超大容量人源噬菌体抗体库的构建及禽流感病毒抗体的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪70年代中期杂交瘤技术产生以来,人们一直对利用抗体作为疾病治疗的药物充满了期待。但应用鼠源杂交瘤抗体治疗人类疾病时,结果却令人相当失望。鼠源抗体分子在人体内会作为外来分子被人体免疫系统识别,从而产生人抗鼠抗体反应(human antimurine antibody response,HAM),鼠源抗体在体内引起过敏反应并很快的被人体免疫系统清除掉,从而无法到达治疗的目的。而后一系列的人源抗体技术,为解决这一问题带来了曙光。伴随着鼠抗人源化、人B细胞永生化和抗体基因工程技术的逐渐成熟,不少治疗性抗体也陆续进入临床研究,甚至已经成为上市药物。
     噬菌体展示抗体库技术因为操作简单,及筛选高通量,成为最便捷最高效的人源抗体技术之一。但是通过常规技术制备的噬菌体抗体库,由于PCR、连接、转化效率等原因,限制了噬菌体抗体库的容量。此外,由于构建的抗体库不能像抗体基因在体内一样,可以发生重排,抗体库的多样性常常受到限制。缺乏多样性的抗体库经过筛选往往不能获得亲和力高、特异性好的克隆。因此,得到库容量高、多样性丰富的抗体库非常重要。而体外重组系统的建立,有利于增加抗体库的多样性。
     本研究利用72对兼并引物扩增了人抗体可变区基因,通过摸索PCR扩增条件、优化制备电转感受态、提高连接物浓度,成功构建了一个具有良好基因多样性的人源天然噬菌体抗体库,库容为1.47×10~7,并通过菌株改造和突变loxP位点的应用,建立了适于抗体库的Cre-loxP重组系统,使得在Cre酶的作用下不同scFv基因间的VH、VL进行重组,抗体轻重链能够自由随机的组合重排,重组过程可以无限重复,每一次重组的产物都可以作为下次重组的底物,便于以后的筛选和亲和力成熟,最后获得8×10~11超大容量的噬菌体单链抗体库,建立了超大容量抗体库抗体库制备人源抗体的技术平台,为以后针对各种病毒、病原菌、毒素等抗原进行筛选,获得特异性人源治疗性单抗奠定了基础。
     抗体在阻止病毒入侵宿主细胞,抑制病毒复制方面起着重要的作用。人源抗体技术的发展,也为病毒性疾病的治疗带来了新的亮点。本研究通过固液相及不同H5N1型禽流感病毒株对抗体库进行筛选,经过多毒株三轮淘洗,洗脱下来的噬菌体抗体呈明显增加趋势,表明对病毒HA的噬菌体抗体得到了有效的富集。利用ELISA和HAI等检测手段,获得9株抗体并进行原核表达获得scFv抗体蛋白。其中4株抗体能与H5亚型三株病毒交叉反应,4株中的一株抗体还表现出对H1、H3、H5亚型毒株的强交叉。有望成为禽流感抗体药物,用于高致病性高死亡率流感的治疗。此外,可以用这些抗体寻找HA1上的保守表位,研究流感病毒突变机制,研制通用疫苗。
The therapeutic potential of monoclonal antibodies (mAb) was quickly realised after the hybridoma technique allowed their development in the mid 1970s. But the mouse anitibodies do not fit for the therapy because of HA1MA (human antimurine antibody response) which can lead a unexpectable immune reaction and make the antibodies degrade quickly in vivo. In the following years, the rapid development of human antibody technology make antibodies using as therapeutic drug to be possible. While techniques of humanization, human memorr B cell immortalization and antibody engineering booming, more and more antibodies became performing clinicle researches, and went into the market.
     With easily operating and high-throughput screening, phage display antibody library shows to be one of the most useful techniques for gain human antibodies. If the normal process using for construction the library, the capacity would be much smaller than it should be. It's for the reason that a large part of antibody genes would be lost in PCR, ligation and transfromation. In the other side, the antibody light chain and heavy chain genes in library can not recombine freely as in immune system. All of these make gain a good antigen especial reaction antibodies to be difficult. However, after presenting a recombination system, the diversity of library can be enlarged obviously. Additionally, a large library with 10" were gained.
     In this research, on the basis of the primers which could amplify almost the whole antibody V-region genes, a normal single-chain phage antibody library has been prepared successfully. Also the Cre/lox recombination system was established. This system ensure the diversity of our scFv library.
     Antibodies play important roles in protection against and recovery from virus infection. Techniques of human antibody bring a sparking point for therapy of viral diseases. Herein, the scFv library was sCreened with different H5N1 AIV strains in liquid/solid-phase, while detection with ELISA and HAL Then the positive clones were expressed in E. coli. as scFv proteins. Some clones showed cross-activity to different H5 virus strains. Remarkably, one of them can greatly cross-react with H1, H3 and H5 virus. The results depict that the antibodies against conserved epitops in virus have been gotten. It appears an approachable method for developing therapeutic antibody to influenza viruses who usally change themselves.
引文
[1] Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256: 495-497.
    [2] Aksentijevich I, Flinn IW. Monoclonal antibody therapy with autologous peripheral blood stem cell transplantation for non-Hodgkin s lymphoma.Cancer Control, 2002, 9: 99-105.
    [3] Morrison SL, Johnson MJ, Herzenberg LA, et al. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains.Proc Natl Acad Sci, 1984, 81: 6851-6855.
    [4] Dear PH, Foote J, Neuberger MS, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature, 1986, 321: 522-525.
    
