实时心肌声学造影定量分析若干图像处理问题的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时心肌声学造影(RT-MCE)有着很强的评价心肌灌注能力,而且已经成为冠状动脉疾病诊断和评价心肌存活性的有力工具。但是,目前的RT-MCE图像数据的定量分析技术还有待完善,尤其是MCE序列图像的降噪和MCE序列图像ROI区域的帧间校准这两个关键问题亟需得到解决。本课题给出了上述问题的具体解决方法。
     MCE图像中含有严重的Speckle噪声,它们遮盖了对临床诊断较为重要的图像细节,并给后续的处理,如边缘检测、图像分割等造成了很大的麻烦。对于超声图像来说,Speckle噪声是无法避免的,而且其复杂的形成机制、多变的统计特性使得很多经典降噪算法无法发挥作用。这一现象引起了很多研究人员的广泛关注。有些学者将研究重点放在噪声模型的求解上,给出了瑞利分布(Rayleigh Distribution)、K分布(K-distribution)以及莱斯分布(Rician Distribution)等模型;有些学者则直接关注实际问题中的Speckle噪声的抑制,给出了SAR(synthetic aperture radar)图像、IVUS图像的降噪方法,这些方法主要有基于空间滤波、基于小波变换、基于扩散理论三种。一些学者将上述研究成果应用到MCE图像的降噪中,虽然具有很强的学术价值,但得到的临床应用效果却不是很理想。但前人的工作给我们提供了重要的信息:Speckle噪声的抑制必须要考虑图像的自身特性。本实验工作人员在前期工作中提出了一种能有效抑制IVUS序列图像血液Speckle噪声的自适应时空滤波方法。该方法的基本思想是对目标帧中每一个要检测的像素结合其空间和时间两方面的信息,构造一个二维ROI区域,然后根据此ROI区域内血液和组织频谱特性的差异进行降噪。自适应时空滤波较好的临床应用效果给了我们很大启发,通过引入S变换,并结合MCE图像的自身特性,本文最终给出了针对MCE图像的Speckle噪声抑制方法。实验结果表明,该方法提高了图像的信噪比,改善了图像的质量。
     MCE序列图像定量分析的另一个关键问题是心肌ROI区域的帧间校准问题。目前应用最广泛的MCE定量分析方法是时间-强度曲线分析方法。准确的ROI位置是时间-强度曲线分析方法可靠性的必要前提。然而,由于心脏跳动、呼吸作用的影响,在初始帧上选取的ROI位置在后续帧上都存在不同程度的漂移。因此,为了保证MCE图像定量分析的准确性,必须首先保证图像序列中每一帧上的ROI都标记同一个心肌位置。本课题利用超声图像散斑模式的唯一性和稳定性并使用基于B-mode图像的散斑跟踪方法实现心肌ROI的帧间校准。基于图像的散斑跟踪方法主要有两种,光流场方法和块匹配方法。鉴于块匹配方法计算量小、实时性高及易于软硬件实现的优点,本课题采用块匹配方法求解出ROI区域在后续帧上的位置。为了有效地避免块匹配跟踪误差的帧间积累,本课题通过引入自适应卡尔曼滤波提出了一种新的参考块更新方法,提高了跟踪方法的整体精确度,给出了更加合理的时间-强度曲线。
Due to the strong ability for myocardial perfusion and myocardial viability assessment. Real Time Myocardial Contrast Echocardiography (RT-MCE) has been a powerful tool for the diagnosis of Coronary Artery Disease(CAD).However, further research on the quantitative analysis of RT-MCE is still required. At present, two relevant key problems:the denoising of the MCE images and the reposition of ROIs along the MCE images, need to be solved urgently. This subject will give specific solution to the issues above.
