基于CAD变量几何法并联机床加工复杂曲面的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,并联机构成为国际上研究的热点,而其在工业上的重要应用是用作并联机床。并联机床作为一类全新结构的机床,与传统的数控机床形成很强的互补,而对于并联机床加工复杂型曲面中关键技术的研究,属于并联机构学和机床加工工艺领域。随着工业生产的发展,并联机床在实际应用中显得日趋重要,而对于并联机构学领域的基础理论研究方法还有待于进一步完善。本文以CAD变量几何为研究方法,以解决任意并联机床在加工复杂型曲面过程中,其关键机构的运动学、静力学等关键问题为出发点,主要包括以下几个方面:
     基于CAD变量几何,建立并联机器人加工复杂轨迹和复杂型曲面的统一模拟机构,用以求解加工过程中,因难以建立复杂曲线和曲面的解析方程,而无法确定的并联机器人各输入驱动参数。以三维移动3-UPRR、新型非对称3-UPU并联机构,以及具有中间驱动分支的新型少腿5自由度3SPS+RRPU并联机床为研究对象,分别以往复直线、螺旋线以及复杂字母曲线为加工轨迹,阐述模拟机构的建立方法,并建立了5自由度3SPS+RRPU并联机床法向加工的模型。
     基于CAD变量几何求解并联机构的运动学。将欧拉角引入到CAD变量几何中,以有限差分理论为数学基础,建立求解并联机构位置、姿态、线速度/线加速度、欧拉角速度/角加速度的统一方法。提出一种新型三腿5自由度2SPS+RRPRR并联机床,以其和经典的3/6-SPS型并联机构为研究对象,求解其运动学参数的精确值。为解决并联机床加工复杂曲面过程中的速度、加速度问题奠定了理论基础与研究方法。
     基于CAD变量几何,从虚功原理和力/力矩平衡方程两种思路,求解并联机构的驱动力与约束力/力矩。在基于虚功原理的方法中,归纳出三点关键性结论,并给出理论证明,分别以3-RPS和2SPS+2UPU并联机构为例,阐述基于虚功原理的求解方法;分别以只含有约束力的对称3UPUⅠ型、只含有约束力矩的非对称3UPUⅡ型并联机构为例,阐述基于力/力矩平衡方程的求解方法。为求解并联机床加工复杂曲面过程中的驱动力问题奠定了研究方法。
     综合上述所有的研究方法并基于CAD变量几何,求解并联机床法向加工任意复杂曲面过程中的速度、加速度、驱动力等关键问题。对于难以建立解析方程的空间复杂型自由曲面,以新型5自由度4SPS+SPR并联机床为研究对象,构造其法向加工的模拟加工系统,根据预定的轨迹和加工速度要求,预先求解出整个加工过程所需的各驱动输入参数,以及驱动杆和末端平台的速度、加速度变化参数,确定加工中的奇异位形或速度、加速度突变的位置,通过修改运动学参数,避免这些问题的出现,保证加工质量;并分析了两种轨迹下驱动力的变化情况,用以选择合适的加工路径。
     对5自由度4SPS+SPR并联机床建立了解析模型。推导求解其位移、速度、加速度及驱动力/约束力的解析方程,得到其含有约束力在内的6×6 Jacobian矩阵及Hessian矩阵。研究该并联机床位置正解的封闭解,提出5自由度并联机构具有56组正解,并与CAD变量几何法求得的位置正解相互验证。
     基于CAD变量几何法和现有可重组实验台,调试出一系列具有中间约束分支的新型3自由度2SPS+UPU/SP并联机构。通过对其自由度性质的分析,得出该系列并联机构随运动副布置方向的不同具有3转和2转1移的自由度,建立该系列并联机构运动学和静力学的统一方程式。以具有2转1移自由度的构型为基础,基于模块化并联机构试验平台,开发新型并联样机,基于该样机的控制系统和Windows平台的控制软件,通过CAD变量几何法进行数据的采集,使并联样机末端实现预定轨迹的描绘,用以验证CAD变量几何法研究并联机床以及并联机构的正确性。
Nowadays, parallel manipulator (PM) is becoming more and more popular in the field of robotic research. And parallel machine tool (PMT) is an important application in industry. PMT, as a new-style machine tool, complements the traditional NC machine tool perfectly. The research of the basal theory of PMT is a part of the area of PM and machine tool studies. With the development of the industry, PMTs are becoming more and more important in actual applications. A further study of the basal theory on the PMTs is needed. This paper starts with the key problems in the process of machining complicated surface which are unable to establish the analytic equations, the main contributions are as follows:
     Based on CAD variation geometry approach, the uniform model of machining a general complicated surface by parallel robots is founded to solve all the input driving parameters in the process. The 3-UPRR and the novel unsymmetrical 3-UPU PMs with 3 translation degrees of freedom (dofs), and the novel 5 dofs 3SPS+RRPU PMT with middle driving limb are proposed. Three paths of straight-line, spiral and special letter curves are adopted, and the constitution method is expounded. And the model for normal machining by a 5 dofs PMT 3SPS+RRPU is founded.