    [5] Reisfeld RA, Cheresh DA. Human tumour-associated antigens: targets for monoclonal antibody-mediated cancer therapy. Cancer Surv, 1985;4:271-290.
    [6] Corvalan JR, Smith W, Gore VA. Tumour therapy with Vinca alkaloids targeted by a hybrid-hybrid monoclonal antibody recognising both CEA and Vinca alkaloids. Cancer Suppl 1988, 2: 22-25.
    [7] Walker KA, Murray T, Hilditch TE, et al. A tumour spheroid model for antibody-targeted therapy of micrometastases. Br J Cancer, 1988, 58: 13-16.
    [8] Buske C, Feuring-Buske M, Unterhalt M, et al. Monoclonal antibody therapy for B cell non-Hodgkin s lymphomas: emerging concepts of a tumour-targeted strategy. Eur J Cancer, 1999, 35: 549-557.
    [9] Matsumori A, YamadaT, Kawai C. Immunomodulating therapy in viral myocarditis:effects of tumour necrosis factor, interleukin 2 and anti-interleukin receptor antibody in an animal model. Eur Heart J, 1991: 203-205.
    [10] Fang LS, Tolkoff-Rubin NE, Rubin RH. Efficacy of single-dose and conventional amoxicillin therapy in urinary-tract infection localized by the antibody-coated bacteria technic. N Engl J Med, 1978, 298: 413-416.
    [11] Haranaka K, Sugane K, Mashimo K. Combination therapy of anti-endotoxin antibody and gentamicin in the immunosuppressed mice with Pseudomonas aeruginosa infection. Jpn J Exp Med, 1975, 45: 207-213.
    [12] Kim KS, Cross AS, ZollingerW, et al. Prevention and therapy of experimental Escherichia coli infection with monoclonal antibody. Infect Immun, 1985,50: 734-737.
    [13] Lausch RN, Staats H, Metcalf JF, et al. Effective antibody therapy inherpes simplex virus ocular infection. Characterization of recipient immune response. Intervirology, 1990, 31: 159-165.
    [14] Leone MR, Barry JM, Alexander SR, et al. Monoclonal antibody OKT3 therapy in pediatric kidney transplant recipients. J Pediatr, 1990, 116: 86-91.
    [15] Weir MR, Shen SY, Dagher FJ, et al. Effects of allostimulation and cyclosporine therapy on cytotoxic antibody production in highly sensitized prospective renal transplant recipients. Transplantation, 1988, 46:591-594.
    [16] Bracy JL, Chase CM, Russell PS, et al. Induction of molecular chimerism by gene therapy prevents antibody-mediated heart transplant rejection. Gene Ther, 2001, 8: 1738-1744.
    [17] Damato G. Therapy of allergic bronchial asthma with omalizumab anti-IgE monoclonal antibody. Expert Opin Biol Ther, 2003, 3: 371-376.
    [18] Kretzschmar T, Ruden T. Antibody discovery: phage display. Curr Opin Biotechnol, 2002, 13: 598-602.
    