     The heavy speckle noise in MCE images, either tends to obscure and mask diagnostically important details or decreases the efficiency of further image processing such as edge detection and image segmentation. For ultrasound images, the speckle noise is inevitable. Its complex formation mechanism and statistics properties make a lot of classic noise reduction algorithm can not play a role. This phenomenon has caused wide attention of many researchers. Some scholars focused on outling the noise model, and has presented several approximate models, such as Rayleigh Distribution, K-distribution and Rician Distribution. While some reseachers tried to give the de-noising algorithm for specific ultrasound imaging modals, e.g., synthetic aperture radar images and intravascular ultrasound images. Their algorithms are mainly based on spatial filter, wavelet transform and diffusion theory. The existed de-speckled methods are of great academic value, but their clinical application effect is not very ideal. The staff of our workgroup put forward a effective de-speckled method for IVUS images, namely adaptive temporal-spatial filtering method, which tries to distinguish vascular tissue and blood via the difference of their frequency spectrum. Motivated by its successful application effect, we finally found one method suppressing the speckle noise in MCE images. Simulation experiments show that our algorithm effectively improves the signal-to-noise ratio of the image and improves the quality of the image.
     Another problem is how to reposition the ROIs in MCE imgaes. At present, the time-intensity curve is the most popular way in the quantitatve analysis of RT-MCE, which requires the ROIs locate in the right place. Unfortunately, as a result of heart beat and respiration, the ROI selected on the first frame often does not represent the same structures along cardiac cycle. To obtain reasonable time-intensity curves, the ROIs in the imgaes must tag the same myocardial tissue. We tended to use a B-mode image based speckle tracking technique to track ROIs along the sequence, which takes advantage of the uniqueness and stability of the speckle pattern. In light of the inherent simplicity and relative immunity to noise, a speckle tracking technique based on block matching was implemented. Then a new refference block updating method based on adaptive Kalman filtering was proposed to avoid the interframe tracking error's accumulation along the sequence, which improve the accuracy of the tracking method and ensure the quality of the time-intensity curve finally.
引文
[1]Islam M S, Sakib M A M, Talukder R, et al. Spectrum of heart diseases on Echocardiography in a Rural tertiary care Medical college hospital in Bangladesh[J]. KYAMC Journal,2013,3(1):223-234..
    [2]Yang L. Real-time myocardial contrast echocardiography and its applications in evaluation for coronary artery disease[J].Chinese medical journal, 2004,117(9):1388-1394.
    [3]Porter T R, Li S, Jiang L, et al. Real-time visualization of myocardial perfusion and wall thickening in human beings with intravenous ultrasonographic contrast and accelerated intermittent harmonic imaging[J]. Journal of the American Society of Echocardiography,1999,12(4):266-271.
    [4]Cwajg J, Xie F, O'Leary E, et al. Detection of angiographically significant coronary artery disease with accelerated intermittent imaging after intravenous administration of ultrasound contrast material [J]. American heart journal,2000, 139(4):675-683.
    [5]Shimoni S, Zoghbi W A, Xie F, et al. Real-time assessment of myocardial perfusion and wall motion during bicycle and treadmill exercise echocardiography: comparison with single photon emission computed tomography [J]. Journal of the American College of Cardiology.2001.37(3):741-747.
    [6]Murthy T H, Li P, Locvicchio E, et al. Real-time myocardial blood flow imaging in normal human beings with the use of myocardial contrast echocardiography [J]. Journal of the American Society of Echocardiography,2001,14(7):698-705.
    [7]Simpson D H, Chin C T, Burns P N. Pulse inversion Doppler:a new method for detecting nonlinear echoes from microbubble contrast agents[J]. Ultrasonics, Ferroelectrics and Frequency Control. IEEE Transactions on,1999,46(2): 372-382.
    [8]Tiemann K, Lohmeier S, Kuntz S, et al. Real-Time Contrast Echo Assessment of Myocardial Perfusion at Low Emission Power[J]. Echocardiography,1999,16(8): 799-809.
    [9]Mor-Avi V, Caiani E G, Collins K A. et al. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images[J]. Circulation,2001,104(3):352-357.