     CAD variation geometry approach is proposed to solve the kinematics of PMs. The Euler angles are introduced into the CAD variation geometry. Based on the finite-differential theory, a unified method is proposed for solving the position-orientation, linear velocity/ acceleration, and Euler angular velocity/ acceleration. A novel 5 dofs 2SPS+RRPRR PM with 3 limbs is put forward. Based on the 2SPS+RRPRR and the classical 3/6-SPS PMs, the accurate solutions of the kinematics are solved. It lays a theoretical foundation and provides a method for solving the velocity and acceleration in the process of machining a complicated surface.
     Based on the CAD variation geometry, the active forces and constrained forces of any PM are solved from two aspects of the principle of virtual work and the static balance equations. Three pivotal conclusions are induced and verified for the case of using the principle of virtual work. The first method is introduced with 3-RPS and 2SPS+2UPU PMs as examples; and the second method is explained with the 3UPUⅠPM containing only the constrained forces and 3UPUⅡPM containing only the constrained torques as examples.
     Synthesizing all the methods above, it is suggested that the CAD variation geometry should be introduced to solve the key problems in machining a surface. For the complicated surface which is hard to establish the math equations, the normal simulation machine system is constructed based on the 5-dof 4SPS+SPR PMT. All of the input parameters in the whole machining process are solved according to the expectant tool path and machining velocity. The kinematics and statics are analyzed in advance, and the singularity or the shape point of the kinematics is found. By modification of the kinematics parameters, these positions can be avoided and the machine quality can be ensured. The driving forces along the two paths are analyzed in order to choose an appropriate curve.
     The analytic model of the novel 5-dof 4SPS+SPR PMT is established, and the analytic equations for solving the velocity, acceleration and statics are derived. The 6×6 Jacobian matrix and Hessian matrix are obtained. The forward position of the PMT is analyzed, and it is claimed that the 5-dof PMT has 56 groups of solutions. The analytic solutions are validated by the CAD variation geometry approach.
     Based on the CAD variation geometry approach and the existing test-bed, a series of 3-dof 2SPS+UPU/SP PMs with the constrained leg are put forward. By analyzing the properties of their dofs, it is found that the 2SPS+UPU/SP PMs have two kinds of dofs: 3 translations; and 2 rotations plus 1 translation. Then the uniform analytic equations for solving the kinematics and statics are established. Taking the novel 2SPS+UPU/SP PM with the 2 rotations and 1 translation as the prototype, and based on the modularization test-bed of PM, the novel sample machine is exploited. Based on Windows Operating System and data collection by CAD variation geometry approach, the expectant track is painted by the sample machine in order to prove the validity of CAD variation geometry approach.