    [19] Hudson PJ, Souriau C. Engineered antibodies. Nat Med, 2003, 9: 129-134.
    [20] Dijk MA, Winkel JG. Human antibodies as next generation therapeutics. Curr Opin Chem Biol, 2001, 5: 368-374.
    
    [21] No authors listed. Iodine Tositumomab: (131)I-anti-Bl antibody,(131) I-tositumomab, anti-CD20 murine monoclonal antibody-I-131, Bl, Bexxar,(131)I-anti-B1 antibody, iodine-131 tositumomab, iodine-131 anti-B1 antibody, tositumomab. Bio Drugs, 2003, 17: 290-295.
    
    [22] Brekke OH, Loset GA. New technologies in therapeutic antibody development. Curr Opin Pharmacol, 2003, 3: 544-550.
    [23] Piggee C. Therapeutic Antibodies Coming Through the Pipeline A powerful class of biologics moves to center stage. Analytical Chemistry, 2008, 80(7):2305-2310.
    [24] Rader C, Cheresh DA, Barbas CF. A phage display approach for rapid antibody humanization: Designed combinatorial V gene libraries. Proc Natl Acad Sci,1998, 95: 8910-8915.
    
    [25] Petrenko VA, Smith GP, Gong X, et al. A library of organic landscapes on filamentous phage. Protein Eng, 1996, 9(9): 797-801.
    [26] George PS, Valery AP. A library of organic landscapes on filamentous phage.Chem Rev, 1997, 97: 391-410.
    [27] Mccafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990, 348: 552-554.
    [28] Redwan EM, Larsen NA, Zhou B, et al. Expression and Characterization of a Humanized Cocaine-Binding Antibody. Biotechnology and bioengineering,2003, 8: 612-618.
    
    [29] Brunhilde FH, Richard AL, Antonietta L, et al. Combinatorial antibody libraries from cancer patients yield ligand-mimetic Arg-Gly-Asp-containing immunoglobulins that inhibit breast cancer metastasis. Proc Natl Acad Sci,2004, 101: 17210-17215.
    
    [30] Andrei PP, Ramakrishnan S, Craig RG, et al. Genome Engineering in Bacillus anthracis Using Cre Recombinase. Infection and Immunity, 2006, 74: 682-693.
    
    [31] Sternberg N, Sauer B, Hoess R, et al. Bacteriophage P1 cre gene and its regulatory region evidence for multiple promoters and for regulation by DNA methylation. Journal of Molecular Biology , 1986 ,187: 197-212.
    
    [32] Buchholz F, Ringrose L, Angrand PO, et al. Different thermostabilities of FLP and Cre recombinases: implications for applied site specific recombination. Nucleic Acids Research, 1996 ,24 (21): 4256-4262.
    
    [33] Lee G, Satio I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene, 1998, 216: 55-65.
    [34] Gan Y, Zhao XT. A New Combination of Mutated loxPs in a Vector for Construction of Phage Antibody Libraries. Acta Biochimica et Biophysica Sinica, 2005, 37(7): 495-500.
    [35] Griffiths AD, Williams SC, Hartley 0, et al. Isolation of high affinity human antibodies directly from large synthetic repertoire. EMBO J, 1994,13: 32452-3260.
    [36] Sblattero D, Bradbury A. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol, 2000, 18: 742-780.
    