    [10]Oraby M A, Hays J, Maklady F A, et al. Comparison of real-time coherent contrast imaging to dipyridamole thallium-201 single-photon emission computed tomography for assessment of myocardial perfusion and left ventricular wall motion[J]. The American journal of cardiology,2002,90(5):449-454.
    [11]Yao G, Zhang C, Sun F. et al. Quantification of transmural gradient of blood flow in myocardial ischemia with real-time myocardial contrast echocardiography and dipyridamole stress test[J]. Ultrasound in medicine & biology,2008,34(1):22-30.
    [12]Villanueva F S, Wagner W R. Ultrasound molecular imaging of cardiovascular disease[J]. Nature clinical practice Cardiovascular medicine,2008,5:S26-S32.
    [13]Van Camp G, Ay T, Pasquet A, et al. Quantification of myocardial blood flow and assessment of its transmural distribution with real-time power modulation myocardial contrast echocardiography[J]. Journal of the American Society of Echocardiography,2003,16(3):263-270.
    [14]Contrast A M. Thrombus aspiration reduces microvascular obstruction after primary coronary intervention[J]. Journal of the American College of Cardiology, 2006,48(7).
    [15]Xie F, Hankins J, Mahrous H A, et al. Detection of coronary artery disease with a continuous infusion of Definity ultrasound contrast during adenosine stress real time perfusion echocardiography[J]. Echocardiography,2007,24(10):1044-1050.
    [16]Sun F, Zhang M. Jia X, et al. Numerical methods and workstation for the quantitative analysis of real-time myocardial contrast echocardiography[J]. Information Technology in Biomedicine, IEEE Transactions on,2010.14(5): 1204-1210.
    [17]Sun F, Zhang M, Jia X, et al. Region of interest tracking in real-time myocardial contrast echocardiography[J]. Journal of medical systems,2011,35(2):163-167.
    [18]Sun F, Zhang M, Jia X, et al. A Workstation for the Quantitative Analysis of Real-Time Myocardial Contrast Echocardiography[C]//Biomedical Engineering and Informatics,2009. BMEI'09.2nd International Conference on. IEEE,2009: 1-5.
    [19]Zhang M, Sun F, Song H, et al. Design of the quantitative analysis software system for myocardial contrast echocardiography[C]//Third International Symposium on Multispectral Image Processing and Pattern Recognition. International Society for Optics and Photonics,2003:747-752.
    [20]Li D, Hao J, Xia Y, et al. Clinical usefulness of low-dose dobutamine stress real time myocardial contrast echocardiography for detection of viable myocardium [J]. Journal of Clinical Ultrasound,2012,40(5):272-279.
    [21]Wei K, Jayaweera A R, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion[J]. Circulation,1998,97(5):473-483.
    [22]Michailovich O V, Tannenbaum A. Despeckling of medical ultrasound images[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2006, 53(1):64-78.
    [23]Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images[J]. Medical Imaging, IEEE Transactions on,2001,20(8):772-783.
    [24]Zong X, Laine A F, Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing[J]. Medical Imaging, IEEE Transactions on.1998,17(4):532-540.
    [25]Coupe P, Hellier P, Kervrann C, et al. Nonlocal means-based speckle filtering for ultrasound images[J]. Image Processing. IEEE Transactions on,2009,18(10): 2221-2229.
    [26]Wagner R F, Smith S W, Sandrik J M, et al. Statistics of speckle in ultrasound B-scans[J]. IEEE TRANS. SONICS ULTRASONICS.,1983,30(3):156-163.
    [27]Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images[J]. Medical Imaging, IEEE Transactions on.2001,20(8):772-783.
    [28]Jain A K. Fundamentals of digital image processing[M]. Englewood Cliffs: prentice-Hall,1989.
    [29]Tay P C, Acton S T, Hossack J A. A stochastic approach to ultrasound despeckling[C]//Biomedical Imaging:Nano to Macro,2006.3rd IEEE International Symposium on. IEEE,2006:221-224.