引文
1 IFToMM. IFToMM Terminology. Mechanism and Machine Theory, 2003,38(7-10):821
    2 Tonshoff H K and Grendel H A. In: C. R. Boer, L. Molinari- Tosatti and K. S. Smith. Parallel Kinematic Machines: theoretical aspects and industrial requirements. London: Springer- Verlag London Limited, 1999:295-312
    3 J. E. Gwinnett. Amusement Device. United States, 1931, 1789680
    4 W. L. Pollard. Spray Painting Machine. United States, 1940, 2213108
    5 D. Stewart. A Platform with six degrees of freedom. In: Proceedings of the Institution of Mechanical Engineers. London, UK, 1965,180(15):371-386
    6 K. L. Cappel. Motion Simulator. United States, 1967,3295224
    7 I. Bonev. The true origins of parallel robots. www.parallemic.org. 2003
    8 K. H. Hunt. Kinematic Geometry of Mechanisms. Oxford: Claredon Press, 1978:10-18
    9 H. MacCallion, D. T. Pham. The Analysis of A 6-DoF Work Station for Mechanized Assembly. Proceedings of 5rd Congress on TMM, Montreal, Canada, 1979:611-616
    10 Nguyen C. C., Antrazi S. S., Zhou Z L, etc. Experimental study of motion control and trajectory planning for a Stewart platform robot manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, 1991,2:1873-1878
    11 Pierrot F, Fournier A, Dauchez P. Towards a fully-parallel 6 dof robot for high-speed applications. In: Proceedings of IEEE International Conference on Robotics and Automation, 1991,2:1288-1293
    12 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practica1 Construction. The International Journal of Robotics Research, 1986,5(2):157-182
    13 J. P. Merlet. Parallel Manipulators Part 2: Singu1ar Configurations and Grassman Geometry. Technology report, INRIA, Sophia Antipols, France, 1988:66-70
    14杜铁军.机器人误差补偿器研究.[燕山大学工学硕士学位论文].1994:16-17
    15黄真.空间机构学.北京:机械工业出版社,1989:126-143
    16黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997:1-11
    17黄真,赵永生,赵铁石.高等空间机构学.北京:机械工业出版社,2006:116-138
    18 M. Sorli, C. Ferraresi, M. Kolarski. Mechanics of Turin parallel robot. Mechanism and MachineTheory, 1997,32(1):51-57
    19 L. W. Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. New York: John Wiley & Sons, 1999:223-259
    20 J. P. Merlet. Parallel Robots. Dordrecht: Kluwer Academic Publishers, 2000:183-232
    21 R. Ball. A Treatise on the Theory of Screws. England: Cambridge University Press, 1900:62-84
    22 K. H. Hunt. Structural Kinematic of in-Parallel-Acttuated Robot Arms, Journal of Mechanisms. Transmissions and Automation in Design, 1983,(105):705-712
    23 M. Thomas, H. C. Yuan-Chou, and D. Tesar. Optimal Actuator Sizing for Robotic Manipulators Based on Local Dynamic Criteria. Journal of Mecha. Trans. And Autom. In Design, 1985,107(6):163-169
    24 D. J. Cox. The Dynamic Modeling and Command Signal Formulation for Parallel Multi-Parameter Robotic Devices. The Thesis Presented to the University of Florida, 1981:23-35
    25 C. M. Gosselin, J. Sefrioui and M.J. Richard. On the Direct Kinematics of General Spherical
    3-DOF Parallel Manipulator. Proc. Of ASME Mech. Conf, 1992:7-11
    26 C. M. Gosselin. On the Kniematic Design of Spherical 3-DOF Parallel Manipulators. Int. J. of Rob. Res., 1993,12(4):394-402
    27 C. M. Gosselin, S. Lemieux, and J.P. Merlet. A New Architecture of Planar Three- Degree-of-Freedom Parallel Manipulator. Pro. of 1996 IEEE:3738-3743
    28 J.P. Merlet. Direct Kinematics of Planar Parallel Manipulators. Proc. Of 1996 IEEE:3744-3749
    29 H.R.M. Daniali, P.J. Zsombor-Muray and J. Angeles. Singularity Analysis of a General Class of Planar Parallel Manipulators. 1995 IEEE on Rob.& Auto:1547-1542
    30 H.R.M. Daniali, P.J. Zsombor-Murray and J. Angles. The Isotropic Design of Two General Class of Planar Parallel Manipulators. Journal of Robotic Systems, 1995,12(12):795-805
    31 R.E.M. Ellis, Qin. Singular-Value and Finite-Element Analysis of Tactile Shape Recognition. IEEE, 1994:2529-2535
