊断≥50%狭窄的敏感性为84.5%,特异性为93.7%,阳性预测值为77.2%,阴性预测值为96.0%;诊断≥75%重度狭窄病变的敏感性为88.3%,特异性为96.7%,阳性预测值为77.9%,阴性预测值为98.5%。仅分析近、中节段则诊断≥50%狭窄的敏感性为89.5%,特异性为91.3%。按钙化积分中位数(30分)分组,则积分低组(<30分)及积分高组(≥30分)诊断敏感性分别为89.3%、81.9%,特异性分别为96.8%、89.8%。按冠状动脉腔内造影剂密度分组,密度高组(≥407HU)与密度低组(<407HU)诊断敏感性分别为87.5%、82.4%;特异性94.4%、92.8%。结论在良好的图像质量前提下,64排MDCT诊断冠状动脉狭窄性病变准确性较高,适宜于筛查冠心病,并协助确定治疗方案。
Part1 Establishing atherosclerosis model with rabbit and detection atherosclerotic plaque by multidetector Computer Tomography
     Objective To probe and compare two methods of establishing atherosclerosis model with rabbit and detecting atherosclerotic plaque by multi-detector CT. Methods 9 adult NEW Zealand rabbits were randomized into three groups, 4 into treatment group A, 4 into treatment group B and 1 into control group. After fundamental anesthetized, the rabbits of treatment group A underwent hurt to endomembrane of aorta and then each rabbit fed on 3g cholesterol plus fundamental fodder each day. Each rabbit of treatment group B fed on 3g cholesterol plus fundamental fodder each day only without injury of aorta. The rabbit of control group fed on fundamental fodder only. After 16 weeks, the rabbits of treatment group A and the rabbit of control group underwent scan of 16—detector—row spiral CT, the rabbits of treatment group B underwent scan of 64-detector--row spiral CT, and subsequently all the rabbits were sacrificed for pathological examination. Results The rabbit of control group had smooth endomembrane. There were 135 pathological slices totally, 53 slices containing plaque were found in 60 slices of treatment group A, 37 slices containing plaque were found in 60 slices of treatment group B, and no slice containing was found in control rabbit .The difference among three groups was significant(P<0.001). The mean thickness of each slice of endomembrane of treatment group A is 488±128μm (170μm~730μm), and treatment group B 532±230μm (50μm~950μm)。The difference between two groups was significant(P<0.001). The sensitivity and speciality of 16—detector—row spiral CT is 45% and 86% respectively, 65% and 85% of 64—detector—row spiral CT accordingly. Conclusion Arteriosclerosis model can be successfully established with rabbit with two above methods. There were some limitation in more precise evaluation of plaque by MDCT. intravascular ultrasound(IVUS),based on segment. Methods The IVUS and MDCT scans (Lightspeed Ultra-16, GE, USA) were performed in 30 patients. A total of 94 coronary segments without significant coronary stenoses and stents were imaged and analyzed. MDCT data sets were evaluated for the presence and areas of plaques in the coronary segments. Plaque composition was analyzed according to IVUS (plaque echogenity: soft, intermediate, calcified) and MDCT criteria (plaque dencity expressed by Hounsfield units[HU]). Results were compared with IVUS in a blinded fashion. Results A total of 94 coronary artery segments were imaged and analyzed(left main, 19; left anterior descending, 49; left circumflex, 6; right coronary, 20). For the detection of segments with any plaque, MDCT had a sensitivity of 82% (46 of 56) and specificity of 89% (34 of 38). For calcified plaque, sensitivity was 92% (35 of 38 ) and specificity 96% (54of 56). Coronary segments containing noncalcified plaque were detected with a sensitivity of 73%(30 of 41) and specificity of 89%(47 of 53), but presence of exclusively noncalcified plaque was detected with 68% sensitivity (12 of 18). The density of 54 plaques were analyzes. With IVUS, the plaque was classified as calcified (n=19), intermediate(n=19) and soft (n=16). Using MDCT, calcified plaques had a density of 489±169(range 196 to 817 HU), intermediate plaques of 69±21(25 to 117 HU) and soft plaques 23±18 (-12 to 47). Nonparametric Kruskal-Wallis test revealed a significant difference of