    [30]Karaman M, Kutay M A, Bozdagi G. An adaptive speckle suppression filter for medical ultrasonic imaging[J]. Medical Imaging, IEEE Transactions on,1995, 14(2):283-292.
    [31]Jakeman E, Tough R J A. Generalized K distribution:a statistical model for weak scattering[J]. JOSA A,1987,4(9):1764-1772.
    [32]Dutt V, Greenleaf J F. Ultrasound echo envelope analysis using a homodyned K distribution signal model[J]. Ultrasonic Imaging.1994,16(4):265-287.
    [33]Mohana Shankar P. A general statistical model for ultrasonic backscattering from tissues[J]. Ultrasonics. Ferroelectrics and Frequency Control, IEEE Transactions on,2000,47(3):727-736.
    [34]Stacy E W. A generalization of the gamma distribution[J]. The Annals of Mathematical Statistics,1962,33(3):1187-1192.
    [35]Raju B I, Srinivasan M A. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo[J]. Ultrasonics, Ferroelectrics and Frequency Control. IEEE Transactions on,2002.49(7):871-882.
    [36]Daubechies I. Ten lectures on wavelets[M]. Philadelphia:Society for industrial and applied mathematics,1992.
    [37]Aysal T C. Barner K E. Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images[J]. Medical Imaging, IEEE Transactions on,2007, 26(5):712-727.
    [38]Kassam S A, Poor H V. Robust techniques for signal processing:A survey[J]. Proceedings of the IEEE,1985,73(3):433-481.
    [39]Pizurica A, Philips W, Lemahieu I, et al. A versatile wavelet domain noise filtration technique for medical imaging[J]. Medical Imaging, IEEE Transactions on,2003,22(3):323-331.
    [40]Strintzis M G, Kokkinidis I. Maximum likelihood motion estimation in ultrasound image sequences[J]. Signal Processing Letters, IEEE,1997,4(6):156-157.
    [41]Yu J, Wang Y, Shen Y. Noise reduction and edge detection via kernel anisotropic diffusion[J]. Pattern Recognition Letters,2008,29(10):1496-1503.
    [42]Kang S C, Hong S H. A speckle reduction filter using wavelet-based methods for medical imaging application[C]//Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. IEEE, 2001,3:2480-2483.
    [43]Donoho D L. De-noising by soft-thresholding[J]. Information Theory, IEEE Transactions on,1995,41(3):613-627.
    [44]Gupta S, Chauhan R C, Sexana S C. Wavelet-based statistical approach for speckle reduction in medical ultrasound images[J]. Medical and Biological Engineering and computing,2004,42(2):189-192.
    [45]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1990,12(7): 629-639.
    [46]Yu Y, Acton S T. Speckle reducing anisotropic diffusion[J]. Image Processing, IEEE Transactions on,2002,11(11):1260-1270.
    [47]Sun F, Liu Z, Dong X, et al. Surface reconstruction of the coronary arterial walls from intravascular ultrasound images[J]. Journal of Electronic Imaging,2007, 16(4):043016-043016-4.
    [48]Sutherland G R, Kukulski T, Kvitting J E, et al. Quantitation of left-ventricular asynergy by cardiac ultrasound[J]. The American journal of cardiology,2000. 86(4A):4G-9G.
    [49]Hein I A, O' Brien Jr W D. Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1993,40(2):84-102.
    [50]Horn B K P, Schunck B G. Determining optical flow[J]. Artificial intelligence, 1981,17(1):185-203.
    [51]Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th international joint conference on Artificial intelligence.1981.
    [52]Evangelista A, Nardinocchi P, Puddu P E, ct al. Torsion of the human left ventricle: Experimental analysis and computational modeling[J]. Progress in biophysics and molecular biology,2011,107(1):112-121.
    [53]Yeung F, Levinson S F, Parker K J. Multilevel and motion model-based ultrasonic speckle tracking algorithms[J]. Ultrasound in medicine and biology,1998,24(3): 427-442.
    [54]Rijkse K. H.263:Video coding for low-bit-rate communication[J]. Communications Magazine, IEEE,1996,34(12):42-45.