    32 K.M. Lee, D.K. Shah. Kinematic Analysis of a Three-Degree-of Freedom in Parallel Actuated Manipulator. IEEE Journal of Robotics and Automation, 1988,4(3):354-360
    33 A. Codourey, R. Clavel and C. W. Burckhardt. Control Algorithm and Controller for The Direct Drive DELTA Robot. IFAC Robot Control, Vicnna, Austria, 1991:543-549
    34 R. Clavel, DELTA. A Fast Robot with Parallel Geometry. Proc. Of the Int. Symp. On IndustrialRob.,Switzerland, 1988:91-100
    35 R. E. Stamper, L. W. Tsai, G. C. Walsh. Optimization of a Three DoF Translational Platform for Well-Conditioned Workspace. IEEE International Conference on Robotics and Automation, Albuquerque, USA, 1997,(4):3250-3255
    36 L. W. Tsai, G. C. Walsh, R. E. Stamper. Kinematics of a Novel Three DoF Translational Platform. IEEE International Conference on Robotics and Automation, Minneapolis, USA, 1996,(4): 3446-3451
    37 C. M. Gosselin, J. Angeles. The Optimum Kinemaic Design of a Spherical 3-DoF Parallel Manipulator. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(2): 202-207
    38 C. M. Gosselin. On the Kinematic Design of Spherical 3-DoF Parallel Manipulators. The International Journal of Robotics Research, 1993,12(4):394-402
    39 C. M. Gosselin, E. St-Pierre. Development and Experimentation of a Fast 3-DoF Camera-Orienting Device. The International Journal of Robotics Research, 1997,16(5):619-630
    40 C. M. Gosselin, J. Sefrioui, M. J. Richard. On the Direct Kinematics of Spherical Three-Degreeof-Freedom Parallel Manipulators with a Coplanar Platform. ASME Journal of Mechanical Design, 1994,116(2):587-593
    41 Z. Huang, Y. F. Fang. Kinematic Characteristics Analysis of 3-DoF in-Parallel Actuated Pyramid Mechanisms. Mechanism and Machine Theory, 1996,31(8):1009-1018
    42 J. M. Hervé. The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design. Mechanism and Machine Theory, 1999,34(5):719-730
    43 F. Pierrot, O. Company. H4: a New Family of 4-DoF Parallel Robots. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999:508-513
    44赵铁石,黄真.欠秩空间并联机构机器人输入选取的理论和应用.机械工程学报, 2000,36(10): 81-85
    45赵铁石.空间少自由度并联机器人机构分析与综合的理论研究.[燕山大学工学博士学位论文]. 2000:26-32
    46 D. Zlatanov, C. M. Gosselin. A New Parallel Architecture with Four Degrees of Freedom. The 2nd workshop on Computational Kinematics, Seoul, 2001:57-66
    47 M. K. Lee, K.W. Park. Kinematics and Dynamics Analysis of a Double Parallel Manipulator forEnlarging Workspace and Avoiding Singularities. IEEE Transaction on Robotics and Automation, 1999,15(6):1024-1034
    48 Q. Jin, T. L. Yang, A. X. Liu, et al. Structure Synthesis of a Class of Five-DoF (Three Translation and Two Rotation) Parallel Robot Mechanisms Based on Single-Opened-Chain Units. ASME Design Engineering Technical Conferences, Pisttsburgh, 2001,DETC/DAC-21153
    49彭斌彬.新型5自由度五轴数控并联卧式机床运动学设计方法研究.[燕山大学工学硕士学位论文]. 2002:37-57
    50汪劲,松黄田.并联机床—机床行业面临的机遇与挑战.中国机械工程, 1999,10(10):1103-1107
    51 Gosselin C M, Sefrioui J., Richard M J. On the Direct Kinematics of a Class Spherica 3-DOF Parallel Manipulator. Proc. of ASME Mech. Conf., 1992:13-19
    52 Gosselin C M, Angeles J. Kinematic Inversion of Paralel Manipulators in the Presence of Incompletely Specified Tasks. ASME J. of Mech Des., 1990,112:454-500
    53 Merlet J P. Closed-Form Resolution of the Direct Kinematics of Parallel Manipulators Using Extra Sensors Data. Proceedings of the IEEE Int. Rob. and Aut. Conference, Atlanta, 1993:200-204
    54 Merlet J P. Singular Configurations of Parallel Manipulators and Grassman Geometry. Int.J. of Rob. Res., 1989,8(5):45-46
    55 C. Innocenti, V. Parenti-Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: An Exhaustive Numerical Approach Via a Mono-Dimensional-Search Algorithm. Transactions of the ASME, J. of Mech.Des., 1993,115:932-937