    [37] Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness.Science, 1998, 279: 393-396.
    [38] Zheng QS, Zhang XY, Liu HL, et al. The prokaryotic expression and the establishment of the putative indirect ELISA assay for the HA gene for Avian influenza virus (AIV) H5N1 subtype. Acta Microbiologica Sinica, 2005, 45(1):58-61.
    [39] Yu ZJ, Jin ML, Xu XJ, et al. Alatex agglutination test for detection of hemagglutinin serum antibodies to H5 Avian influenza virus in chicken. Acta Microbiologica Sinica, 2005, 45(6):942-946.
    [40] Hu YC, Luo YL, Ji WT, et al. Dual expression of the HA protein of H5N2 avian influenza virus in a baculovirus system. Journal of Virological Methods,2006, 135: 43-48.
    [41] Karaca K, Swayne DE, Grosenbaugh D, et al. Immunogenicity of fowlpox virus expressing the avian influenza virus H5 gene in cats. Clinical and Diagnostic Labpratory Immunology, 2005, 12(11): 1340-1342.
    [42] Qiao CL, Yu KZ, Jiang YP, et al. Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and Nl neuraminidase genes. Avian Pathology,2003, 32: 25-31.
    
    [43] Park MS, John Steel, Adolfo GS, et al. Engineered viral vaccine constructs with dual specificity:Avian influenza and Newcastle disease.Proc Natl Acad Sci,2006,103(21):8203- 82081.
    [44]李建丽,马仲彬,王泽霖,等等.禽流感病毒遗传变异及其分子机制.中国动物枪疫.2004,6(21):44-45.
    [45]Lipatov AS,Govorkova EA,Webby RJ,et al.Influenza:emergence and control.Virol,2004,78(17):8951-8959.
    [45]Gerhard W.The role of the antibody response in influenza virus infection.Curt Top Microbiol Immunol,2001,260:171-190.
    [46]Luke TC,Kilbane EM,Jackson JL,et al.Meta-analysis:Convalescent blood products for Spanish influenza pneumonia:A future HSN1 treatment.Ann Intern Med,2006,145:599-609.
    [47]Kong LK,Zhou BP.Successful treatment of avian influenza with convalescent plasma.Med J,2006,12:489.
    [48]Zhou B,Zhong N,Guan Y.Treatment with convalescent plasma for influenza A(H5N1) infection.N Engl J Med,2007,357:1450-1451.
    [49]Hanson BJ,el al.Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 HA in mice.Respir Res,2006,7:126.
    [50]陈毅歆,罗海峰,葛胜祥,等.高致病性H5亚型禽流行性感冒病毒血凝素单克隆抗体的制备与初步应.病毒学报,2007,21(6):421-427.
    [51]Fang Z,Luo WX,Wang MQ,et al.Preparation and Identification of a Single-chain Antibody Fragment Against High Pathogenic HSN1 Avian Influenza Virus.Chin J Biotech,2007,23(2):292-296.
    [52]Sblattero D,Bradbury A.A definitive set of oligonucleotide primers foramplifying human V regions.Immunotechnology,1998,3:271-278.
    [53]Zhou B,Pellettc S,William H.TeppcDelineating the susceptibility of botulinum neurotoxins to denaturation through thermal effects.FEBS,2008,582:1526-153.
    [54]Luo WX,Zhang J,Yang HJ,et al.Construction and application of an Escherichia coli high effective expression vector with an enhancer.Chinese Journal of Biotechnology,2000,16(5):578-581.
    [55]Philip HT,Brenda MS,Patrick SS.Contributions of a highly conserved VHPVL hydrogen bonding interaction to scFv folding stability and refolding efficiency.Biophysical Journal Volume,1998,75:1473-1482.