plaque density among the three groups (p<0.001). The mean plaque areas measured by IVUS and MDCT were 5.3mm~2 versus 5.6 mm~2(p<0.01, r=0.58) Conclusions The results indicate the potential of MDCT to detect coronary atherosclerotic plaque in patients without significant coronary stenoses. Coronary plaques configuration might be correctly differentiated by MDCT .Measurements of plaques areas derived by MDCT correlated well with IVUS. This noninvasive method might become an important tool for risk stratification. However, further improvements in image quality will necessary to achieve reliable assessment.
     Part3 Noninvasive Detection and Evaluation of Coronary Atherosclerotic Plaque with 64-Detector-Row Spiral Computed Tomography- Initial Result of Comparison With Intravascular Ultrasound
     Objectives The aim of the present study was to evaluate the ability and accuracy in detect atherosclerotic plaque in nonstenotic coronary arteries by 64-detector-row spiral computed tomography(MDCT). The results were compared with the findings of intravascular ultrasound(IVUS), based on plaque. Methods The IVUS and MDCT scans (Lightspeed VCT , GE) were performed in 18 patients . A total of 25 coronary segments without significant coronary stenoses and stents were imaged and analyzed. MDCT data sets were evaluated for the presence and areas of plaque one by one. Results were compared with IVUS in a blinded fashion. Results For the detection of any plaque, MDCT had a sensitivity of 96%(23 of 24) and specificity of 94%(35 of 37). The mean plaque areas measured by IVUS and MDCT were 7.8mm~2 versus 9.2 mm~2(p<0.001 , r=0.87) Conclusions The results indicate the excellent ability of 64-detector row CT to detect coronary atherosclerotic plaque in patients without significant coronary stenoses. Measurements of plaques areas derived by MDCT correlated well with IVUS. The direct demonstration of plaque lipid pool of 64-detector row CT image will be very important for risk stratification and patients follow-up.
     Part 4 Analysis of main influence factors on coronary artery image quality with 64-detector-row spiral CT
     Objective TO explore the main influence factors heart rate(HR),heart rate changing, coronary calcium score(CCS),impact of intravascular enhancement, image noise, diameter of coronary artery et al)on the image quality of coronary artery with 64-slice helical CT. Methods 100 patients with suspected CAD were underwent MDCTA, the image quality score(IQS)was evaluated according to the same evaluation standard of reformatted image. The correlation between some factors for example HR and IQS were analyzed. Results The heart rate, heart rate changing, coronary calcium score, impact of intravascular enhancement and image noise had significant influence on IQS. The equation of multiple regression was IQS=4.21-0.030×(HR)-0.029×(HR changing)-0.001×(CCS)-0.003×(impact of intravascular enhancement)-0.027×(image noise). Conclusion Better HR control,proper select of scan and contrast
     Part5 64-Detector-Row Spiral CT of the coronary imaging:assessment of accuracy in detecting stenoses
     Objective To evaluate the accuracy in detecting coronary artery lesions of 64-multi detector computed tomography(MDCT).Methods Seventy two patients were studied by MDCT. The results were compared with invasive coronary angiography(ICA). Results In 1056 segments with diagnosis MDCT image quality(American Heart Association 15-segment model).Sensitivity for the detection of stenosis≥50%,≥75% on segments was 84.5% and 88.3% ,respectively, and specificity was 93.7% and 96.7%.
     Conclusion Our results indicate high quantitative and qualitative diagnostic accuracy of 64-multi detector CT in comparison to ICA with good image quality.
引文
1. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127 -134.
    