    56 Chris Koepfer, Mark Albert. Reinventing the Machine Tool. Modern Machine Shop. 1994, (11):100-107
    57 Masaru Uchiyama. A 6-DOF Parallel Robot HEXA. Advanced Robotics, 1994,8(6):601-602
    58 Satoshi Tadokoro. A 6-DOF Parallel Robot Wrist Joint by A Pneumatic Actuator Drive. Advanced Robotics, 1994,8(6):603-604
    59 Katsumi Nakashima. A Six-axis Motion Base and a Study of A Parallel Manipulators. Advanced Robotics, 1994,8(6):609-610
    60 U. Heisel, M. Gringel. Machine Tool Design Requirements for High-Speed Machining. Annals of the CIRP., 1996,45(1):389-392
    61 Mathias Hebsacker, Ziirich.用六条腿机床实现高效铣削.制造技术与机床, 1998,(10):20-22
    62韩俊伟,姜洪洲.用于航海模拟的6自由度并联机器人的研究.高技术通讯, 2001,(3):88-90
    63 M. Washizu. Manipulation of Biological Objects Mechanical Structures. IEEE Micro Mechanical Systems, Germany, 1992:196-201
    64 T. Tanikawa, T. Arai, P. Ojala, et al. Two Finger Micro Hand. IEEE International Conference on Robotics and Automation, Nagoya, Japan,1995,(2):1674-1679
    65 T. Dohi. Computer Aided Surgey and Micro Machine. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1993:21-24
    66 K. W. Grace, J. E. Colgate. A Six Degree of Freedom Micromanipulator for Ophthalmic Surgey. IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1993:630-635
    67 J. P. Merlet. Optimal Design for the Micro Parallel Robot MIPS. IEEE International Conference on Robotics and Automation, Washington, 2002:1149-1154
    68杨宜民等.仿生型步进式直线驱动器的研究.机器人, 1994:140-143
    69安辉.压电陶瓷驱动6自由度并联微动机器人的研究.[哈尔滨工业大学工学博士学位论文].1995:63-76
    70毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人, 1997,19(4):259-264
    71 D. R. Kerr. Analysis Properties and Design of a Stewart-Platform Transducer. Journal of Mechanisms, Transmissions and Automation in Design, 1989,(111):25-28
    72 C. C. Nguyen. Analysis and Experimentation of a Stewart Platform-Based Force/Torque Sensor. International Journal of Robotics and Automation, 1993,7(3):133-140
    73 C. Ferraresi. Static and Dynamic Behavior of a High Stiffness Stewart Platform-Based Force/ Torque sensor. Journal of Robotic Systems, 1995,12(12):883-893
    74陈滨.机器人手腕测力装置.机械工程学报, 1988,24(2):83-87
    75熊有伦.机器人力传感器的各向同性.自动化学报, 1996,22(1):10-17
    76金振林,高峰,刘辛军.新型力解耦和各向同性结构的机器人六维力传感器.传感器技术, 2000, 19(4):26-28
    77 H. R. Wang, F. Gao, Z. Huang. Design of 6-Axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering, 1998,11(3):217-222
    78 J. P. Merlet. Parallel Manipulators: State of the Art and Perspectives. Journal of Advanced Robotics, 1994,8(6):589-596
    79 R. Aronson. Hexpods: Hot or Ho Hum. Manufacturing Engineering, 1997,(10):60-67
    80 J. Hollingum. Features: Hexapods to Take Over. Journal of Industrial Robot, 1997,24(6):428-431
    81 J. M. Fitzgerald. Evaluating the Stewart Platform for Manufacturing. Robotics Today, 1993,6(1): 1-3
    82 G. Pritschow, K. H. Wurst. Systematic Design of Hexapods and Other Parallel Link Systems. Annals of CIRP-Manufacturing Technology, 1997,46(1):291-295
    83中国机床工具工业协会EM097工作组.并联杆系机床的新发展.世界制造装备与市场, 1999, (4):16-18
    84汪劲松.VAMITIY虚拟轴机床.制造技术与机床, 1998,(2):42-43
    85高峰,金振林,刘辛军.6自由度虚拟轴机床.中国发明专利,公开号:CN1261018A
    86赵永生.3维移动2维转动5轴联动并联机床机构.专利号:02104943.2
    87 E. F. Fichter. Kinematics of a Parallel Connection Manipulator. ASME, 1984,DET-45
    88 D. C. H. Yang, T. W. Lee. Feasibility Study of a Platform Type of Robotic Manipulators from Kinematic Viewpoint. ASME J. Mech. Transmiss. Aut. Des., 1984,(106):191-198
    89 Hudgens J. C. and Tesar D. A fully-parallel six degree-of freedom micromanipulator: kinematic analysis and dynamic model, Proc.20th Biennal ASME, Mechanisms Conf. Trends and Development in Mechanisms Machines and Robotics, 1988,15(3):29-37
    90 D.M. Ku. Direct displacement analysis of a Stewart platform mechanism, Mech. Mach. Theory, 1999,l34(3):453-465