    [56]Sauer B,Henderson N.The cyclization of linear DNA in Escherichia coli by site-specific recombination.Gene,1988,70:331-341.
    [57]王晋,罗文新,李利峰,等.多样性人源天然噬菌体抗体库的构建及初步应用.细胞与分子免疫学杂志,2006,22(6):786-789.
    [58]李 南,凌世淦,吴梧桐.电穿孔法转化大肠杆菌TGl的条件优化.药物生物技术,2001,8(3):143-146.
    [59]韦晓明,苏明权,杨安钢,等.电转化条件对大肠杆菌XL1-Blue菌株转化效率的影响.生物技术通讯,2003,14:566-568.
    [60]韩峰,褚艳,于文功.低温培养对大肠杆菌电穿孔转化效率的影响.高技术通讯,2003,9:31-34.
    [61]Wu LW,Chen YX,WangP,et al.Antigenic Profile of Avian H5NI Viruses in Asia from 2002 to 2007.Journal of Virology,2008,82(4):1798-1807.
    [62]Haard HJ,van Neer N,Reurs A,et al.A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies.J Biol Chem,1999,274:18218-18230.
    [63]Hoogenboom HR.Designing and optimizing library selection strategies forgenerating high-affinity antibodies.Trends Biotechnol,1997,15:62-70.
    [64]Hoogenboom H,Marks J,Griffiths A,ale.Building antibodies from their genes.Immunol Rev,1992,130:41-68.
    [65]Vanghan T J,Williams S C,Pritchard K et al.Human antibody with subnanomolar affinities isolated from a large nonimmunized phage dis-play library.Nat Biotechnol,1996,14:309-314.
    [66]Vaughan TJ,Williams AJ,Pritchard K,et al.Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library.Nat Biotechnol,1996,14:309-314.
    [67]Daniele S,Andrew B.A definitive set of oligonucleotide primers for amplifying human V regions.Immunotechnology,1998:271-278.
    [68]Welschof M,Terness P,Kolbinger F,et al.Amino acid sequence based PCR primers for amplification of rearranged human heavy and light chain immunoglobulin variable region genes.J Immunol Methods,1995,179:203-214.
    [69]王刚,王琰,化冰.人源性天然抗体库的构建及初步攀定.细胞与分子免疫学杂志,2002,18:69-72.
    [70]Stacy JE,Kausmally L,Simonsen B,et al.Direct isolation of recombinanthuman antibodies against group B Neisseria meningitidis from scFv expression libraries.J Immunol Methods,2003,283:247-259.
    [71]Feng YQ,Seibler J,Alami R,Eisen A,Westerman KA,Leboulch P,Fiering S et al.Site-specific chromosomal integration in mammalian cells:Highly efficient CRE recombinase-mediated cassette exchange.J Mol Biol,1999,292:779-785.
    [72]Siegel RW,Jain R,Bradbury A.Using an in vivo phagemid system to identify non-compatible loxP sequences.FEBS Lett,2001,505:467-473.
    [73]Lee G,Saito I.Role of nucleotide sequences of loxP spacer region in Cremediated recombination.Gene,1998,216:55-65.
    [74]Exploiting recombination in single bacteria to make large phage antibody libraries Daniele Sblattero and Andrew Bradbury,Nature Biotechnology,2000,18:75-80.
    [75]Kwon MH,Lee MS,Hong SH.A visible phagemid system for the estimation of Cre-mediated recombination efficiency.Journal of Immunological Methods,2003,280:165-173.
    [76]Keiko S,Yoshitaka S,Tomoki C.Isolation and Characterization of Phage-Displayed Single Chain Antibodies Recognizing Nonreducing Terminal Mannose Residues:A New Strategy for Generation of Anti-Carbohydrate Antibodies.Biochemistry,2007,46:253-262.
    [77]Becht H,Huang RT,Fleischer B.Immunogenic properties of the small chain HA2 of the haemagglutinin of influenza viruses. J Gen Virol. 1984, 65:173-183.
    