    2. Muller J, Tofler G, Stone P. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733 - 743.
    
    3. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995:92:657-671.
    
    4. Gerald M P, Anthon R F. From the microscope to the clinic MR assessment of atherosclerotic plaque.Circulation, 1998, 98:1477-1478
    
    5. Forster BA, Weinberg PD. Changes with age in the influence of endogenous nitric oxide on transport properities of the rabbit aortic wall near branches. Arterioscler Thromb Vasc Biol, 1997, 17:1361-1368
    
    6. Haunstetter A, Izumo S. Apoptosis :basicmechanisms and implications for cardiovascular disease. Circ Res, 1998, 82:1111-1129
    
    7. Mc Connell MV, Aikawa M, Maier SE,et al.MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol,1999,19:1956-1959
    
    8. Yuan C, Mitsumor LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonce imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation, 2001, 104:2051-2056.
    
    9. Juan F,Viles-Gonzalez, Micheal P, et al. In vivo 16-slice multidetector-row computer tomography foe the assement of experimental atherosclerosis. Circulation, 2004 ;110:1467-1472
    
    10.陈杰,李甘地.病理学人民卫生出版社,2005.7:192—193
    
    11. Drew AF, Tipping PG. T helper cell infiltration and foam cell proliferation are early events in the development of atherosclerosis in cholesterol-fed rabbits . Arterioscler Vasc Biol,1995,15:1563-1568
    1. Taylor AJ. Merz NB, Udelson IE. 34th Bethesda Conference. Executive summary: can atherosclerosis imaging techniques improve the detection of patients at risk for ischemic heart disease? J Am Coll Cardiol, 2003;41:1869-1862
    
    2. Fayad ZA, Fuster V, Nikolaou K, et al. Computed tomography and magnetic resonance imaging: current and potential future concepts. Circulation , 2002;106:2026-2034
    
    3. Arad Y, Spadaro LA, Goodman K, et al. Predictive value of electron beam computed tomography of the coronary arteries: 19-month follow-up of 1173 asymptomatic patients. Circulation 1996;93:1951-1953.
    
    4. Budoff MJ, Lane KL, Bakhsheshi H, Mao SS, Grassmann BO, Friedman BC, Brundage BH. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol, 2000;86:8-11.
    
    5. Maher JE, Bielak LF, Raz JA, Sheedy PF, Schwartz RS, Peyser PA. Progression of coronary artery calcification: a pilot study. Mayo Clin Proc 1999:74:347-355.
    
    6. Mautner GC, Mautner SL, Froehlich J, et al. Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology 1994;192:619-623.
    
    7. Naghavi M, Madjid M, Gul K, et al. Thermography basket catheter: in vivo measurement of the temperature of atherosclerotic plaques for detection of vulnerable plaques. Catheter Cardiovasc Interv, 2003, 59: 52-59.
    
    8. Austen WG. Edwards JE, Frye RL,et al. A reporting system on patients evaluated for coronary artery disease :report of the AD HOC Committee for Grading of Coronary Artery Disease .Council in Cardiovascular Surgery, American Heart Association. Circulation. 2003;107:664-666
    
    9. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition. Measurement and Reporting or Intravascular Ultrasound Studies(IVUS):a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001;37:1478-92
    
    10. Waxman S. Characterzation of the unstable lesion by angiography, angioscopy, and intravascular ultrasound. Cardiol Clin 1999;17:295-305
    
    11.Leber AW, Knez A, von Ziegler F, et al. Composition of coronary atherosclerotic plaques in patients in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. J Am Coll Cardiol 2003;91 (1):714 -718,.
    
    12.Alexander W .Andreas Knez, Alexander Becker et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004 Apr 7;43 (7):1241-1247.
    
    13. Stephan Achenbach, Fabian Moselewski, Dieter Ropers et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004 Jan 6;109(1):14-17.
    