    91 X. Shi and R. G. Feston. Forward kinematic solution of a general 6-DOF Stewart platform based on three point position data. Proc. of the Eighth World Congress on Theory of Machines and Mechanisms, Prague, 1991:1015-1018
    92 K. Sugimoto. Kinematic and dynamic analysis of a parallel manipulators by means of motor algebra. Trans. ASME J. Mach. Transmissions Automation Des., 1987,(109):3-7
    93 D.C.H. Yang and T.W. Lee. Feasibility study of a platform type of robotic manipulators from a kinematic viewpoint. Trans. ASME J. Mech. Transmissions Automation Des., 1984,106(2):191-198
    94 M. Raghavan. The Stewart platform of general geometry has 40 configurations Trans. ASME J. Mech. Transmissions Automation Des., 1993,115:277-282
    95 S. Greenivasan and P. Nanua. Solution of the direct position kinematics problem of the general Stewart platform using advanced polynomial continuation. Proc.of 22nd ASME Mech. Conf. 1992,DE-45:99-106
    96 O. Didrit, M. Petitot and E. Walter. Guaranteed solution of direct kinematic problems for generalconfigurations of parallel manipulators. IEEE Trans on robotics and automation, 1998,14:259-266
    97 C. W. Wampler. Forward displacement analysis of general six-in-parallel SPS Stewart platform manipulators Using SOMA coordinates. Mech. Mach. Theory, 1995,31(3):331-337
    98 J.Y. Wang, D.H. Kim and K.L. Lez. Robust estimator design for forward kinematics solution of a Stewart platform. J. Robotic Systems, 1998,15:29-42
    99 Z. Sika, P. Kocandrle and V. Stejskal. An investigation of properties of the forward displacement analysis of the generalized Stewart platform by means of general optimization methods. Mech. Mach. Theory, 1998,33:245-253
    100 Boudreau R., Darenfed S. and Turkkan N., Etude comparative de trios nouvelles approches pour la solution du problème géometrique direct des manipulateurs. Mech .Mach. Theory,1998,33:463-477
    101 C. Innocenti, V. P. Castelli. A New Kinematic Model for the Closure Equations of the Generalized Stewart Platform Mechanism. Symposium on Advance in Robot Kinematics, Linz, Austria, 1990:457-457
    102 C. Innocenti, V. P. Castelli. Direct Position Analysis of the Stewart Platform Mechanism. Mach. Mech. Theory, 1990,25(6):611-621
    103 R.I. Alizade and N.R. Tagiyev. A forward and reverse displacement analysis of a 6-DOF in-parallel manipulator. Mech. Mach. Theory, 1994,29(l):115-124
    104 F. Behi. Kinematic analysis for a six-degree-of-freedom 3-PRPS parallel mechanism. IEEE J. of Robotics and Automation, 1988,4(5):561-565
    105 H. Bruyninckx. Forward kinematics for Hunt-Primrose parallel manipulators. Mech. Mach. Theory, 1999, 34:657-664
    106 Carlo. Direct position analysis of the Stewart platform mechanism. Mech. Mach. Theory, 1990, 25(6):463-477
    107 B. Dasgupta. A canonical formulation of the direct position kinematics problem for a general 6-6 Stewart platform. Mech. Mach. Theory, 1994,29(6):819-827
    108 G. R. Dunlop and T. P. Jones. Position analysis of a two DOF parallel mechanisms-the Canterbury tracker. Mech. Mach. Theory, 1999,34(4):599-614
    109 W. Fuan and C.G. Liang. Displacement analysis of the 6-6 Stewart platform mechanisms. Mech. Mach. Theory, 1994,29:547-557
    110 M. Griffis and J. Duffly. A forward displacement analysis of a class of Stewart platform. J. RoboticSystems, 1989,6(6):703-720
    111 L. Han, Q. Liao and C.G. Liang. Forward displacement analysis of one kind of general 5-5 parallel manipulators. Mech. Mach. Theory, 2000,35(2):271-289
    112 K.H. Hunt and E.J.F. Primrose. Assembly configurations of some in-parallel actuated manipulators. Mech. Mach. Theory, 1993,28:31-42
    113 M.L. Husty. An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech. Mach. Theory, 1996,31:365-380
    114 H.J. Su, L.Q. Zheng and C.G. Liang. Direct positional analysis for a kind of 5-5 platform in-parallel robotic mechanism. Mech. Mach. Theory, 1999,34:285-301