    [78] Russ G, Polakova K, Kostolansky F. Monoclonal antibodies to glycopolypeptides HA1 and HA2 of influenza virus haemagglutinin. Acta Virol,1987, 31(5): 374-386.
    
    [79] Graves PN, Schulman JL, Young JF, et al. Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: unmasking of cross-reactive HA2 determinants. Virology, 1983, 126(1): 106-116.
    
    [80] Eckert EA. Properties of an antigenic glycoprotein isolated from influenza virus hemagglutinin. J Virol, 1973, 11(2): 183-192.
    
    [81] Huang RT, Rott R, Klenk HD. Influenza viruses cause hemolysis and fusion of cells. Virology, 1981, 110(1): 243-247.
    
    [82] Doms RW, Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol, 1986, 60(3): 833-839.
    
    [83] Carr CM, Kim PS. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell, 1993, 73(4): 823-832.
    
    [84] Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry:the influenza hemagglutinin. Annu Rev Biochem, 2000, 69: 531-569.
    
    [85] Kostolansky F, Mucha V, Slovdkovd R. Natural influenza A virus infection of mice elicits strong antibody response to HA2 glycopolypeptide. Acta Virol,2002, 46(4): 229-236.
    
    [86] Mikuldsovd A, Vareckovd E, Fodor E. Transcription and replication of the influenza a virus genome. Acta Virol, 2000, 44(5): 273-282.
    
    [87] Vareckovd E, Mucha V, Wharton SA, et al. Inhibition of fusion activity of influenza A haemagglutinin mediated by HA2-specific monoclonal antibodies.Arch Virol, 2003, 148(3): 469-486.
    
    [88] Vareckovd E, Wharton SA, Mucha V, et al. A monoclonal antibody specific to the HA2 glycoprotein of influenza A virus hemagglutinin that inhibits its fusion activity reduces replication of the virus. Acta Virol, 2003, 47(4):229-236.
    
    [89] Okuno Y, Isegawa Y, Sasao F, et al. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J Virol,1993, 67(5): 2552-2558.
    
    [90] Okuno Y, MatsumotoK, Isegawa Y, et al. Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. J Virol, 1994,68(1) :517-520.
    
    [91] Lipatov AS, Gitelman AK, Smirnov YA, et al. Prevention and treatment of lethal influenza A virus bronchopneumonia in mice by monoclonal antibody against haemagglutinin stem region. Acta Virol, 1997, 41(6): 337-340.
    
    [92] Smirnov YA, Lipatov AS, Gitelman AK, et al. Prevention and treatment of bronchopneumonia in mice caused by mouse-adapted variant of avian H5N2 influenza A virus using monoclonal antibody against conserved epitope in the HA stem region. Arch Virol, 2000, 145(8): 1733-1741.
    
    [93] DRodi DJ, Makowski L, Phage-display technology—finding a needle in a vast molecular haystack. Curr Opin Biotechnol, 1999, 10: 87-93.
    
    [94] Hust M, Dubel S. Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol, 2005, 295: 71-96.
    
    [95] Rader C, Barbas CF. Phage display of combinatorial antibody libraries. Curr Opin Biotechnol, 1997, 8: 503-508.
    
    [96] Pini A, Bracci L. Phage display of antibody fragments. Curr Protein Pept Sci, 2000, 1: 155-169.
    
    [97] Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol, 2005, 23: 1105-1116.
    [98] Hideki A, Ayano MT, Yujiro S. Influenza PR8 HA-specific Fab fragments produced by phage display methods. Biochemical and Biophysical Research Communications, 2008, 366: 445-449.
    
    [99] Tadamasa S, Tetsu Y, Yuka M. Identification of a human monoclonal Fab with neutralizing activity against H3N2 influenza A strain from a newly constructed human Fab library. Microbiol Immunol, 2008, 52(3): 162-170.
    
    [100] Kashyap AK, Steel J, Oner AF. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc Natl Acad Sci, 2008, 105: 165986-165991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700