    14. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107;664-666
    1. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127-134.
    2. Muller J, Tofler G, Stone P. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733-743.
    3. Morteza Naghavi, Peter Libby, Erling Falk, al et. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part Ⅰ. Circulation. 2OO3 Oct 7;108(14):1664-72. Review.
    4. Gossl M, yon Birgelen C, Mintz GS, et al. Volumetric assessment of ulcerated ruptured coronary plaques with three-dimensional intravascular ultrasound in vivo. Am J Cardiol, 2oo3, 91: 992-996.
    5. Leber AW, Rnez A, Becker A, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 2004;43:1241-7
    6. Patricia M, Carroscosa, Carlos M, et al. Characterization of coronary atherosclerotic plaques by multidetector computed tomography. AM J Cardiol 2006;97:598-602
    7. Austen WG. Edwards JE, Frye RL, et al.A reporting system on patients evaluated for coronary artery disease :report of the AD HOC Committee for Grading of Coronary Artery Disease ,Council in Cardiovascular Surgery, American Heart Association. Circulation. 2003;107:664-666
    8.吕滨,庄囡,戴汝平,蒋世良.电子束CT冠状动脉钙化积分和血管造影诊断冠心病的价值。中华放射学杂志2004;38:1305-1310.
    9. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition. Measurement and Reporting or Intravascular Ultrasound Studies(IVUS):a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001;37:1478-92
    10. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaques by contrast-enhanced submillimeter multidetector spiral computed tomography: a segmentbased comparison with intravascular ultrasound. Circulation 2004; 109:14-17
    11. Schroeder S, Flohr T, Kopp AF, et al. Accuracy of density measurement with plaque located in artificial coronary arteries by X-ray multislice CT, result of a phantom study. J Compute Assist tomogr 2001;25:900-906
    12. LeberAW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: A comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005;46(1):147-54.
    13. Alexander W. Leber, MD, Alexander Becker, et al. Accuracy of 64-Slice Computed Tomography to Classify and Quantify Plaque Volumes in the Proximal Coronary System A Comparative Study Using Intravascular Ultrasound. J Am Coll Cardiol 2006;47:672 - 677
    1. Ropers D, Baum U, Pohle K, et al. Detection of coronary after stenoses with thin-slice multi-detector row spiral CT and multiplanar reconstruction. Circulation, 2003,107(5):664-666.
    2. Mollet NR, Cademartiri F, Nieman K, et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J AM Coll Cardiol, 2004,43(12):2265-2270.
    3. Austen WG. Edwards JE, Frye RL, et al.A reporting system on patientsevaluated for coronary artery disease :report of the AD HOC Committee for Grading of Coronary Artery Disease ,Council in Cardiovascular Surgery, American Heart Association. Circulation. 2003;107:664-666
    4.吕滨,庄囡,戴汝平,蒋世良.电子束CT冠状动脉钙化积分和血管造影诊断冠心病的价值。中华放射学杂志 2004;38:1305-1310.
    5.雷子乔,韩萍,孔祥泉,等.多层螺旋CT冠状动脉造影扫描技术及图像质量的影响因素.临床放射学杂志,2005,24:77-80
    6.孙红,惠萍,李天文,等。多层螺旋CT冠状动脉造影:心率对最佳重建相位窗及图像质量的影响.整个介入影像与治疗学,2005,2:274—279.
    7 . Raff GL, Gallagher MJ,O' Neill WW, et al. Diagnosis accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol, 2005,24:77-80.
    8. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery artery calcium using ultrafast computed tomography. J Am Coll Cardiol, 1990, 15(4):827-832
    
    9. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans.J Am Coll Cardiol,1998,31 (1):126-133
    
    10. Becker CR, Kleffel T.Crispin A, et al. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol, 2001, 176(5):1295-1298
    
    11.Becker CR, Hong C, Knez A et al. Optimal contrast application for cardio 4-detector-row Computed Tomography. Invest Radiol 38:690-694,2003.
    1. Kuettner A, Kopp AF, Schroeder S, et al. Diagnostic accuracy of multi detector Computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cadiol 2004;43:831-9
    2. Ropers D, Baum U, Pohle K, et al. Detection of coronary after stenoses with thin-slice multi-detector row spiral CT and multiplanar reconstruction. Circulation, 2003,107(5):664-666.
    3. Mollet NR, Cademartiri F, Nieman K, et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J AM CollCardiol, 2004,43(12):2265-2270.
    4. Austen WG. Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease :report of the AD HOC Committee for Grading of Coronary Artery Disease ,Council in Cardiovascular Surgery, American Heart Association .Circulation 2003;107:664-666
    5. Heuschmid M,Kuettner A, Schroeder S, et al.ECG-gated 16-MDCT of the coronary arteries:assessment of image quality and accuracy in detecting stenoses. AJR,2005,184:1413-1419
    6. Sato Y,Matsumoto N, Kato M, et al. Noninvasive Assessment of coronary artery disease by multislice spiral computed tomography using a new retrospectively ECG-gated image reconstruction technique comparison with angiographic results. Circ J, 2003,67:401-405
    7.潘爱珍,甘毅,陈涛,等。16层CT冠状动脉成像质量探讨.中国CT和MRI杂志,2004,2:27-30
    1. Zaman AG, Helft G, Worthley SG, et al. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000,149(20):251-266
    2. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657-671
    3. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995:91:2844-2850
    4. Davies MJ. Stability and instability:Two faces of coronary atherosclerosis. Circulation 1996;94:2013-2020
    5. Fuster V. Mechanisms leding to myocardio infarction:insight from studies of vascular biology. Circulation 1994:90:2126-2146
    6. Richardson PD, Davies MJ, Born GV. Influence of plaque congiguration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet. 1997;95:594-599
    7. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R. Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987:316:1371-1375
    8. Nissen SE, Yock P. Intravascular ultrasound:novel pathophysiological insights and current clinical applications. Circulation. 2001; 103:604-616
    9. Prati F, Arbustini E, Labellarte A, et al. Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart, 2001, 85 (5): 567.
    