    115 F.A. Wen and C.G. Liang. Isplacement analysis of the 6-6 Stewart platform mechanisms. Mech. Mach. Theory, 1994,29(4):547-557
    116 K. Wohlhart. Displacement analysis of the general spherical Stewart platform. Mech. Mach. Theory, 1994,29(4):581-589
    117 J.P. Yin and C.G. Liang. The forward displacement analysis of a kind of special platform manipulator mechanisms. Mech. Mach. Theory, 1994,29(l):1-9
    118 C.D. Zhang and S., M. Song. Forward kinematics of a class of parallel Stewart platforms with closed form solutions. Proc. IEEE Int. Conf. Robotics and Automation, 1991:2676-2681
    119孔宪文,杨廷力.一种新型简单6-SPS并联机器人及其位置正解.机器人, 1995,17(l):52-57
    120梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报, 1991,27(2):26-30
    121 K. Cheok, J. L. Overholt and R.R. Beck. Exact Methods for determining the kinematics of a Stewart platform using additional displacement sensors. J. Robotic Systems, 1993,10(5):703-720
    122 A.B. Ilian and R. Jeha. A new method for solving the direct kinematics of general 6-6 Stewart platform using three linear extra sensors. Mech. Mach. Theory, 2000,35(3):423-436
    123 B. P. Petar and R. M. Vladimir. Closed-form resolution scheme of the direct kinematics of parallel link systems based on redundant sensory information. Annals of the CIRP, 1999,48(l):341-344
    124 M. Thomas, D. Tesar. Dynamic Modeling of Serial Manipulator Arms. J. of Dyn. Sys. Meas. And Cont., 1982,104(9):218-227
    125 R.A. Freeman. The Generalized Coordinate Selection for the Dynamics of Complex Planar Mechanical System. J. of Mech. Des., 1982,104:207-217
    126 M. G. Mohamed, J. Duffy. A direct Determination of the Instantaneous Kinematics of Fully-ParallelRobot Manipulators. ASME paper, 1984,DET-114
    127 M. G. Mohamed, J. Duffy. A Direct Determination of Instantaneous Kinematics of Fully Parallel Robot Manipulators. ASME J. Mech. Trans. Aut. Des., 1985,107:226-229
    128 Z. Huang. Modeling Fomulation of 6-DOF Multi-loop Parallel Manipulators Part-1: Kinematic Influence Coefficients. Proc. of 4th IFToMM International Symposium on Linkage and Computer Aided Design Method, 1985, Bucharest, Romania,Ⅱ(1):155-162
    129 Z. Huang. Modeling Fomulation of 6-DOF Multi-loop Parallel Manipulators Part-2: Dymanic Modeling and Example. Proc. of 4th IFToMM International Symposium on Linkage and Computer Aided Design Method, 1985, Bucharest, Romania,Ⅱ(1):163-170
    130黄真.平行支路机械手动力模型:(一)系数矩阵.东北重型学院学报, 1985,(4):36-44
    131黄真.平行支路机械手动力模型:(二)模型建立及实例.东北重型学院学报, 1986,(2):40-47
    132 Z. Huang. Error Analysis of Position and Orientation in Robot Manipulator. Mechanism and Machine Theory, 1987,22(6):577-581
    133黄真,曲义远.空间并联多环机构的特殊位形分析.全国第五届机构学学术会议论文集.庐山, 1987:11-12
    134 H. B. Wang, Z. Huang. Kinematic Influence Coefficient Method of Kinematic and Dynamic Analysis. Mechanism and Machine Theory, 1990,25(2):167-173
    135 Z. Huang, Y. S. Zhao. The Accordance and Optimiaztion-Distribution equations of the Over- Determinate Inputs of Walking Machines. Mechanism and Machine Theory, 1994,29(2):327-332
    136黄真,孔宪文.具有冗余自由度的空间并联多环机构的运动分析.机械工程学报,1995, 31(3):44-50
    137 T. S. Zhao, Z. Huang. Study on Adeptability of A Seacrab and Its Bionics Mechanism Model. Mechanism and Machine Theory, 1999,34(8):1271-1280
    138 T. Ropponen, T. Arai. Accuracy analysis of a modified Stewart platform manipulator. Proc IEEE Int. Conf. Robot Automn., 1995:521-525
    139 S. L. Canfield, R. R. Soper, C. F. Reinholtz. Velocity Analysis of Parallel Manipulators by Truss Transformations. Mechanism and Machine Theory, 1999,34(3):345-357
    140黄真,郭希娟.虚设机构法正确性的论证.机械工程学报, 2001,37(5):40-43
    141 A. Henández, O. Altuzara, R. Avilés. Kinematic Analysis of Mechanisms via a Ve1ocity Equation Based in a Geometric Matrix. Mechanism and Machine Theory, 2003,38(12):1413-1429