    [55]Barjatya A. Block matching algorithms for motion estimation[J]. IEEE Transactions Evolution Computation,2004,8(3):225-239.
    [56]Welch G, Bishop G. An introduction to the Kalman filter[J].1995.
    [57]Goris M J, Gray D A, Mareels I M Y. Reducing the computational load of a Kalman filter[J]. Electronics Letters,1997,33(18):1539-1541.
    [58]Najar M, Vidal J. Kalman tracking for mobile location in NLOS situations[C]//Personal, Indoor and Mobile Radio Communications,2003. PIMRC 2003.14th IEEE Proceedings on. IEEE.2003.3:2203-2207.
    [59]Bogler P L. Tracking a maneuvering target using input estimation[J]. Aerospace and Electronic Systems, IEEE Transactions on,1987 (3):298-310.
    [60]王晓婧.(2007).散斑跟踪技术在超声心动图图像分析处理中的应用研究(Master's thesis,山东大学).
    [61]Bamber, J. C., & Dickinson, R. J. (1980). Ultrasonic B-scanning:a computer simulation. Physics in medicine and biology,25(3),463.
    [62]Meunier J, Bertrand M. Ultrasonic texture motion analysis:theory and simulation[J]. Medical Imaging, IEEE Transactions on,1995,14(2):293-300.
    [63]Suhling M, Arigovindan M, Jansen C, et al. Myocardial motion analysis from B-mode echocardiograms[J]. Image Processing, IEEE Transactions on,2005, 14(4):525-536.
    [64]Yue Y, Croitoru M M, Bidani A, et al. Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images[J]. Medical Imaging, IEEE Transactions on,2006,25(3):297-311.
    [65]Evans A N, Nixon M S. Biased motion-adaptive temporal filtering for speckle reduction in echocardiography[J]. Medical Imaging, IEEE Transactions on,1996, 15(1):39-50.
    [66]Plebe A, Gallo G. Filtering echocardiographic image sequences in frequency domain[C]//Image and Signal Processing and Analysis,2001. ISPA 2001. Proceedings of the 2nd International Symposium on. IEEE,2001:238-243.
    [67]Nascimento J C, Sanches J M, Marques J S. Tracking the left ventricle in ultrasound images based on total variation denoising[M]//Pattern Recognition and Image Analysis. Springer Berlin Heidelberg,2007:628-636.
    [68]Noble J A, Dawson D, Lindner J, et al. Automated, nonrigid alignment of clinical myocardial contrast echocardiography image sequences:comparison with manual alignment[J]. Ultrasound in medicine & biology,2002,28(1):115-123.
    [69]Dutt V, Greenleaf J F. Ultrasound echo envelope analysis using a homodyned K distribution signal model[J]. Ultrasonic Imaging,1994,16(4):265-287.
    [70]Malpica N, Santos A, Zuluaga M A, et al. Tracking of regions-of-interest in myocardial contrast echocardiography[J]. Ultrasound in medicine & biology,2004. 30(3):303-309.
    [71]Sage A P, Husa G W. Adaptive filtering with unknown prior statistics[C]//Proceedings of joint automatic control conference. Boulder:CO, 1969,1969:760-769.
    [72]邓自立, 王建国.带模型误差系统自适应Kalman滤波的虚拟噪声补偿技术[J].信息与控制,1988,1:14-14.
    [73]Li R, Zeng B, Liou M L. A new three-step search algorithm for block motion estimation[J]. Circuits and Systems for Video Technology, IEEE Transactions on, 1994,4(4):438-442.
    [74]Po L M, Ma W C. A novel four-step search algorithm for fast block motion estimation[J]. Circuits and Systems for Video Technology, IEEE Transactions on. 1996,6(3):313-317.
    [75]Zhu S, Ma K K. A new diamond search algorithm for fast block-matching motion estimation[J]. Image Processing, IEEE Transactions on,2000,9(2):287-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700