    10. Uchida Y, Nakamura F, Tomaru T, Morita T, Oshima T, Sasaki T, Morizuki S. Prediction of acute syndromes by percutanous coronary angiography in patients with stable angina. Am Heart J. 1995;130:195-203
    
    11. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA. Thermal detection of celluar infiltrates in living atherosclerotic plaque : possible implication for plaque rupture and thrombosis. Lancet. 1996;347:1447-1451
    
    12. Stefanadis W, Diamantopoulos L, Vlachopoulos C, Thermal heterogeneity within human atherosclerotic coronary arteries detected vivo: a new method of detection by application of a special thermography catheter. Circulation. 1999;99:1965-1971.
    
    13. Stefanadis C, Diamantopoulos L, Dernellis J, et al. Heart production of atherosclerotic plaques and inflammation assessed by the acute phase proteins in acute coronary syndromes. J Mol Cell Cardiol, 2000, 32(1): 43-52
    
    14 . Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF,Fujimoto JG, Optical cotical coherence tomography for optical biopsy: properties and demonstration of vascular pathology. Circulation. 1996;93:1206-1213.
    
    15. Yabushita H, Bouma BE, Houser SL,et al. Characterization of human atherosclerotic plaques by optical coherence tomography.Circulation.2002, 106(13):1640-1645
    
    16. Tearney GJ, Yabushita, H Houser SL, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003, 107(1):113
    
    17. Romer TJ, Bernnan JF 3~(rd), Pupplels GJ, Zwinderman AH et al. Intravascular ultrasound combined with Raman spectroscopy to localization and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arteroscler Thromb Vasc Biol. 2000;20:478-483
    
    18. Romer TJ, Bernnan JF 3rd, Pupplels GJ, et al. Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation, 1998, 97(9):878-885
    
    19. De Korte CL, Sierevogel MJ, Mastik F, et al. Identifiction of atherosclerosis plaque components with intravascular ultrasound elastography in vivo:a Yucatan pig study .Circulation, 2002, 105(14):1627-1630.
    
    20. Vallabhajosula S, Paidi M, Badimon JJ, Le NA, Goldsmith SJ, Fuster V. Radiotracers for low density lipoprotein biodistribution studies in vivo:technetium-99 m low density lipoprotein versus radioiodinated low density lipoprotein preparation. J Nucl Med. 1988;29:1237-1245.
    
    21. Iuliano L, Mauriello A, Sbarigia E, Spagnoli LG, Violi F. Radiolabeled native loe-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic pique : effect of vitamin E supplementation . Circulation. 2000;101:1249-1254.
    
    22. Loscalzo J, Rocco TP. Imaging arterial thrombi: an elusive goal. Circulation. 1992:85:382-385.
    
    23. Tsimikas S. Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidationspecific antibodies. Am J Cardiol, 2002, 90(10c)22L.
    
    24. Hardoff R, Braegelmann F, Zanzonico P, Herrold EM, Lees RS, Lees AM, Dean RT, Lister-James J, Borer JS. External imaging of atherosclerosis in rabbits using an 1231-labeled synthetic peptide fragment. J Clin Pharmacol. 1993;33:1039-1047.
    
    25. Zhang YX. Cao W,Wu ZJ.Radioiodine labeled SP-4as an imaging agent foratherosclerotic plaques. Nucl Scientech,2000, 11(40):234-237.
    
    26. Dinkelborg LM, Duda SH, Hanke H, et al. Molecular imaging of atherosclerosis using a technetium-99m-labeled endothelin derivqtive. J Nucl Med, 1998,39: 1819-1822.
    
    27. Lederman RJ, Raylman RR, Fisher SJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Coramun, 2001,22(7): 747-753.
    
    28. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with ~(18)F-fluorodeoxyglucose position emission tomography. Circulation, 2002,105(23):2708-2711
    
    29. Helft G, Worthley SG, Fuster V, et al. Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits. J Am Coll Cardiol, 2001, 37:1149-1154.
    
    30. Schneider JE, McAteer MA, Tyler DJ, et al. High-resolution, multicontrast,. three-dimensional~MRIcharacterizes therosclerotic plaque composition in ApoE-/- mice ex vivo. J Magn Reson Imaging, 2004,20:981-989.
    