    142 Z. Huang, J. Wang. Kinematics of 3-DOF pyramid manipulator by principal screw. Chinese Journal of Mechanical Engineering (English Edition), 2001,14(2):116-120
    143 J. M. Rico, J. Gallardo, and J. Duffy. Screw theory and higher order kinematic analysis of open serial and closed chains. Mechanism and Machine Theory, 1999,34(4):559-586
    144 L. W. Tsai, S. Joshi. Kinematics and optimization of a spatial 3-UPU parallel manipulator. Tran. of the ASME Journal of Mechanical Design, 2000,122(4):439-446
    145 C. Chen. Dynamic Analysis and Determination of the Joint Characteristics of Parallel-Drive Robot Manipulators. J. of Robotics Systems, 1993,10(6):791-809
    146李兵,王知行,李建生.基于凯恩方程的新型并联机床动力学研究.机械科学与技术,1999, 18(1):41-43
    147方跃法.6自由度并联机器人的弹性动力学模型.机械科学与技术, 1990(1):62-69
    148 A. Fattah, J. Angeles, A. K. Misra. Dynamics of a 3-DOF Spatial Parallel Manipulator with Flexible Links. IEEE International Conference on Robotics and Automation, 1995:532-537
    149 L. Kunwoo. Principles of CAD/CAM/CAE Systems. Canada: Addison-Wesley, 2000:1-25
    150 R. Light, D. Gossard. Modification of geometric models through variation geometry. Computer-aided Design, 1982, 14(4):209-214
    151 K. Luck. Computer-aided mechanism synthesis based on the Burmester theory. Journal of Mechanism and Machine Theory, 1994, 29(6):877-886
    152 K. H. Hunt. Kinematics geometry of mechanisms. Oxford University Pree, 1990:20-32
    153 Q. J. Ge, M. Sirchia. Computer aided geometric design of two parameters free form motion. J. of Mechanical Design (ASME), 1999,121(4):9-14
    154 W. E. Eder. Design Modeling a Design Science Approach. Journal of Engineering Design, 1998, 9(4):252-371
    155 A. Ilian, Bonev, and R. Jeha. A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. Mechanism and Machine Theory, 2001,36(1):1-13
    156 V. C. Lin, D. C. Gossard, R. A. Light. Variational geometry in computer-aided design. Computer Graphics, ACM, 1981,15(3):171-177
    157 Y. M. Deng, G. A. Britton, S. B. Tor. Constraint-based Functional Design Verfication for Conceptual Design. Computer-Aided Design, 2000,32:889-899
    158路懿.用计算机几何技术求解多自由度平面机构的运动.中国机械工程, 2003,14(16):1360-1365.
    159路懿.用CAD约束和尺寸驱动技术分析平面机构的运动.计算机辅助设计与图形学学报, 2002, 14(10):378-679.
    160朱心雄.自由曲线曲面造型技术.北京:科学技术出版社,2000:78-90
    161 D.C.H. Yang, Z. Han. Interference Detection and Optimal Tool Selection in 3-axis NC Machining of Free-form Surfaces. Computer-Aided Design, 1999,31(5):303-315
    162 Y. K. Choi, A. Banerjee. Tool Path Generation and Tolerance Analysis for Free-form Surfaces. International Journal of Machine Tools & Manufacture, 2007,47(3-4):689-696
    163 Y. Lu, B. Hu. Analyzing kinematics and solving active/ constrained forces of a 3SPU+UPR parallel manipulator. Machine and Mechanism Theory, 2007, 42(10):1298-1313
    164 Y. Lu. Using CAD Functionalities for the kinematics analysis of spatial parallel manipulators with 3-, 4-, 5-, 6-linearly driven limbs. Machine and Mechanism Theory, 2004,39(1):41-60
    165 Y. Lu, B. Hu. Analysis of kinematics and solution of active/constrained forces of asymmetric 2UPU+X parallel manipulators. Journal of Mechanical Engineering Science, 2006,220(C12): 1819-1830
    166 Y. Lu. Using CAD variation geometry for solving velocity and acceleration of parallel manipulators with 3-5 linear driving limbs. Transaction ASME Journal of Mechanical Design, 2006,128,(4):738-746
    167 N. Dasgupta. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanism and Machine Theory, 1998,33(8):1135-1152
    168 Y. Lu, B. Hu. Unification and simplification of velocity/ acceleration of limited-dof parallel manipulators with linear active legs. Mechanism and Machine Theory, 2008,43(9):1112-1128
    169路懿.可调式具有被动约束分支3自由度并联机器人机构.中国发明专利,公开号: CN1647890A

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700