    31. Manka DR, Gilson W, Sarembock I, et al. Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse. J Magn Reson Imaging, 2000,12:790-794.
    
    32. Toussiant JF, LaMuraglia GM, Southern JF, et al. Magnetic resonance images lipid fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation. 1996:94:932-938
    
    33. Yuan C, Beach KW, Smith LH Jr, et al. Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging Circulation. 1998;98:1541-1547
    
    34. Luo Y, Polissar N, Han C, et al. Accuracy and uniqueness of three in vivo measurements of atherosclerotic carotid plaque morphology with black blood MRI. Magn Reson Med,2003, 50:75-82.
    35. Yuan C, Mitsumori L M, Ferguson M S, et al. In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques. Circulation, 2001, 104:2051-2056.
    
    36. Cappendijk VC, Cleutjens KB, Kessels AG, et al. Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology,2005, 234:487-492.
    
    37. Arad Y, Spadaro LA, Goodman K, et al. Predictive value of electron beam computed tomography of the coronary arteries: 19-month follow-up of 1173 asymptomatic patients. Circulation 1996:93:1951-1953.
    
    38. Budoff MJ, Lane KL, Bakhsheshi H, Mao SS, Grassmann BO, Friedman BC, Brundage BH. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol 2000;86:8-11.
    
    39. Maher JE, Bielak LF, Raz JA, Sheedy PF, Schwartz RS, Peyser PA. Progression of coronary artery calcification: a pilot study. Mayo Clin Proc 1999:74:347-355.
    
    40. Sutton-Tyrrell K, Kuller LH, Edmundowicz D, et al. Usefulness of electron beam tomography to detect progression of coronary and aortic calcium in middle-aged women. Am J Cardiol 2001;87:560-564.
    
    41. Kopp AF. Multislice computed tomography:basic principles and clinical applications. Electromedia, 2000, 68:94
    
    42. Estes JM, Quist WC, Lo GF, et al. Noinvasive characterization of plaque morphology using helical computed tomography .J Cardiovascular Surg, 1998,39:527-534
    
    43. Kopp AF, Schroeder S, Baumbach A, et al. Non-invasive characterization of coronary lesion morphology and composition by multislice CT:first results in comparison with intracoronary ultrasound. Eur Radiol, 2001,11:1607-1611.
    
    44. Schroeder S, Kopp AF,, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol, 2001, 37:1430-1435.
    
    45. Stephen Schroeder,, Andreas F, Andreas Baumbach et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography.JACC 2001;371430-1435.
    
    46. Becker CR, Nikolaou k, Muders M, et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol, 2003, 13:294-2098
    
    47. Alexander W .Andreas Knez, Alexander Becker et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004 Apr 7;43 (7):1241-1247.
    
    48. Stephan Achenbach, Fabian Moselewski, Dieter Ropers et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004 Jan 6;109(1):14-17.
    
    49. Sei Komatsu, Atsushi Hirayama, Yosuke Omori et al. Detection of coronary plaque by computed tomography with a novel plaque analysis system, 'Plaque Map', and comparison with intravascular ultrasound and angioscopy.Circ J. 2005 Jan;69(1):72-77.
    
    50. Leber AW, Knez A, von ZieglerF, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: A comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005;46(1):147 - 54.
    
    51. Alexander W. Leber, MD, Alexander Becker, et al. Accuracy of 64-Slice Computed Tomography to Classify and Quantify Plaque Volumes in the Proximal Coronary System A Comparative Study Using Intravascular Ultrasound. J Am Coll Cardiol 2006;47:672 - 677
    
    52. Alireza Zarrabi, Daniel Chan, Zhongyun Dong , et al. A novel liposomal encapsulated iohexol (Omnipaque) for detection of inflammation by computed tomography: a potential method for identification of vulnerable plaques. Am J Cardiol, 2002, 39: 256.
    
    53. Paulin S, von Schulthess GK, Fossel E, et al. MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol 1987:148:665-70.
    
    54. Alireza Zarrabi, Daniel Chan, Zhongyun Dong , et al. A novel liposomal encapsulated iohexol (Omnipaque) for detection of inflammation by computed tomography: a potential method for identification of vulnerable plaques. Am J Cardiol, 2002, 39: 256.
    
    55. ArakawaK, IsodaK, Ito T, et al. Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap. Arterioscler Thromb Vasc Biol, 2002, 22: 1002-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700